
https://doi.org/10.4224/8913708

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez

pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the

first page of the publication for their contact information.

NRC Publications Archive

Archives des publications du CNRC

For the publisher’s version, please access the DOI link below./ Pour consulter la version de l’éditeur, utilisez le lien

DOI ci-dessous.

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Mining the Web for Lexical Knowledge to Improve Keyphase

Extraction: Learning from Labeled and Unlabeled Data
Turney, Peter

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

NRC Publications Record / Notice d'Archives des publications de CNRC:
https://nrc-publications.canada.ca/eng/view/object/?id=db14b15b-1a02-41f3-8458-f70f9b7108fb

https://publications-cnrc.canada.ca/fra/voir/objet/?id=db14b15b-1a02-41f3-8458-f70f9b7108fb

National Research
Council Canada

Institute for
Information Technology

Conseil national
de recherches Canada

Institut de technologie
de l’information

Mining the Web for Lexical Knowledge to Improve

Keyphase Extraction: Learning from Labeled and

Unlabeled Data. *

Turney, P.
July 2002

* published in: NRC/ERB-1096. July 19, 2002. 32 pages. NRC 44947.

Copyright 2002 by
National Research Council of Canada

Permission is granted to quote short excerpts and to reproduce figures and tables from this report,
provided that the source of such material is fully acknowledged.

© Copyright 2002 by

National Research Council of Canada

Permission is granted to quote short excerpts and to reproduce figures and tables from this report,

provided that the source of such material is fully acknowledged.

Mining the Web for Lexical Knowledge
to Improve Keyphrase Extraction:
Learning from Labeled and Unlabeled Data

P.D. Turney

August 13, 2002

National Research

Council Canada

Institute for

Information Technology

Conseil national

de recherches Canada

Institut de technologie

de l’information

ERB-1096

NRC-44947

Mining the Web for Lexical Knowledge
to Improve Keyphrase Extraction:
Learning from Labeled and Unlabeled Data

P.D. Turney

August 13, 2002

Contents
Abstract ..1

1. Introduction ...1

2. Related Work ..5

2.1 GenEx: Genitor and Extractor ..5

2.2 Kea: Baseline Feature Set ...6

2.3 Kea: Keyphrase Feature Set ..8

3. Removing Domain-Specificity: Mining for Lexical Knowledge ..9

3.1 A Model of the Keyphrase-Frequency Feature ...9

3.2 PMI-IR: Mining the Web for Synonyms ..10

3.3 Kea: Query Feature Set ...12

4. Experiment 1: Comparison of Feature Sets on the CSTR Corpus14

5. Experiment 2: Generalization from CSTR to LANL ..17

6. Experiment 3: Evaluation of Feature Subsets ...20

7. Experiment 4: Relations Among Feature Sets ..22

8. Experiment 5: Combining Query and Keyphrase Features ...23

9. Experiment 6: Evaluating Keyphrases by Familiarity ..26

10. Experiment 7: Evaluating Keyphrases by Searching ..28

11. Discussion: Limitations, Applications, Future Work ..31

12. Conclusions ...31

Acknowledgments ...32

References ...32

1. Introduction

Turney 1

Abstract

A journal article is often accompanied by a list of keyphrases, composed of about five to fifteen

important words and phrases that capture the article’s main topics. Keyphrases are useful for a

variety of purposes, including summarizing, indexing, labeling, categorizing, clustering, high-

lighting, browsing, and searching. The task of automatic keyphrase extraction is to select

keyphrases from within the text of a given document. Automatic keyphrase extraction makes it

feasible to generate keyphrases for the huge number of documents that do not have manually

assigned keyphrases. Good performance on this task has been obtained by approaching it as a

supervised learning problem. An input document is treated as a set of candidate phrases that must

be classified as either keyphrases or non-keyphrases. To classify a candidate phrase as a key-

phrase, the most important features (attributes) appear to be the frequency and location of the

candidate phrase in the document. Recent work has demonstrated that it is also useful to know the

frequency of the candidate phrase as a manually assigned keyphrase for other documents in the

same domain as the given document (e.g., the domain of computer science). Unfortunately, this

keyphrase-frequency feature is domain-specific (the learning process must be repeated for each

new domain) and training-intensive (good performance requires a relatively large number of train-

ing documents in the given domain, with manually assigned keyphrases). The aim of the work

described here is to remove these limitations. In this paper, I introduce new features that are con-

ceptually related to keyphrase-frequency and I present experiments that show that the new features

result in improved keyphrase extraction, although they are neither domain-specific nor training-

intensive. The new features are generated by issuing queries to a Web search engine, based on the

candidate phrases in the input document. The feature values are calculated from the number of hits

for the queries (the number of matching Web pages). In essence, these new features are derived

by mining lexical knowledge from a very large collection of unlabeled data, consisting of approx-

imately 350 million Web pages without manually assigned keyphrases.

1. Introduction
A journal article is often accompanied by a list of keyphrases, composed of about five to fifteen

important words and phrases that express the primary topics and themes of the paper. For an individ-

ual document, keyphrases can serve as a highly condensed summary, they can supplement or replace

the title as a label for the document, or they can be highlighted within the body of the text, to facili-

tate speed reading (skimming). For a collection of documents, keyphrases can be used for indexing,

categorizing (classifying), clustering, browsing, or searching. Keyphrases are most familiar in the

context of journal articles, but many other types of documents could benefit from the use of key-

phrases, including Web pages, email messages, news reports, magazine articles, and business papers.

The vast majority of documents currently do not have keyphrases. Although the potential benefit

is large, it would not be practical to manually assign keyphrases to them. This is the motivation for

developing algorithms that can automatically supply keyphrases for a document. There are two gen-

eral approaches to this task: keyphrase assignment and keyphrase extraction. Both approaches use

supervised machine learning from examples. In both cases, the training examples are documents

with manually supplied keyphrases. Otherwise, the two approaches are quite different.

In keyphrase assignment, there is a predefined list of keyphrases (in the terminology of library

science, a controlled vocabulary or controlled index terms). These keyphrases are treated as classes,

and techniques from text classification (text categorization) are used to learn models for assigning a

1. Introduction

2 ERB-1096, Mining the Web for Lexical Knowledge

class to a given document (Leung and Kan, 1997; Dumais et al., 1998). A document is converted to

a vector of features and machine learning techniques are used to induce a mapping from the feature

space to the list of keyphrases. The features are based on the presence or absence of various words or

phrases in the input documents. Usually a document may belong to several different classes. That is,

a learned model will map an input document to several different controlled vocabulary keyphrases.

In keyphrase extraction, keyphrases are selected from within the body of the input document,

without a predefined list. When authors assign keyphrases without a controlled vocabulary (in

library science, free text keywords or free index terms), typically about 70% to 80% of their key-

phrases appear somewhere in the body of their documents (Turney, 1997, 1999, 2000). This suggests

the possibility of using author-assigned free text keyphrases to train a keyphrase extraction system.

In this approach, a document is treated as a set of candidate phrases and the task is to classify each

candidate phrase as either a keyphrase or non-keyphrase (Turney, 1997, 1999, 2000; Frank et al.,

1999; Witten et al., 1999, 2000). A feature vector is calculated for each candidate phrase and

machine learning techniques are used to learn a model that can classify a phrase as a keyphrase or

non-keyphrase. The features include the frequency and location of the candidate phrase in the input

document. The features can also be based on information that is external to the given input docu-

ment.

A limitation of keyphrase assignment is that it must be retrained every time a new phrase is

added to the controlled vocabulary. Keyphrase extraction does not require retraining, but it can only

supply keyphrases that appear somewhere in the input document, unlike keyphrase assignment,

which does not have this limitation.

A learning algorithm is training-intensive when it requires a relatively large amount of labeled

training examples in order to perform well. Keyphrase assignment is training-intensive when the

controlled vocabulary is large, since there must be several training example documents for each key-

phrase in the vocabulary. On the other hand, keyphrase extraction typically works well with only

about 50 training documents (Turney, 1997, 1999, 2000; Frank et al., 1999; Witten et al., 1999,

2000).

A learning algorithm is domain-specific when the learned model does not generalize well from

one domain to another domain. Keyphrase assignment is domain-specific, since the appropriate con-

trolled vocabulary will vary from one domain to another. For example, the vocabulary of physics

articles is distinct from the vocabulary of computer science articles. On the other hand, keyphrase

extraction performs well when trained on articles from one domain and then tested on articles from a

completely different domain (Turney, 1997, 1999, 2000; Frank et al., 1999; Witten et al., 1999,

2000).

Section 2 discusses prior work on automatic keyphrase extraction. In the GenEx (Turney, 1997,

1999, 2000) and Kea (Frank et al., 1999; Witten et al., 1999, 2000) automatic keyphrase extraction

systems, the most important features for classifying a candidate phrase are the frequency and loca-

tion of the phrase in the document. There are several versions of Kea, using various methods for

finding candidate phrases in a document and various features for classifying the candidate phrases.

In one version of Kea, the frequency and location features are supplemented with a feature based on

the frequency of the candidate phrase as a manually assigned keyphrase for other documents in the

same domain as the given document (Frank et al., 1999). This new feature is called keyphrase-fre-

quency. The experimental results show a significant improvement in keyphrase extraction when the

new feature is added (Frank et al., 1999).

The keyphrase-frequency feature seems to be very useful for keyphrase extraction, but it has two

important limitations: it is domain-specific and training-intensive. The training process must be

repeated for each new domain and the training process requires a relatively large number of labeled

1. Introduction

Turney 3

training examples to perform well. Suppose that Kea has been trained for the domain of computer

science, but now we have a document from the domain of physics. It will not help us to know that a

phrase such as “distributed computing” has a high keyphrase-frequency in the domain of computer

science. This particular phrase is not likely to be appropriate as a keyphrase for a physics paper. To

achieve good performance with physics documents, keyphrase-frequency must be calculated using

physics documents (see the experiment in Section 5).

In a sense, when Kea is supplemented with the keyphrase-frequency feature, it becomes a kind of

hybrid of the two approaches, keyphrase extraction and keyphrase assignment. The list of phrases

for which keyphrase-frequency is non-zero is somewhat like the controlled vocabulary that is used in

keyphrase assignment. The problems of domain-specificity and training-intensiveness that come

with the new keyphrase-frequency feature are classical problems with the keyphrase assignment

approach.

Section 3 introduces new features that are inspired by keyphrase-frequency, yet are neither

domain-specific nor training-intensive. These new features exploit the Web as a source of unlabeled

data (documents without manually assigned keyphrases). The new features are based on an unsuper-

vised learning algorithm called PMI-IR (Turney, 2001, 2002). This algorithm uses Pointwise Mutual

Information (PMI) to measure the strength of association between pairs of words. PMI is a statistical

measure of word association, based on the frequency of co-occurrence of pairs of words. PMI-IR

uses Information Retrieval (IR) to acquire the frequency information that is needed to calculate PMI.

The new features are calculated by issuing queries to a Web search engine and analyzing the result-

ing number of hits (the number of matching Web pages). The queries use the candidate phrases from

the input document. In essence, these new features are derived by mining lexical knowledge from a

very large collection of unlabeled data, consisting of approximately 350 million Web pages without

manually assigned keyphrases.

Beginning with Section 4, the following seven sections present a series of seven experiments.

The experiments use the Kea system as a framework for comparing three sets of features: (1) the

baseline feature set is calculated from the frequency and location of the candidate phrases in the

input document, (2) the keyphrase feature set is the baseline feature set supplemented with the key-

phrase-frequency feature, and (3) the query feature set is the baseline feature set supplemented with

features that are calculated using queries to a Web search engine. The first experiment compares the

three sets of features on the CSTR corpus (computer science papers from the Computer Science

Technical Reports collection of the New Zealand Digital Library Project), when part of this corpus is

used for training and the rest is used for testing. In this experiment, the keyphrase features perform

best, followed by the query features, and lastly the baseline features. This experiment demonstrates

that the query features can improve keyphrase extraction.

In the second experiment (Section 5), part of the CSTR corpus is used for training, but the LANL

corpus (physics papers from the arXiv repository at the Los Alamos National Laboratory) is used for

testing. In this case, the query features perform best, followed by the baseline features, and finally

the keyphrase features. When the training domain does not correspond to the testing domain, the

keyphrase-frequency feature becomes detrimental, instead of beneficial. However, the query features

generalize well from the computer science domain to the physics domain, which shows that they are

not domain-specific.

There are a total of twelve features in the query feature set. The third experiment (Section 6)

looks at various subsets of the twelve features. The results suggest that all twelve features are useful.

Since the query features were inspired by keyphrase-frequency and they are conceptually similar,

it was conjectured that the output of Kea with the query feature set would be similar to the output

with the keyphrase feature set. The fourth experiment (Section 7) tests this conjecture and finds it to

1. Introduction

4 ERB-1096, Mining the Web for Lexical Knowledge

be false. The query and baseline features are relatively similar in behaviour, but the keyphrase fea-

tures are substantially different from the other two.

This difference suggests that it could be beneficial to combine the query features with the key-

phrase features, since they seem to be somewhat independent. The fifth experiment (Section 8) eval-

uates a hybrid of the two feature sets. When trained on part of the CSTR corpus and tested on

another part of the CSTR corpus, the hybrid feature set performs better than the other feature sets.

When trained on the CSTR corpus and tested on the LANL corpus, the performance of the hybrid

feature set is very similar to the performance of the keyphrase feature set alone. Thus there is some

benefit to combining the features, but the combined feature set has the same limitations as the key-

phrase feature set: domain-specificity and training-intensiveness.

The first two experiments measured performance by the number of correct classifications; that

is, by the level of agreement between Kea and the author. However, a candidate phrase might be a

reasonable, appropriate keyphrase, even though it was not chosen by the author as a keyphrase. One

test of reasonableness is whether the phrase was chosen by any author of any paper in the same

domain. The sixth experiment (Section 9) repeats the setup of the first two experiments, but mea-

sures the performance of the different feature sets by the level of agreement between Kea and the

manually assigned keyphrases of any paper in the same testing set. This experiment does not evalu-

ate whether the phrases output by Kea are appropriate for the given input document; it evaluates

whether the phrases seem reasonable for a paper in the given domain, without regard to the actual

content of the paper, beyond its domain. When trained and tested on the CSTR corpus, it is not sur-

prising that the keyphrase feature set performs very well by this measure. The difference between the

baseline features and the query features is small. When trained on the CSTR corpus and tested on the

LANL corpus, the query features perform best, followed by the keyphrase features, and lastly the

baseline features.

The seventh and final experiment (Section 10) measures the performance of the keyphrases as

query terms for searching. The reasoning is that good keyphrases should be specific enough that they

can be used to find the source document, from which they were taken, yet they should be general

enough that they can also find many other, related documents from the same domain. This experi-

ment compares the keyphrases extracted with the three different feature sets and also the authors’

keyphrases. On the CSTR corpus, there are no significant differences among the baseline, query, and

author keyphrases, but the keyphrase-frequency keyphrases are significantly more general than the

others. On the LANL corpus, the keyphrase-frequency keyphrases are again the most general. This

shows that there is a systematic bias towards generality in the phrases that are chosen when using the

keyphrase-frequency feature.

Section 11 discusses limitations and future work. The main limitation of the new query features

is the time that is required to calculate them. Almost all of this time is taken up with network traffic

between the machine that runs the learning algorithm and the machine that hosts the Web search

engine. However, within ten years, the average desktop personal computer will have enough memory

to store 350 million Web pages locally and enough processing power to search them very rapidly.

The main findings of this paper are summarized in Section 12. The new query features improve

keyphrase extraction but they are neither domain-specific nor training-intensive. They do require a

large amount of unlabeled data, which currently makes them slow to calculate, but improving hard-

ware will solve this problem. Although the query features are conceptually related to the keyphrase-

frequency feature, their behaviour is substantially different. In some applications, when the required

training data are available, it may be beneficial to combine the query features with the keyphrase

features.

2. Related Work

Turney 5

2. Related Work
Automatic keyphrase extraction is related to many other technologies, such as automatic summariza-

tion (Luhn, 1958; Edmundson, 1969; Kupiec et al., 1995), information extraction (Soderland and

Lehnert, 1994), and keyphrase assignment and automatic indexing (Sparck Jones, 1973; Field, 1975;

Leung and Kan, 1997; Dumais et al., 1998). For a general overview of the related literature and the

position of keyphrase extraction within this literature, see Turney (2000). The focus here is specifi-

cally on prior work in learning to extract keyphrases from text.

2.1 GenEx: Genitor and Extractor
GenEx has two components, the Genitor genetic algorithm (Whitley, 1989) and the Extractor1 key-

phrase extraction algorithm (Turney, 1997, 1999, 2000). Extractor takes a document as input and

extracts a list of words and phrases as output. The output of Extractor is controlled by a dozen

numerical parameters. The setting of these parameters is determined by a training process, during

which Genitor searches through the parameter space for values that yield a high overlap between the

keyphrases assigned by the authors and the phrases that are output by Extractor. After training, the

best parameter values can be hardcoded in Extractor, and Genitor is no longer needed.

To measure the overlap between the machine’s phrases and the author’s phrases, it is necessary

to decide when two phrases match. If an author assigns the phrase “Distributed Computation” to a

document and the machine extracts the phrase “distributed computing”, this should count as a match.

GenEx and Kea both use the same approach for counting matches: phrases are normalized by con-

verting them to lower case and stemming them (removing suffixes). Both use the Iterated Lovins

stemming algorithm, which applies the Lovins stemming algorithm repeatedly, until the word stops

changing (Lovins, 1968; Turney, 1997).

Extractor generates candidate phrases by looking through the input document for any sequence

of one, two, or three consecutive words. The consecutive words must not be separated by punctua-

tion and must not include any stop words (words such as “the”, “of”, “to”, “and”, “if”, “he”, etc.).

Candidate phrases are normalized by converting them to lower case and stemming them.

GenEx has been described in detail elsewhere (Turney, 1999, 2000). In the context of this paper,

most of the details of the GenEx algorithm are not important, but it is relevant to know what features

are used to select a candidate phrase for output. GenEx does not explicitly represent candidate

phrases with feature vectors, but at an abstract level, it may be described as using a set of ten fea-

tures (Table 1).

GenEx allows the user to specify the desired number of output phrases. When the user requests N

phrases, the ten features are used to calculate a score for every candidate phrase and the top N high-

est scoring phrases are output. In the current version of GenEx, N can range from 3 to 30. After a

candidate phrase has been selected for output, the final step is to restore the suffix and the original

pattern of capitalization.

Experiments show that GenEx performs well when it is trained on one domain and then tested on

quite different domains (Turney, 1997, 1999, 2000). Good results are possible with as few as 50

training documents. The level of agreement between the phrases output by GenEx and the phrases

assigned by the authors depends on the number of output phrases requested by the user. If the user

asks for seven phrases, typically about 20% of the phrases output by GenEx will match the author’s

phrases. This is similar to the level of agreement among different humans, assigning keyphrases to

1. Extractor is an Official Mark of the National Research Council of Canada. Patent applications have been submitted for

Extractor.

2. Related Work

6 ERB-1096, Mining the Web for Lexical Knowledge

the same document (Furnas et al., 1987). This figure underestimates the quality of the phrases, since

the other 80% of the phrases are often subjectively good, although they do not correspond with the

author’s choices. A more accurate picture is obtained by asking human readers to rate the quality of

the machine’s output. In a sample of 205 human readers rating keyphrases for 267 Web pages, 62%

of the 1,869 phrases output by GenEx were rated as “good”, 18% were rated as “bad”, and 20% were

left unrated (Turney, 2000). This suggests that about 80% of the phrases are acceptable (not “bad”)

to human readers, which is sufficient for many applications.

Extractor (GenEx without Genitor) has been licensed to 16 companies as a module for embed-

ding in products and services. The current version, Extractor 7.2, handles plain text, Web pages, and

email messages in English, French, German, Spanish, Japanese, and Korean. It is written in C and

has an Application Program Interface (API) to facilitate embedding in other software. Wrappers are

available for Perl, Java, Visual Basic, and Python.

2.2 Kea: Baseline Feature Set
Kea generates candidate phrases in much the same manner as Extractor (Frank et al., 1999; Witten et

al., 1999, 2000). Kea then uses the Naïve Bayes algorithm to learn to classify the candidate phrases

(Domingos and Pazzani, 1997). In one version of Kea, candidate phrases are classified using only

two features: TF × IDF and distance (Frank et al., 1999; Witten et al., 1999, 2000). In the following,

I call this the baseline feature set.

TF × IDF (Term Frequency times Inverse Document Frequency) is commonly used in informa-

tion retrieval to assign weights to terms in a document (van Rijsbergen, 1979). This numerical fea-

ture assigns a high value to a phrase that is relatively frequent in the input document (the TF

component), yet relatively rare in other documents (the IDF component). In Kea, TF × IDF is calcu-

lated as follows (Frank et al., 1999):

Table 1: Features implicit in GenEx.

Name of feature Description of feature Type of feature

1 num_words_phrase The number of words in the candidate phrase numerical

2 first_occur_phrase The location in the document where the phrase first

occurs

numerical

3 first_occur_word The location in the document of the earliest occurring

word in the phrase

numerical

4 freq_phrase The frequency of the phrase in the document numerical

5 freq_word The frequency of the most frequent word in the phrase numerical

6 relative_length The length of the candidate phrase, relative to other

candidates in the document

numerical

7 document_length The number of words in the document numerical

8 proper_noun Is the phrase a proper noun, based on the capitalization

pattern?

boolean

9 final_adjective Is the last word in the phrase an adjective, based on the

suffix?

boolean

10 common_verb Does the phrase contain a common verb, based on a list

of common verbs?

boolean

2. Related Work

Turney 7

(1)

 is the probability that phrase P appears in document D, estimated by counting the number

of times that P occurs in D, , and dividing by the number of words in D, .

 is the negative log of the probability that phrase P appears in any document in corpus C,

estimated by counting the number of documents in C that contain P, , and dividing by the

number of documents in C, .

The TF component of TF × IDF in Kea corresponds to the freq_phrase feature in GenEx. In

GenEx, I have found that TF without IDF works well for keyphrase extraction. It is likely that the

relative_length feature in GenEx serves as a surrogate for IDF. Banko et al. (1999) discuss the use of

TF × TL as an alternative to TF × IDF, where TL is Term Length (the number of characters in the

term). They argue that TL can replace IDF because longer words tend to have a lower frequency than

shorter words. One advantage of TL over IDF is that TL is easier to calculate. Furthermore, TL is

defined for phrases outside of the training corpus C, unlike IDF. In Kea, and are

incremented by one, to avoid taking the logarithm of zero, but TL does not require this kind of

adjustment. Also, Kea must assign the same IDF value to all out-of-corpus phrases, but TL only

assigns phrases the same value when they are the same length.

The distance feature in Kea is, for a given phrase in a given document, the number of words that

precede the first occurrence of the phrase, divided by the number of words in the document. This

corresponds to first_occur_phrase in GenEx.

In Kea, a candidate phrase with a capitalization pattern that indicates a proper noun is deleted; it

is not considered for output. In GenEx, the document_length feature and the proper_noun feature

tend to work together. During training, GenEx tends to learn to avoid proper nouns (phrases for

which the proper_noun feature has the value true) for long documents, but allow them for short doc-

uments. I conjecture that Kea was mainly developed with a corpus of relatively long documents, for

which it is best to suppress proper nouns.

The TF × IDF and distance features are real-valued. Kea uses Fayyad and Irani’s (1993) algo-

rithm to discretize the features. This algorithm uses a Minimum Description Length (MDL) tech-

nique to partition the features into intervals, such that the entropy of the class is minimized with

respect to the intervals and the information required to specify the intervals.

The Naïve Bayes algorithm applies Bayes’ formula to calculate the probability of membership in

a class, using the (“naïve”) assumption that the features are statistically independent. Suppose that a

candidate phrase has the feature vector , where T is an interval of the discretized TF × IDF

feature and D is an interval of the discretized distance feature. Using Bayes’ formula and the inde-

pendence assumption, we can calculate the probability that the candidate phrase is a keyphrase,

, as follows (Frank et al., 1999):

(2)

In this equation, is the probability that the discretized TF × IDF feature has a value in the

interval T, given that the candidate phrase is actually a keyphrase. is the probability that

the distance feature has a value in the interval D, given that the candidate phrase is actually a key-

phrase. is the prior probability that the candidate phrase is a keyphrase (the probability when

the values T and D are not known). is a normalization factor, to make range

from 0 to 1. is the probability of when the class is not known. These probabilities

can easily be estimated from the frequencies in the training data.

TF P D,() IDF P C,()×
freqd P D,()

sized D()
--------------------------- log2–

freqc P C,()

sizec C()
--------------------------×=

TF P D,()

freqd P D,() sized D()

IDF P C,()

freqc P C,()

sizec C()

freqc P C,() sizec C()

T D,� �

p key T D,()

p key T D,() p T key() p D key() p key()⋅ ⋅
p T D,()

--=

p T key()
p D key()

p key()
p T D,() p key T D,()

p T D,() T D,� �

2. Related Work

8 ERB-1096, Mining the Web for Lexical Knowledge

After training, can be used to estimate the probability that a candidate phrase

 is a keyphrase. Kea ranks each of the candidate phrases by the estimated probability

 that they belong to the keyphrase class. If the user requests N phrases, then Kea gives

the top N phrases with the highest estimated probability as output.

Experiments comparing GenEx to Kea with the baseline feature set have shown no significant

difference in performance (Frank et al., 1999). Other experiments have demonstrated that Kea can

improve browsing in a digital library, by automatically generating a keyphrase index (Gutwin et al.,

1999), or by automatically generating hypertext links (Jones and Paynter, 1999). The Kea source

code is available under the GNU General Public License.2 The current version, Kea 2.0, is written in

Java. In the following experiments, I used Kea 1.1.4, which is written in a combination of Java, Perl,

and C.

2.3 Kea: Keyphrase Feature Set
In another version of Kea, candidate phrases are classified using three features: TF × IDF, distance,

and keyphrase-frequency (Frank et al., 1999). I call this the keyphrase feature set. For a phrase P in

a document D with a training corpus C, the keyphrase-frequency is the number of times P occurs as

an author-assigned keyphrase in all documents in C that are different from D. Like the other two fea-

tures, keyphrase-frequency is discretized using Fayyad and Irani’s (1993) algorithm. Suppose that a

candidate phrase has the feature vector , where T is an interval of the discretized TF × IDF

feature, D is an interval of the discretized distance feature, and K is an interval of the discretized

keyphrase-frequency feature. Using Bayes’ formula and assuming independence, we can calculate as

follows (Frank et al., 1999):

(3)

 is the probability that the discretized keyphrase-frequency feature has a value in the inter-

val K, given that the candidate phrase is actually a keyphrase. These probabilities are easily esti-

mated from the training data.

The baseline and keyphrase feature sets have been empirically evaluated using the CSTR corpus

(computer science papers from the Computer Science Technical Reports collection in New

Zealand).3 This corpus consists of PostScript files that have been collected from Web sites around

the world. The documents are journal papers, conference papers, technical reports, and preprints in

computer science. There is a fair amount of noise in the corpus, because the PostScript files were

automatically converted to plain text. For each document in the corpus, the author’s keyphrase list

was removed from the title page and placed in a separate file.

In one experiment with the baseline features, the size of the training set was varied from 1 to 130

documents, while the size of the testing set was fixed at 500 documents (Section 2.4.2 in Frank et

al., 1999). The performance measure was the number of machine-extracted keyphrases that matched

the author-assigned keyphrases. The performance on the testing set improved at first, but leveled off

after about 50 training documents.

In another experiment, the TF × IDF and distance features were trained on 130 documents and a

separate set of 100 to 1000 documents was used to train the keyphrase-frequency feature (Section 3.2

in Frank et al., 1999). (Since the Naïve Bayes algorithm assumes that features are independent, there

is no difficulty in training the features separately.) The baseline features (TF × IDF and distance)

2. See http://www.nzdl.org/Kea/.

3. See http://www.nzdl.org/.

p key T D,()
T D,� �

p key T D,()

T D K, ,� �

p key T D K, ,() p T key() p D key() p K key() p key()⋅ ⋅ ⋅
p T D K, ,()

--=

p K key()

3. Removing Domain-Specificity: Mining for Lexical Knowledge

Turney 9

and the keyphrase features (TF × IDF, distance, and keyphrase-frequency) were then evaluated on

the same testing set of 500 documents. The keyphrase feature set performed significantly better than

the baseline feature set. The difference in performance rose steadily as the number of documents

used to train keyphrase-frequency rose from 100 to 1000. It appears that the performance would have

continued to rise with more than 1000 training documents for keyphrase-frequency.

As I mentioned in the introduction, the experiments show that the keyphrase-frequency feature

improves keyphrase extraction, but this improvement comes with a cost: domain-specificity and

training-intensiveness. The training process must be repeated for each new domain and requires a

relatively large number of labeled training examples.

3. Removing Domain-Specificity: Mining for Lexical Knowledge
This section begins with an analysis of the keyphrase-frequency feature. In the first subsection, I

argue that the assumptions underlying the keyphrase-frequency feature imply that keyphrases will

tend to co-occur within a domain. This suggests that a statistical measure of co-occurrence might be

used to replace the keyphrase-frequency feature. In the second subsection, I introduce a particular

statistical measure of co-occurrence, PMI-IR (Turney, 2001). Finally, in the third subsection, I intro-

duce a new set of features that are based on PMI-IR.

3.1 A Model of the Keyphrase-Frequency Feature
Consider the following simple model of how the keyphrase-frequency feature works. Suppose we

have some documents with associated keyphrases, from the domains of computer science and phys-

ics. Let C be the set of all keyphrases that are particularly good for computer science documents and

let P be the set of all keyphrases that are particularly good for physics documents. Let DC be a prob-

ability distribution on C and let DP be a probability distribution on P. Imagine that we assign key-

phrases to a document by deciding whether it is a computer science document or a physics

document, and then selecting phrases randomly from the corresponding keyphrase set, C or P, using

the corresponding probability distribution, DC or DP. If this is a reasonable first-order approximation

of how authors assign keyphrases to their documents, then the keyphrase-frequency feature will

work well. The keyphrase-frequency feature is simply an estimate of the probability distribution, DC

or DP, for a given domain, C or P. In fact, if this simple model were completely sufficient to describe

how authors assign keyphrases, then the keyphrase-frequency feature would be the only feature that

worked well; the TF × IDF and distance features would be irrelevant.

A consequence of this model is that keyphrases will tend to co-occur within a domain. That is,

computer science keyphrases will tend to occur together and physics keyphrases will tend to occur

together. This is trivially true if C and P have an empty intersection, but it is even true when C and P

are equal, as long as DC and DP are distinct. Suppose that we have a large collection of documents

with associated keyphrases, generated according to our simple model. Let C equal P and let DC and

DP be distinct probability distributions. Suppose that half of the collection consists of computer sci-

ence papers and the other half is physics papers. Let us say that two keyphrases, k1 and k2, tend to

co-occur if the probability that they are both assigned as keyphrases for the same document

 is greater than the expected probability , assuming that they are independent.

Let us say that a keyphrase k is a physics keyphrase if it is more probable according to the distribu-

tion DP than according to DC; otherwise, if it is more probable according to DC, we will call it a

computer science keyphrase. We can easily see that k1 and k2 will tend to co-occur if and only if they

are both physics keyphrases or both computer science keyphrases. In other words, keyphrases will

tend to co-occur within a domain.

p k1 & k2() p k1() p k2()⋅

3. Removing Domain-Specificity: Mining for Lexical Knowledge

10 ERB-1096, Mining the Web for Lexical Knowledge

The keyphrase-frequency feature has two limitations. It requires keyphrases to be provided for

each document and it requires the domains of the documents to be explicitly identified (in our exam-

ple, either physics or computer science). Let us consider an alternative model that does not have

these limitations. Let G be a set of general-purpose phrases (not only keyphrases) and let DG be a

probability distribution on G. Suppose that a document in computer science is generated by ran-

domly sampling phrases from G according to DG and also phrases from C according to DC. Simi-

larly, a document in physics is generated by randomly sampling phrases from G according to DG and

from P according to DP. Now let’s take a document and run it through Kea, using the baseline feature

set. Assume that we do not know whether it’s a computer science document or a physics document.

If the IDF component in the TF × IDF feature is based on a good estimate of DG, and if the DC and

DP distributions are significantly different from DG, then the TF × IDF feature will tend to pick out

phrases from C or P, rather than G, because these phrases will tend to have a higher TF than we

would expect from DG. Thus the phrases that are output by Kea will tend to have a higher density of

phrases from C or P than G, compared to the density in the input document.

This suggests the following two-pass algorithm. In the first pass, we use Kea with the baseline

feature set. Then we take the K top ranked phrases output by Kea. If Kea was successful, many of

these K phrases are from C or P. By assumption, we do not know whether the input document is a

computer science document or a physics document, but we do know that its keyphrases will tend to

co-occur. Assume that we are more confident in the quality of the top K phrases than the remaining

phrases. In the second pass, we use the top K phrases output by Kea to screen the remaining phrases,

by measuring the degree of co-occurrence between the top K phrases and the remaining phrases.

Thus we can exploit co-occurrence information without knowing the domain of the input docu-

ment and without knowing the keyphrases that are assigned to the documents. Using this two-pass

algorithm, we can overcome the two limitations of the keyphrase-frequency feature. The next sub-

section presents a measure of co-occurrence and the final subsection gives the details of the two-pass

algorithm.

3.2 PMI-IR: Mining the Web for Synonyms
PMI-IR uses Pointwise Mutual Information (PMI) and Information Retrieval (IR) to measure the

semantic similarity between pairs of words or phrases (Turney, 2001). The algorithm involves issu-

ing queries to a search engine (the IR component) and applying statistical analysis to the results (the

PMI component). The power of the algorithm comes from its ability to exploit a huge collection of

text. In the following experiments, I used the AltaVista® search engine, which indexes about 350

million Web pages in English.4

PMI-IR was designed to recognize synonyms. The task of synonym recognition is, given a prob-

lem word and a set of alternative words, choose the member from the set of alternative words that is

most similar in meaning to the problem word. PMI-IR has been evaluated using 80 synonym recog-

nition questions from the Test of English as a Foreign Language (TOEFL) and 50 synonym recogni-

tion questions from a collection of tests for students of English as a Second Language (ESL). On

both tests, PMI-IR scores 74% (Turney, 2001). For comparison, the average score on the 80 TOEFL

4. The AltaVista search engine is a service of the AltaVista Company of Palo Alto, California, http://www.altavista.com/.

Including pages in languages other than English, AltaVista indexes more than 350 million Web pages, but these other

languages are not relevant for answering questions in English. To estimate the number of English pages indexed by

AltaVista, I used the Boolean query “the OR of OR an OR to” in the Advanced Search mode. The resulting number

agrees with other published estimates. The primary reason for using AltaVista in the following experiments is the

Advanced Search mode, which supports more expressive queries than many of the competing Web search engines.

3. Removing Domain-Specificity: Mining for Lexical Knowledge

Turney 11

questions, for a large sample of applicants to US colleges from non-English speaking countries, was

64.5% (Landauer and Dumais, 1997). Landauer and Dumais (1997) note that, “… we have been told

that the average score is adequate for admission to many universities.” Latent Semantic Analysis

(LSA), another statistical technique, scores 64.4% on the 80 TOEFL questions (Landauer and

Dumais, 1997).5

PMI-IR is based on co-occurrence (Manning and Schütze, 1999). The core idea is that “a word is

characterized by the company it keeps” (Firth, 1957). In essence, it is an algorithm for measuring the

strength of associations among words (Turney, 2002).

Consider the following synonym test question, one of the 80 TOEFL questions. Given the prob-

lem word levied and the four alternative words imposed, believed, requested, correlated, which of

the alternatives is most similar in meaning to the problem word? Let problem represent the problem

word and represent the alternatives. The PMI-IR algorithm assigns

a score to each choice, , and selects the choice that maximizes the score.

The PMI-IR algorithm is based on co-occurrence. There are many different measures of the

degree to which two words co-occur (Manning and Schütze, 1999). PMI-IR uses Pointwise Mutual

Information (PMI) (Church and Hanks, 1989; Church et al., 1991), as follows:

(4)

Here, is the probability that and co-occur. If and

 are statistically independent, then the probability that they co-occur is given by the product

. If they are not independent, and they have a tendency to co-occur, then

 will be greater than . Therefore the ratio between

 and is a measure of the degree of statistical dependence

between and . The log of this ratio is the amount of information that we acquire

about the presence of when we observe . Since the equation is symmetrical, it is

also the amount of information that we acquire about the presence of when we observe

, which explains the term mutual information.6

Since we are looking for the maximum score, we can drop (because it is monotonically

increasing) and (because it has the same value for all choices, for a given problem

word). Thus (4) simplifies to:

(5)

In other words, each choice is simply scored by the conditional probability of the problem word,

given the choice word, .

PMI-IR uses Information Retrieval (IR) to calculate the probabilities in (5). For the task of syn-

onym recognition (Turney, 2001), I evaluated four different versions of PMI-IR, using four different

kinds of queries. Only the first two versions of PMI-IR are needed here. The following description of

these two different methods for calculating (5) uses the AltaVista® Advanced Search query syntax.7

In the following, represents the number of hits (the number of documents retrieved)

given the query .

5. This result for LSA is based on statistical analysis of about 30,000 encyclopedia articles. LSA has not yet been applied

to text collections on the scale that can be handled by PMI-IR.

6. For an explanation of the term pointwise mutual information, see Manning and Schütze (1999).

7. See http://doc.altavista.com/adv_search/syntax.html.

choice1 choice2 … choicen, , ,{ }
score choicei()

score choicei() log2

p problem choicei,()

p problem()p choicei()

� �
� �=

p problem choicei,() problem choicei problem

choicei

p problem()p choicei()

p problem choicei,() p problem()p choicei()

p problem choicei,() p problem()p choicei()

problem choicei

problem choicei

choicei

problem

log2

p problem()

score choicei()
p problem choicei,()

p choicei()
---=

p problem choicei()

hits query()

query

3. Removing Domain-Specificity: Mining for Lexical Knowledge

12 ERB-1096, Mining the Web for Lexical Knowledge

1. In the simplest case, we say that two words co-occur when they appear in the same docu-

ment:

(6)

We ask the search engine how many documents contain both and , and then

we ask how many documents contain alone. The ratio of these two numbers is the

score for .

2. Instead of asking how many documents contain both and , we can ask how

many documents contain the two words close together:

(7)

The AltaVista® NEAR operator constrains the search to documents that contain

and within ten words of one another, in either order.

When the queries yield a sufficient number of hits, tends to perform better than , but

the situation reverses when the queries return only a small number of hits, because

 is never larger than .

Table 2 shows how is calculated for the sample TOEFL question, mentioned above. In

this case, imposed has the highest score, so it is (correctly) chosen as the most similar of the alterna-

tives for the problem word levied.

3.3 Kea: Query Feature Set
The assumption behind the keyphrase-frequency feature is that documents in the same domain will

tend to share keyphrases. In other words, the keyphrases in a given domain (e.g., computer science)

will tend to be strongly associated with one another. The shared keyphrases tend to co-occur in the

Table 2: Details of the calculation of score2 for a sample TOEFL question.

Query Hits

imposed 1,198,495

believed 2,537,348

requested 4,774,446

correlated 244,353

levied NEAR imposed 3,593

levied NEAR believed 84

levied NEAR requested 293

levied NEAR correlated 6

Choice Score2

p(levied | imposed) 3,593 / 1,198,495 0.0029979

p(levied | believed) 84 / 2,537,348 0.0000331

p(levied | requested) 293 / 4,774,446 0.0000614

p(levied | correlated) 6 / 244,353 0.0000246

score1 choicei()
hits problem AND choicei()

hits choicei()
---=

problem choicei

choicei

choicei

problem choicei

score2 choicei()
hits problem NEAR choicei()

hits choicei()
--=

problem

choicei

score2 score1

hits problem NEAR choicei() hits problem AND choicei()

score2

3. Removing Domain-Specificity: Mining for Lexical Knowledge

Turney 13

domain. This suggests the following algorithm:

1. For a given document, use the baseline feature set to calculate the probability of

each candidate phrase. Make a list of the top K candidates that have the highest probability

of being keyphrases. (In the following experiments, K is 4.) Make another list of the top N

candidates that will be further evaluated using the new query features. (We assume N > K. In

the following experiments, N is 100. Usually there are many more than 100 candidate

phrases, but, for efficiency reasons, we do not re-evaluate all of the candidates. The list of

the top N candidates includes the top K candidates.)

2. For each of the top N baseline phrases, use PMI-IR to measure the strength of association

with each of the top K baseline phrases. These association strengths will be the new features,

the query feature set.

3. For each of the top N baseline phrases, use the new, extended feature set to revise the esti-

mated probability that the candidate phrase is a keyphrase. If the user has requested M

phrases, then output the top M phrases, according to the revised probability estimate.

The idea is that the top K baseline phrases are the phrases that are most likely to be true keyphrases.

Therefore, if a candidate phrase is strongly associated with one or more of the top K baseline

phrases, then it is more likely to be a keyphrase.

This is a two-pass algorithm. In the first pass, we run Kea with the baseline feature set. In the

second pass, we run Kea with the query feature set. Kea is trained twice with the same training cor-

pus. First it is trained with the baseline feature set, then, after the new features have been calculated,

it is trained again with the query feature set.

Table 3 lists the twelve features in the query feature set that are calculated in step 2 above. All of

the features are numerical. The first four features come from the baseline model. The first two fea-

tures (TF × IDF and distance) are directly copied from the baseline feature set. The next two fea-

tures (baseline_rank and baseline_probability) are calculated using the baseline model. The four

features rank_b1ci, …, rank_b4ci are based on equation (7). For example, rank_b1ci is the score for

the i-th candidate phrase, candidatei, calculated using equation (7) to measure the strength of associ-

ation with the top-ranked baseline phrase, baseline1. The four features rank_b1capci, …,

rank_b4capci are based on equation (6). In these latter four features, the i-th candidate phrase, can-

didatei, is transformed to a new phrase, cap_candidatei, by converting the first character of each

word in candidatei to upper case. According to the AltaVista® query syntax, the lower case query

candidatei can match documents that contain the phrase candidatei in any combination of upper and

lower case, but the capitalized query cap_candidatei can only match documents that contain the

phrase candidatei with the same capitalization as cap_candidatei. The hope is that the query

cap_candidatei will only retrieve documents in which the phrase candidatei appears in a title or sec-

tion heading. Thus the four features rank_b1capci, …, rank_b4capci are intended to measure the

strength of association between the candidate phrases and the top baseline phrases when the candi-

date phrases appear in titles or section headings. I use equation (6) (based on “AND”) with the latter

four features because the capitalization is likely to reduce the number of hits. On the other hand, I

use equation (7) (based on “NEAR”) for the former four features because there are likely to be

enough hits.

Features 5 to 12 are normalized as follows. Suppose that is a list of raw values

for one feature. (That is, this is a column from the data table, not a row. There would usually be 100

raw values in this list, rather than just four.) First, the raw values are converted to ranks, where

duplicate raw values map to the same rank. Thus we have , if the raw values are sorted in

descending order. Finally, the ranks are linearly normalized to range from 0 to 1, so we have

p key T D,()

0.8 0.1 0.3 0.1, , ,� �

1 3 2 3, , ,� �

4. Experiment 1: Comparison of Feature Sets on the CSTR Corpus

14 ERB-1096, Mining the Web for Lexical Knowledge

, if the first rank maps to 1 and the last rank maps to 0. The final normalization

ensures that a feature with many duplicate values will span the same range as a feature with few

duplicate values. Features are normalized per document, not per corpus. That is, I normalize the fea-

tures one document at a time, without regard to any of the other documents. This is a local, contex-

tual normalization, as opposed to a global normalization (Turney and Halasz, 1993). As with the

other two feature sets, all of the query features are discretized (after normalization) using Fayyad

and Irani’s (1993) algorithm. (The discretization is global; it uses the whole training corpus.)

4. Experiment 1: Comparison of Feature Sets on the CSTR Corpus
This experiment compares the three feature sets using the setup of Frank et al. (1999). The same

CSTR corpus is used, with the same training set of 130 documents and the same testing set of 500

documents. Kea 1.1.4 is used as the framework for comparing all three sets of features. The key-

phrase-frequency feature is trained on a separate training set of 1,300 documents.8 The baseline and

query feature sets are trained using only the 130 training documents.

Figure 1 shows the experimental results. The desired number of output phrases varies from 1 to

20. For each requested number of output phrases, the plot shows the average number of output

phrases that agree with the authors’ phrases (the “correct” keyphrases). The plot shows that the key-

phrase features perform best, followed by the query features, and lastly the baseline features.

Table 3: The query feature set.

Name of feature Description of feature

1 TF × IDF Exactly the same as the baseline TF × IDF feature

2 distance Exactly the same as the baseline distance feature

3 baseline_rank The rank of the candidate phrase in the list of the top N baseline keyphrases

4 baseline_probability The baseline probability estimate p(key | T, D)

5 rank_b1ci The normalized rank of the candidate phrase candidatei when sorted by

hits(baseline1 NEAR candidatei) / hits(candidatei)

6 rank_b2ci The normalized rank of the candidate phrase candidatei when sorted by

hits(baseline2 NEAR candidatei) / hits(candidatei)

7 rank_b3ci The normalized rank of the candidate phrase candidatei when sorted by

hits(baseline3 NEAR candidatei) / hits(candidatei)

8 rank_b4ci The normalized rank of the candidate phrase candidatei when sorted by

hits(baseline4 NEAR candidatei) / hits(candidatei)

9 rank_b1capci The normalized rank of the candidate phrase candidatei when sorted by

hits(baseline1 AND cap_candidatei) / hits(cap_candidatei)

10 rank_b2capci The normalized rank of the candidate phrase candidatei when sorted by

hits(baseline2 AND cap_candidatei) / hits(cap_candidatei)

11 rank_b3capci The normalized rank of the candidate phrase candidatei when sorted by

hits(baseline3 AND cap_candidatei) / hits(cap_candidatei)

12 rank_b4capci The normalized rank of the candidate phrase candidatei when sorted by

hits(baseline4 AND cap_candidatei) / hits(cap_candidatei)

8. I did not perform this training. Kea 1.1.4 is distributed with a pre-trained model for the keyphrase-frequency feature. The

1,300 training documents used to train keyphrase-frequency are from the CSTR corpus.

1.0 0.0 0.5 0.0, , ,� �

4. Experiment 1: Comparison of Feature Sets on the CSTR Corpus

Turney 15

Figure 1: Comparison of the three feature sets on the CSTR corpus.

Comparison of Feature Sets on CSTR Test Set

0

0.5

1

1.5

2

2.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of keyphrases output

A
ve

ra
g

e
n

u
m

b
er

 o
f

"c
o

rr
ec

t"
 k

ey
p

h
ra

se
s

Keyphrase Features

Query Features

Baseline Features

Figure 2: The difference between the query features and the baseline features.

Difference: Query Features Minus Baseline Features (CSTR Test Set)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of keyphrases output

D
if

fe
re

n
ce

 in
 a

ve
ra

g
e

n
u

m
b

er
 o

f
"c

o
rr

ec
t"

 k
ey

p
h

ra
se

s

Query Minus Baseline

4. Experiment 1: Comparison of Feature Sets on the CSTR Corpus

16 ERB-1096, Mining the Web for Lexical Knowledge

Figure 3: The difference between the keyphrase features and the query features.

Difference: Keyphrase Features Minus Query Features (CSTR Test Set)

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of keyphrases output

D
if

fe
re

n
ce

 in
 a

ve
ra

g
e

n
u

m
b

er
 o

f
"c

o
rr

ec
t"

 k
ey

p
h

ra
se

s

Keyphrase Minus Query

Difference: Keyphrase Features Minus Baseline Features (CSTR Test Set)

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of keyphrases output

D
if

fe
re

n
ce

 in
 a

ve
ra

g
e

n
u

m
b

er
 o

f
"c

o
rr

ec
t"

 k
ey

p
h

ra
se

s

Keyphrase Minus Baseline

Figure 4: The difference between the keyphrase features and the baseline features.

5. Experiment 2: Generalization from CSTR to LANL

Turney 17

I used the paired t-test to evaluate the statistical significance of the results (Feelders and Verkoo-

ijen, 1995). This is equivalent to applying the Student t-test to the differences between a pair of fea-

ture sets. Figure 2 looks at the differences between the query features and the baseline features. The

error bars are 95% confidence regions. The performance of the query features is significantly better

than the performance of the baseline features throughout the range of the desired number of output

phrases. Figure 3 displays the difference between the keyphrase features and the query features. The

performance of the keyphrase features is significantly better than the performance of the query fea-

tures when five or more phrases are desired. Finally, Figure 4 plots the difference between the key-

phrase features and the baseline features. The performance of the keyphrase features is significantly

better except when only one phrase is output.

The experiment shows that the query feature set improves on the baseline feature set, although

the improvement over the baseline is even larger with the keyphrase feature set. On the other hand,

the query feature set does not require the additional 1,300 training documents that are used for the

keyphrase feature set. However, the query feature set does use 350 million unlabeled documents.

Table 4 gives some examples of the output phrases for the three different feature sets. These are

the top ten phrases for a document chosen randomly from the CSTR testing set, entitled, “Set-Based

Bayesianism”, by Kyburg and Pittarelli. Matches with the authors are italicized. (These examples are

intended to give the reader an impression of the typical output of the algorithms. They are not

intended to make any special point.)

5. Experiment 2: Generalization from CSTR to LANL
This experiment evaluates how well the learned models generalize from one domain to another. The

training domain is the CSTR corpus, using exactly the same training setup as in the first experiment.

The testing domain consists of 580 documents from the LANL collection (physics papers from the

arXiv repository at the Los Alamos National Laboratory).9 This corpus consists of PostScript files

that have been submitted to the arXiv repository by physicists around the world. The documents are

journal papers, conference papers, technical reports, and preprints in physics. There is a fair amount

of noise in the corpus, because the PostScript files were automatically converted to plain text. For

each document in the corpus, the author’s keyphrase list was removed from the title page and placed

Table 4: Examples of extracted keyphrases and the authors’ keyphrases.

Baseline features Query features Keyphrase features Authors’ keyphrases

probability functions probability functions convex Bayesian methods

Bayesianism Bayesianism probability decision-making

convex Kyburg maximum entropy maximum entropy

strict Bayesian convex probability functions uncertainty

convex Bayesianism probabilities agent

Kyburg set based Bayesianism Bayesianism

classical probability set based belief

classical probability functions expected utility belief function

maximum entropy classical probability probabilities

agent maximum entropy strict Bayesian

9. See http://www.arxiv.org/.

5. Experiment 2: Generalization from CSTR to LANL

18 ERB-1096, Mining the Web for Lexical Knowledge

in a separate file.

Figure 5: Comparison of the three feature sets on the LANL corpus.

Comparison of Feature Sets on LANL Corpus

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of keyphrases output

A
ve

ra
g

e
n

u
m

b
er

 o
f

"c
o

rr
ec

t"
 k

ey
p

h
ra

se
s

Query Features

Baseline Features

Keyphrase Features

Difference: Baseline Features Minus Keyphrase Features (LANL Corpus)

0

0.05

0.1

0.15

0.2

0.25

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of keyphrases output

D
if

fe
re

n
ce

 in
 a

ve
ra

g
e

n
u

m
b

er
 o

f
"c

o
rr

ec
t"

 k
ey

p
h

ra
se

s

Baseline Minus Keyphrase

Figure 6: The difference between the baseline features and the keyphrase features.

5. Experiment 2: Generalization from CSTR to LANL

Turney 19

Difference: Query Features Minus Keyphrase Features (LANL Corpus)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of keyphrases output

D
if

fe
re

n
ce

 in
 a

ve
ra

g
e

n
u

m
b

er
 o

f
"c

o
rr

ec
t"

 k
ey

p
h

ra
se

s

Query Minus Keyphrase

Figure 7: The difference between the query features and the keyphrase features.

Difference: Query Features Minus Baseline Features (LANL Corpus)

-0.05

0

0.05

0.1

0.15

0.2

0.25

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of keyphrases output

D
if

fe
re

n
ce

 in
 a

ve
ra

g
e

n
u

m
b

er
 o

f
"c

o
rr

ec
t"

 k
ey

p
h

ra
se

s

Query Minus Baseline

Figure 8: The difference between the query features and the baseline features.

6. Experiment 3: Evaluation of Feature Subsets

20 ERB-1096, Mining the Web for Lexical Knowledge

Figure 5 shows that the query feature set has the best performance, followed by the baseline fea-

tures, and lastly the keyphrase features. Paired t-tests show that the differences are statistically sig-

nificant at the 95% confidence level. Figure 6 demonstrates that the performance of the baseline

features is significantly better than the performance of the keyphrase features for all numbers of

desired phrases, from 1 to 20. Figure 7 illustrates that the query features are significantly better than

the keyphrase features. Finally, Figure 8 shows that the query features are significantly better than

the baseline features when more than three phrases are output. For less than three phrases, the query

features are still better than the baseline features, but the difference is not significant at the 95% con-

fidence level.

The experiment illustrates the domain-specificity of the keyphrase features, which perform

worse than the baseline features in this situation. The experiment also shows that the query features

are not domain-specific; they generalize well from the CSTR corpus to the LANL corpus.

6. Experiment 3: Evaluation of Feature Subsets
There are twelve features in the query feature set. This experiment looks at various subsets of the

twelve features, to see whether all of them are required. Table 5 lists the feature subsets that are

compared in this experiment. Figure 9 plots the results of the experiment with the CSTR corpus.

Table 6 summarizes the results of the paired t-tests. In general, it appears that all of the features are

useful, but the results are not always statistically significant.

Table 5: Feature subsets that are evaluated in Experiment 3.

Feature subsets Description of subset

Group 0 All twelve features

Group 1 All except baseline_rank and baseline_probability

Group 2 All except TF × IDF and distance

Group 3 All except rank_b1ci, …, rank_b4ci

Group 4 All except rank_b1capci, …, rank_b4capci

Table 6: Results of the paired t-tests for the feature subsets on the CSTR testing set.

Pairs of groups Summary of paired t-test results

Group 1 - Group 0 Group 0 is significantly better, except when 3 phrases are output, in which

case there is no significant difference.

Group 2 - Group 0 Group 0 is better, except when 17 phrases are output, but the differences are

mostly not significant.

Group 3 - Group 0 Group 0 is better, except when 3 phrases are output, but the differences are

mostly not significant.

Group 4 - Group 0 Group 0 is better for all numbers of output phrases, and the differences are

usually significant.

6. Experiment 3: Evaluation of Feature Subsets

Turney 21

Figure 9: A comparison of various feature subsets on the CSTR testing set.

Comparison of Feature Groups on CSTR Test Set

0

0.5

1

1.5

2

2.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of keyphrases output

A
ve

ra
g

e
n

u
m

b
er

 o
f

"c
o

rr
ec

t"
 k

ey
p

h
ra

se
s

Group 0

Group 1

Group 2

Group 3

Group 4

Comparison of Feature Groups on LANL Corpus

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of keyphrases output

A
ve

ra
g

e
n

u
m

b
er

 o
f

"c
o

rr
ec

t"
 k

ey
p

h
ra

se
s

Group 0

Group 1

Group 2

Group 3

Group 4

Figure 10: A comparison of various feature subsets on the LANL corpus.

7. Experiment 4: Relations Among Feature Sets

22 ERB-1096, Mining the Web for Lexical Knowledge

Figure 10 evaluates the same feature subsets on the LANL corpus. The experimental setup is like

the setup in Experiment 2: the models are trained on the CSTR training data and then tested on the

LANL corpus. Table 7 summarizes the results of the paired t-tests. As with the CSTR testing set, it

appears that all of the features are useful, but the results are not always statistically significant.

7. Experiment 4: Relations Among Feature Sets
The keyphrase-frequency feature and the query features are based on the same basic concept: the

keyphrases in a given domain will tend to be strongly associated with one another. Therefore I con-

jectured that there would be a large similarity between the output phrases with the keyphrase feature

set and the output phrases with the query feature set, when the models are trained on the CSTR train-

ing set and tested on the CSTR testing set (as in Experiment 1). This experiment tests this conjec-

ture.

Figure 11 presents the overlap among the phrases that are extracted with the three different fea-

ture sets. This figure focuses on the output phrases that overlap with the authors’ keyphrases. The

desired number of output phrases is set to 20. If we look at the bar for the baseline feature set, we see

that the total height of the bar is 1.9, meaning that, when the desired number of output phrases is 20,

on average 1.9 of the 20 keyphrases will match the authors’ keyphrases. The part of this bar that is

labeled “Shared with All” has a height of 1.3, which means that, on average 1.3 of these phrases will

be shared with the phrases that are output by both the keyphrase and query feature sets. The part of

this bar that is labeled “Shared with Query” represents the keyphrases that are output by both the

baseline feature set and the query feature set, but not the keyphrase feature set. “Shared with Key-

phrase” represents the keyphrases that are output by both the baseline feature set and the keyphrase

feature set, but not the query feature set. “Shared with Baseline” represents the keyphrases that are

output by the baseline feature set only.

Figure 11 shows that the baseline and query feature sets have many keyphrases in common, but

the output of the keyphrase feature set is quite different from the output of the other two feature sets.

This is evidence against the conjecture that the query and keyphrase feature sets would produce sim-

ilar output.

An objection to this analysis is that it only looks at the output phrases that match with the

authors’ keyphrases. To answer this objection, Figure 12 shows the overlap in the output phrases

when all 20 output phrases are considered, without regard to whether they match with the authors’

keyphrases. This figure shows the same general pattern as the previous figure: the baseline and

query feature sets have many phrases in common, but the output of the keyphrase feature set is quite

different. Therefore it appears that the conjecture is false. In spite of their conceptual similarity, the

query features behave quite differently from the keyphrase-frequency feature.

Table 7: Results of the paired t-tests for the feature subsets on the LANL corpus.

Pairs of groups Summary of paired t-test results

Group 1 - Group 0 Group 0 is significantly better, except when 1 or 2 phrases are output, in which

case there is no significant difference.

Group 2 - Group 0 Group 0 is better, except when 1 phrase is output, but the differences are not

always significant.

Group 3 - Group 0 Group 0 is better more often than it is worse, but the differences are mostly not

significant.

Group 4 - Group 0 Group 0 is never worse, but the differences are mostly not significant.

8. Experiment 5: Combining Query and Keyphrase Features

Turney 23

8. Experiment 5: Combining Query and Keyphrase Features
Experiment 4 suggests that the query features and the keyphrase-frequency feature are independent,

so there may be some value to combining them. Experiment 5 evaluates such a hybrid feature set.

This requires a small modification to the algorithm described in Section 3.3. We still have a two-pass

algorithm, but the first pass now uses the keyphrase feature set instead of the baseline feature set.

Figure 11: The overlap among the feature sets in the output phrases that match with the

authors’ phrases.

Overlap in "Correct" Keyphrases Output

0

0.5

1

1.5

2

2.5

Baseline Keyphrase Query

Feature Set

A
ve

ra
g

e
n

u
m

b
er

 o
f

"c
o

rr
ec

t"
 k

ey
p

h
ra

se
s

o
u

tp
u

t

Shared with Query

Shared with Keyphrase

Shared with Baseline

Shared with All

Figure 12: The overlap among the feature sets in the output phrases, without regard to whether

the phrases agree with the authors’ keyphrases.

Overlap in All Keyphrases Output

0

5

10

15

20

25

Baseline Keyphrase Query

Feature Set

A
ve

ra
g

e
n

u
m

b
er

 o
f

al
l k

ey
p

h
ra

se
s

o
u

tp
u

t

Shared with Query

Shared with Keyphrase

Shared with Baseline

Shared with All

8. Experiment 5: Combining Query and Keyphrase Features

24 ERB-1096, Mining the Web for Lexical Knowledge

The second pass now uses thirteen features, the twelve query features plus the keyphrase-frequency

feature. The baseline_rank and baseline_probability features become keyphrase_rank and

keyphrase_probability.

Comparison of Feature Sets on CSTR Test Set

0

0.5

1

1.5

2

2.5

3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of keyphrases output

A
ve

ra
g

e
n

u
m

b
er

 o
f

"c
o

rr
ec

t"
 k

ey
p

h
ra

se
s

Query + Keyphrase

Keyphrase Features

Query Features

Baseline Features

Figure 13: Comparison of a hybrid of the query and keyphrase feature sets with the other

three feature sets on the CSTR corpus.

D iffe re n c e : Q u e ry a n d K e yp h ra s e M in u s K e yp h ra s e A lo n e (C S T R T e s t S e t)

0

0 .0 5

0 .1

0 .1 5

0 .2

0 .2 5

0 .3

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0

N u m b e r o f ke y p h ra s es o u tp u t

D
if

fe
re

n
ce

 in
 a

ve
ra

g
e

n
u

m
b

er
 o

f
"c

o
rr

ec
t"

 k
ey

p
h

ra
se

s

(Q ue ry & K e yp h ra se) - K eyp h ra se

Figure 14: Paired t-test of the hybrid feature set versus the keyphrase feature set on the

CSTR corpus.

8. Experiment 5: Combining Query and Keyphrase Features

Turney 25

Comparison of Features Sets on the LANL Corpus

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of keyphrases output

A
ve

ra
g

e
n

u
m

b
er

 o
f

"c
o

rr
ec

t"
 k

ey
p

h
ra

se
s

Query Features

Baseline Features

Keyphrase Features

Query + Keyphrase

Figure 15: Comparison of a hybrid of the query and keyphrase feature sets with the other

three feature sets on the LANL corpus.

Difference: Query and Keyphrase Minus Keyphrase Alone (LANL Corpus)

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of keyphrases output

D
if

fe
re

n
ce

 in
 a

ve
ra

g
e

n
u

m
b

er
 o

f
"c

o
rr

ec
t"

 k
ey

p
h

ra
se

s
o

u
tp

u
t

(Query & Keyphrase) - Keyphrase

Figure 16: Paired t-test of the hybrid feature set versus the keyphrase feature set on the

LANL corpus.

9. Experiment 6: Evaluating Keyphrases by Familiarity

26 ERB-1096, Mining the Web for Lexical Knowledge

Figure 13 plots the results when the hybrid feature set is trained and tested on the CSTR data.

Figure 14 shows that the hybrid feature set performs significantly better than the closest competitor,

the keyphrase feature set.

Figure 15 shows the results when the hybrid feature set is trained on the CSTR corpus and then

evaluated on the LANL corpus. In this case, as we can see from Figure 16, there is no significant dif-

ference between the hybrid features and the keyphrase features alone.

The experiment shows that, when the appropriate training data are available, it can be beneficial

to combine the query feature set and the keyphrase feature set. When the data are not available, it is

best to use the query feature set alone. Thus the hybrid feature set has the same limitations as the

keyphrase feature set: domain-dependency and training-intensiveness.

9. Experiment 6: Evaluating Keyphrases by Familiarity
In the experiments so far, I have measured the performance of the various feature sets by the level of

agreement between the authors and the machine. As I mentioned in Section 2.1, this underestimates

the quality of the machine-extracted phrases. One way to get a better estimate is to ask human read-

ers to evaluate the machine-extracted phrases (Turney, 2000), but this is a laborious exercise. In this

experiment and the next experiment, I examine alternative ways to automatically evaluate key-

phrases. The intent is not to replace the author as a standard of performance; the motivation is to use

a variety of different performance measures to gain more insight into automatic keyphrase extrac-

tion.

The aim of the current experiment is to evaluate whether the machine-extracted phrases seem

reasonable or familiar for documents in the given domain, without regard to whether they are appro-

priate for the given input document. In this experiment, the performance of the feature sets will be

measured by the level of agreement between the machine-extracted phrases for a given document

and the author-assigned phrases for any document in the testing set, including the given input docu-

ment. Of course, this performance measure is heavily biased in favour of the keyphrase feature set,

at least when the testing domain corresponds to the training domain. However, as long as we are

aware of this bias, it may still be interesting to see what happens.

Figure 17 presents the experimental results when the features are trained and tested with the

CSTR corpus (as in Experiment 1). The keyphrase features perform best, as expected. The query and

baseline features perform about the same. The paired t-test shows that the difference between the

keyphrase features and the other features is significant, but the difference between the query features

and the baseline features is mostly insignificant.

Figure 18 shows the results when the features are trained on the CSTR corpus and then tested

with the LANL corpus (as in Experiment 2). The paired t-test shows that the differences among the

feature sets become significant when seven or more phrases are output, at which point the query fea-

tures perform best, followed by the keyphrase features, and lastly the baseline features.

It is interesting to contrast Figure 18 in this experiment with Figure 5 in Experiment 2, where the

keyphrase features performed better than the baseline features. This suggests that, although the

phrases extracted by the keyphrase features from the LANL corpus may not be appropriate for the

documents (as indicated by Figure 5), they are still reasonable for the domain (as indicated by Figure

18). This result (Figure 18) is somewhat surprising, since it was not expected that the keyphrase

model trained on the CSTR corpus would produce reasonable phrases for the LANL corpus.

It is also interesting to contrast the performance of the query features in Figures 17 and 18. The

phrases extracted by the query features seem to be much more reasonable for the LANL corpus than

for the CSTR corpus. I have no explanation for this. It may be related to differing degrees of homo-

9. Experiment 6: Evaluating Keyphrases by Familiarity

Turney 27

geneity in the two domains or the two corpora.

Figure 17: Comparison of the feature sets on the CSTR testing set, using familiarity as a

performance measure.

Comparison of Feature Sets on CSTR Test Set

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of keyphrases output

A
ve

ra
g

e
n

u
m

b
er

 o
f

"f
am

ili
ar

"
ke

yp
h

ra
se

s

Keyphrase Features

Query Features

Baseline Features

Figure 18: Comparison of the feature sets on the LANL Corpus, using familiarity as a

performance measure.

Comparison of Feature Sets on LANL Corpus

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of keyphrases output

A
ve

ra
g

e
n

u
m

b
er

 o
f

"f
am

ili
ar

"
ke

yp
h

ra
se

s

Query Features

Keyphrase Features

Baseline Features

10. Experiment 7: Evaluating Keyphrases by Searching

28 ERB-1096, Mining the Web for Lexical Knowledge

10. Experiment 7: Evaluating Keyphrases by Searching
Martin and Holte (1998) argue that keyphrases make good query terms for finding documents that

are similar or identical to a given document. This suggests a method for evaluating keyphrases.

Good keyphrases should be specific enough that they can be used to find the original document,

from which they were extracted, yet they should be general enough that they can also find many sim-

ilar documents. It would be easy to make a query so specific that it only retrieved one particular doc-

ument, or so general that it retrieved a huge number of documents. It is more difficult to make a

query that balances specificity and generality. I believe that authors are faced with this same problem

when they choose keyphrases for their documents. They want general keyphrases that will attract

large audiences for their documents, yet they also want keyphrases that are specific enough to accu-

rately capture the actual topics and contents of their documents.

For the CSTR corpus, I used the CSTR search engine, part of the New Zealand Digital Library at

the University of Waikato.10 This search engine indexes about 46,000 computer science papers.11

The query syntax only allows searching by words (not phrases). The user can control whether the

query matches documents that contain “all” or “some” of the words. When a query matches more

than 50 documents, the search engine reports, “More than 50 documents matched the query,” but

does not give the actual number of hits. The search results are reported with 20 hits listed per page of

results.

Figure 19 presents the results of experiments with the CSTR search engine. In this case, the fea-

ture sets have been trained and tested on the CSTR corpus, as in Experiment 1. For each of the 500

testing documents, a query was issued to the CSTR search engine, based on the top three output

phrases for the various feature sets and the first three phrases for the author-assigned keyphrases.

For a given set of three phrases, a query was generated by taking the conjunction of all of the words

in the three phrases (an “all” query). The specificity of a query was measured by the probability that

the top 20 hits included the original source document, from which the keyphrases were extracted.

The generality of a query was measured by the probability that the query would return more than 50

documents. The bar chart includes error bars, which show the 95% confidence regions, calculated

using the Student t-test (not a paired t-test this time). The chart shows that there are no significant

differences among the phrases generated by the baseline features, the query features, and the

authors, with respect to specificity and generality. However, the phrases generated by the keyphrase

features are significantly different from the other three groups. They are both less specific (less

likely to retrieve the source document in the top 20 hits) and more general (more likely to have more

than 50 hits). This suggests that there is a systematic bias towards generality in the phrases that are

selected with the keyphrase feature set.

For the LANL corpus, I used the CERN Document Server, a service of the European Organiza-

tion for Nuclear Research.12 This search engine indexes about 42,000 physics papers.13 The query

syntax allows searching by words or by phrases. The search engine returns the number of hits for

each query. The user can set the number of hits listed per page of results. The choices are 10, 25,

100, or 500 hits per page. In this experiment, I chose 25 hits per page.

10. See http://www.nzdl.org/cgi-bin/cstrlibrary?a=p&p=about.

11. The main page reported 45,720 documents (http://www.nzdl.org/cgi-bin/cstrlibrary?a=p&p=about). I verified that all of

the 500 CSTR testing set documents used in this paper were indexed by the search engine.

12. See http://weblib.cern.ch/fulltext.php.

13. The query “the” returned 41,765 hits. The arXiv site reported that there were 178,569 papers in the LANL archive

(http://arxiv.org/show_monthly_submissions), but it appears that they were not all indexed by the CERN document

server. I verified that all of the 580 papers in the LANL corpus used in this paper were indexed by the search engine.

10. Experiment 7: Evaluating Keyphrases by Searching

Turney 29

Figure 20 displays the results with the LANL search engine. The feature sets were trained with

the CSTR corpus and then tested with the LANL corpus, as in Experiment 2. For each of the 580

testing documents, a query was issued to the LANL search engine, based on the top three output

phrases for the various feature sets and the first three phrases for the author-assigned keyphrases.

For a given set of three phrases, a query was generated by taking the conjunction of the phrases (not

the individual words, unless the phrases were only one-word long). The specificity of a query was

measured by the probability that the top 25 hits (not the top 20) included the original source docu-

ment, from which the keyphrases were extracted. The generality of a query was measured by the

probability that the query would return more than 50 documents. The bar chart shows that there are

no significant differences between the baseline and query features, in terms of generality and speci-

ficity. However, the authors’ keyphrases are significantly less specific and less general than the

baseline and query phrases. Again, the phrases selected by the keyphrase feature set are significantly

more general than the phrases selected by the other three approaches, although the specificity is

about the same. This supports the hypothesis that the keyphrase feature set has a bias towards gener-

ality.

One difference between Figures 19 and 20 is that the former queries were words and the latter

queries were phrases. The CSTR search engine does not handle phrases, but the LANL search engine

does handle words. Therefore I repeated the LANL experiment with words instead of phrases. As we

can see in Figure 21, the results follow the same general pattern. As expected, the word-based que-

ries are more general and less specific than the phrase-based queries (compare Figures 20 and 21).

Evaluation of Keyphrases as Queries (CSTR Test Set - Conjunction of Words)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Keyphrase Features Baseline Features Query Features Authors

Keyphrase Source

P
ro

b
ab

ili
ty

Specificity:
Probability of finding
source document

Generality:
Probability of finding more
than 50 documents

Figure 19: Comparison of the feature sets and the authors’ keyphrases on the CSTR corpus,

using searching as a performance measure.

10. Experiment 7: Evaluating Keyphrases by Searching

30 ERB-1096, Mining the Web for Lexical Knowledge

Evaluation of K eyphrases as Q ueries (LAN L Corpus - Conjunction of Phrases)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Keyphrase Features Baseline Features Query Features Authors

K eyphrase Source

P
ro

b
ab

ili
ty

Specificity:
Probability of finding
source docum ent

Generality:
Probability of finding m ore
than 50 docum ents

Figure 20: Comparison of the feature sets and the authors’ keyphrases on the LANL corpus,

using searching as a performance measure (phrase-based queries).

Evaluation of Keyphrases as Queries (LANL Corpus - Conjunction of Words)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Keyphrase Features Baseline Features Query Features Authors

Keyphrase Source

P
ro

b
ab

ili
ty

Specificity:
Probability of finding
source document

Generality:
Probability of finding more
than 50 documents

Figure 21: Comparison of the feature sets and the authors’ keyphrases on the LANL corpus,

using searching as a performance measure (word-based queries)

11. Discussion: Limitations, Applications, Future Work

Turney 31

11. Discussion: Limitations, Applications, Future Work
The main limitation of the new query feature set is the time required to calculate the query-based

features. Examination of Table 3 shows that it takes 10 queries to AltaVista to calculate one feature

vector. Each query takes about one second. At 10 queries per feature vector times 1 second per query

times 100 feature vectors per document, we have 1,000 seconds per document (roughly 15 minutes

per document). The time required by the other aspects of Kea is completely insignificant compared

to this. I accelerated the process a small amount by caching query results. It could be further acceler-

ated by using multi-threading to issue queries in parallel, although this may not be considered ethical

by the provider of the search engine service.14

The vast majority of the time required is taken up by network traffic between the computer that

hosts the search engine and the computer that hosts the software that is calculating the query fea-

tures. With a local search engine, the time required could be reduced to less than one second per doc-

ument. If we extrapolate the current trends in hardware, then it seems that the typical desktop

personal computer will be able to locally index and search 350 million web pages easily within about

ten years. Thus, although the new query features are currently impractical for many types of applica-

tions, it will not be long before this in no longer an issue. Once the problem of speed has been

solved, the query features will be useful to improve the quality of keyphrase extraction in all of the

various applications for keyphrases (summarizing, indexing, labeling, categorizing, clustering, high-

lighting, browsing, searching, etc.).

There are many questions that remain to be addressed by future research: Does a significant

improvement in performance, as measured by agreement with the author, result in significant

improvement in performance in the various applications for keyphrases? How does the improvement

vary as the size of the unlabeled corpus (the 350 million Web pages) varies? Could good results be

obtained using a much smaller corpus? Perhaps the CSTR search engine would be sufficient to gen-

erate query features for the CSTR corpus, which would result in features that are domain-specific,

but not training-intensive. Similarly, the LANL search engine might be sufficient for features for the

LANL corpus. What other techniques could be used to exploit unlabeled data for improved key-

phrase extraction? What other features could improve keyphrase extraction? What biases are there in

the phrases that are selected by the new query features? I do not yet have answers for any of these

questions.

12. Conclusions
In this paper, I have introduced new features for keyphrase extraction. The new query features are

inspired by the keyphrase-frequency feature of Frank et al. (1999). The query features use the PMI-

IR algorithm to learn from a large corpus of unlabeled text. I have discussed the results of seven

experiments:

1. Comparison of feature sets on the CSTR corpus: Query features improve performance. When

trained and tested in the same domain, the query features perform significantly better than

the baseline features, but not as well as the keyphrase features. Query features are not train-

ing-intensive. The query features used 130 training documents, compared to 1,300 for the

14. Although the AltaVista site has guidance on terms of use (http://www.altavista.com/sites/about/termsofuse), there is no

discussion about how frequently a non-human user (a “robot”) can issue queries. Robots have been crawling the Web for

several years, and there are extensive guidelines for robot web crawlers (http://www.robotstxt.org/wc/exclusion.html),

but I have not found any guidelines for robot web queriers. If the research described here is fruitful, then there will soon

be a requirement for such guidelines.

12. Conclusions

32 ERB-1096, Mining the Web for Lexical Knowledge

keyphrase features.

2. Generalization from the CSTR corpus to the LANL corpus: Query features are not domain-

specific. When trained in one domain and then tested in another, the query features continue

to perform better than the baseline features, but the performance of the keyphrase features

drops below the baseline.

3. Evaluation of feature subsets: All of the twelve query features appear to be useful.

4. Relations among feature sets: Although the query features are conceptually similar to the

keyphrase features, they result in substantially different output phrases.

5. Combining query features with the keyphrase feature: When the appropriate data are avail-

able, it is beneficial to combine the query features with the keyphrase feature. However, this

hybrid shares the limitations of the keyphrase feature, domain-specificity and training-inten-

siveness.

6. Evaluating keyphrases by familiarity: The phrases extracted by the keyphrase feature set are

highly “familiar” when the training and testing domains are the same, and more familiar than

the baseline phrases when the training and testing domains are distinct. The phrases

extracted by the query feature set are about as familiar as the baseline phrases when the

training and testing domains are the same, and more familiar than the baseline and key-

phrases phrases when the training and testing domains are distinct.

7. Evaluating keyphrases by searching: The phrases extracted by the keyphrase feature set

appear to have a bias towards generality.

In summary, the main lesson is that the new features improve keyphrase extraction, yet they are nei-

ther domain-specific nor training-intensive.

Acknowledgments
Thanks to the Kea group, Eibe Frank, Gordon Paynter, Ian Witten, Carl Gutwin, and Craig Nevill-

Manning, for giving me a copy of the CSTR corpus, for releasing their Kea software under the GNU

General Public License, and for sharing their results with me. Thanks to my colleague Alain Désilets

for suggesting, by example, the idea of using a Web search engine as a source of input for an algo-

rithm. Thanks to the developers and maintainers of the following search engines for permitting my

software to send large numbers of queries to their search engines: AltaVista (for Web searching),

New Zealand Digital Library (for searching the CSTR corpus), and the CERN Document Server (for

searching the LANL corpus).

References
Banko, M., Mittal, V., Kantrowitz, M., and Goldstein, J. (1999). Generating extraction-based sum-

maries from hand-written summaries by aligning text spans. In Proceedings of the Pacific Rim

Conference on Computational Linguistics (PACLING-99).

Church, K.W., Hanks, P. (1989). Word association norms, mutual information and lexicography. Pro-

ceedings of the 27th Annual Conference of the Association of Computational Linguistics, pp. 76-

83.

Church, K.W., Gale, W., Hanks, P., Hindle, D. (1991). Using statistics in lexical analysis. In Uri

Zernik (ed.), Lexical Acquisition: Exploiting On-Line Resources to Build a Lexicon, pp. 115-164.

New Jersey: Lawrence Erlbaum.

12. Conclusions

Turney 33

Domingos, P., and Pazzani, M. (1997). On the optimality of the simple Bayesian classifier under

zero-one loss. Machine Learning, 29, 103-130.

Dumais, S., Platt, J., Heckerman, D. and Sahami, M. (1998). Inductive learning algorithms and rep-

resentations for text categorization. Proceedings of the Seventh International Conference on

Information and Knowledge Management, pp. 148-155. ACM Press.

Edmundson, H.P. (1969). New methods in automatic extracting. Journal of the Association for Com-

puting Machinery, 16 (2), 264-285.

Fayyad, U.M., and Irani, K.B. (1993). Multi-interval discretization of continuous-valued attributes

for classification learning. In Proceedings of 13th International Joint Conference on Artificial

Intelligence (IJCAI-93), pp. 1022-1027.

Feelders, A., and Verkooijen, W. (1995). Which method learns the most from data? Methodological

issues in the analysis of comparative studies. Fifth International Workshop on Artificial Intelli-

gence and Statistics, Ft. Lauderdale, Florida, pp. 219-225.

Field, B.J. (1975). Towards automatic indexing: Automatic assignment of controlled-language

indexing and classification from free indexing. Journal of Documentation, 31 (4), 246-265.

Firth, J.R. (1957). A synopsis of linguistic theory 1930-1955. In Studies in Linguistic Analysis, pp.

1-32. Oxford: Philological Society. Reprinted in F.R. Palmer (ed.), Selected Papers of J.R. Firth

1952-1959, London: Longman (1968).

Frank, E., Paynter, G.W., Witten, I.H., Gutwin, C., and Nevill-Manning, C.G. (1999). Domain-spe-

cific keyphrase extraction. Proceedings of the Sixteenth International Joint Conference on Artifi-

cial Intelligence (IJCAI-99), pp. 668-673. California: Morgan Kaufmann.

Furnas, G., Landauer, T., Gomez, L., & Dumais, S. (1987). The vocabulary problem in human-sys-

tem communication. Communications of the ACM, 30, 964-971.

Gutwin, C., Paynter, G.W., Witten, I.H., Nevill-Manning, C.G., and Frank, E. (1999). Improving

browsing in digital libraries with keyphrase indexes. Journal of Decision Support Systems, 27,

81-104.

Jones, S., and Paynter, G.W. (1999) Topic-based browsing within a digital library using keyphrases.

Proceedings of Digital Libraries 99 (DL'99), pp. 114-121. ACM Press.

Kupiec, J., Pedersen, J., and Chen, F. (1995). A trainable document summarizer. In E.A. Fox, P. Ing-

wersen, and R. Fidel, editors, SIGIR-95: Proceedings of the 18th Annual International ACM

SIGIR Conference on Research and Development in Information Retrieval, pp. 68-73, New York:

ACM.

Landauer, T.K., and Dumais, S.T. (1997). A solution to Plato’s problem: The Latent Semantic Anal-

ysis theory of the acquisition, induction, and representation of knowledge. Psychological

Review, 104: 211-240.

Leung, C.-H., and Kan, W.-K. (1997). A statistical learning approach to automatic indexing of con-

trolled index terms. Journal of the American Society for Information Science, 48, 55-66.

Lovins, J.B. (1968). Development of a stemming algorithm. Mechanical Translation and Computa-

tional Linguistics, 11, 22-31.

Luhn, H.P. (1958). The automatic creation of literature abstracts. I.B.M. Journal of Research and

Development, 2 (2), 159-165.

12. Conclusions

34 ERB-1096, Mining the Web for Lexical Knowledge

Manning, C.D., and Schütze, H. (1999). Foundations of Statistical Natural Language Processing.

Cambridge, Massachusetts: MIT Press.

Martin, J., and Holte, R.C. (1998). Searching for content-based addresses on the World-Wide Web.

Proceedings of The Third ACM Conference on Digital Libraries (DL'98).

Soderland, S., and Lehnert, W. (1994). Wrap-Up: A trainable discourse module for information

extraction. Journal of Artificial Intelligence Research, 2, 131-158.

Sparck Jones, K. (1973). Does indexing exhaustivity matter? Journal of the American Society for

Information Science, September-October, 313-316.

Turney, P.D., and Halasz, M. (1993), Contextual normalization applied to aircraft gas turbine engine

diagnosis, Journal of Applied Intelligence, 3, 109-129.

Turney, P.D. (1997). Extraction of Keyphrases from Text: Evaluation of Four Algorithms. National

Research Council, Institute for Information Technology, Technical Report ERB-1051.

Turney, P.D. (1999). Learning to Extract Keyphrases from Text. National Research Council, Institute

for Information Technology, Technical Report ERB-1057.

Turney, P.D. (2000). Learning algorithms for keyphrase extraction. Information Retrieval, 2, 303-

336.

Turney, P.D. (2001). Mining the Web for synonyms: PMI-IR versus LSA on TOEFL. Proceedings of

the Twelfth European Conference on Machine Learning (ECML-2001), Freiburg, Germany, pp.

491-502.

Turney, P.D. (2002). Answering subcognitive Turing Test questions: A reply to French. Journal of

Experimental and Theoretical Artificial Intelligence, 13, 409-419.

van Rijsbergen, C.J. (1979). Information Retrieval. 2nd edition. London: Butterworths.

Whitley, D. (1989). The GENITOR algorithm and selective pressure. Proceedings of the Third Inter-

national Conference on Genetic Algorithms (ICGA-89), pp. 116-121. California: Morgan Kauf-

mann.

Witten, I.H., Paynter, G.W., Frank, E., Gutwin, C. and Nevill-Manning, C.G. (1999) KEA: Practical

automatic keyphrase extraction. Proceedings of Digital Libraries 99 (DL'99), pp. 254-256. ACM

Press.

Witten, I.H., Paynter, G.W., Frank, E., Gutwin, C., and Nevill-Manning, C.G. (2000). KEA: Practical

Automatic Keyphrase Extraction. Working Paper 00/5, Department of Computer Science, The

University of Waikato.

