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ABSTRACT

All surveys include observational biases, which makes it impossible to directly com-
pare properties of discovered trans-Neptunian Objects (TNOs) with dynamical models.
However, by carefully keeping track of survey pointings on the sky, detection limits,
tracking fractions, and rate cuts, the biases from a survey can be modelled in Survey
Simulator software. A Survey Simulator takes an intrinsic orbital model (from, for
example, the output of a dynamical Kuiper belt emplacement simulation) and applies
the survey biases, so that the biased simulated objects can be directly compared with
real discoveries. This methodology has been used with great success in the Outer Solar
System Origins Survey (OSSOS) and its predecessor surveys. In this chapter, we give
four examples of ways to use the OSSOS Survey Simulator to gain knowledge about
the true structure of the Kuiper Belt. We demonstrate how to statistically compare
different dynamical model outputs with real TNO discoveries, how to quantify detection
biases within a TNO population, how to measure intrinsic population sizes, and how
to use upper limits from non-detections. We hope this will provide a framework for
dynamical modellers to statistically test the validity of their models.

1. INTRODUCTION

The orbital structure, size frequency distribution and total mass of the trans-Neptunian region
of the Solar System is an enigmatic puzzle. Fernandez (1980) described an expected distribution
for this region based on the mechanisms for the delivery of cometary material into the inner Solar
System. Even before the first Kuiper belt object after Pluto was discovered, (1992 QB1; Jewitt & Luu
1995), it was theorized that dynamical effects produced by the mass contained in this region could
in principle be detectable (Hamid et al. 1968). The first discoveries made it clear that extracting
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precise measurements of the orbital and mass distributions from this zone of the Solar System would
require careful analysis.
Major puzzles in the Solar System’s history can be explored if one had accurate knowledge of

the distribution of material in this zone. Examples include: the orbital evolution of Neptune (e.g.
Malhotra 1993), the large scale re-ordering of the Solar System (e.g. Thommes et al. 1999; Gomes
et al. 2005), the process of planetesimal accretion (e.g. Stern 1996; Davis & Farinella 1997), the
production of cometary size objects via collisional processes (e.g. Stern 1995) and their delivery into
the inner Solar System (Duncan et al. 1988), and the stellar environment in which the Sun formed
(e.g. Brunini & Fernandez 1996; Kobayashi & Ida 2001). Our goal as observers is to observationally
test these models and their consequences by comparison to the Solar System as we see it today.
Given the sparse nature of the datasets and the challenges of detecting and tracking trans-Neptunian
objects (TNOs), a strong statistical framework is required if we are to distinguish between these
various models.
The presence of large-scale biases in the detected sample have been apparent since the initial

discoveries in the Kuiper belt, and multiple approaches have been used to account for these biases.
Jewitt & Luu (1995) use Monte-Carlo comparisons of Kuiper belt models to their detected sample to
estimate the total size of the Kuiper belt, taking into account the flux limits of their survey. Similarly
Irwin et al. (1995) estimate the flux limits of their searches and use these to weight their detections
and, combining those with the results reported in Jewitt & Luu (1995), provide an estimate of the
luminosity function of the region. Gladman et al. (1998) provide a Baysian-based analysis of their
detected sample, combined with previously published surveys, to further refine the measurement of
the luminosity function of the Kuiper belt. Trujillo et al. (2001) determined the size, inclination and
radial distributions of the Kuiper belt by weighting the distribution of observed TNOs based on their
detectability and the fraction of the orbit that each object spent within the survey fields. Bernstein
et al. (2004) refined the maximum-likelihood approach when they extended the measurement of the
size distribution to smaller scales and determined statistically significant evidence of a break in the
shape of the Kuiper belt luminosity function, later developed further by the deeper survey of Fraser &
Kavelaars (2009). A similar approach is taken in Adams (2010) who make estimates of the underlying
sampling by inverting the observed distributions. Other recent results for Kuiper belt subpopulations
include Schwamb et al. (2009), who use Monte Carlo sampling to estimate detectability of Sedna-like
orbits, and Parker (2015), who uses an approximate Bayesian computation approach to account for
unknown observation biases in the Neptune Trojans. Each of these methods relies on backing out
the underlying distributions from a detected sample.
Carefully measuring the true, unbiased structure of the Kuiper belt provides constraints on exactly

how Neptune migrated through the Kuiper belt. Two main models of Neptune migration have been
proposed and modelled extensively. Pluto’s eccentric, resonant orbit was first explained by a smooth
migration model for Neptune (Malhotra 1993, 1995). Larger scale simulations (Hahn & Malhotra
2005) showed this to be a viable way to capture many TNOs into Neptune’s mean-motion resonances.
The so-called “Nice model” was proposed as an alternate way to destroy the proto-Kuiper belt and
capture many TNOs into resonances. In this model, the giant planets undergo a dynamical instability
that causes Neptune to be chaotically scattered onto an eccentric orbit that damps to its current
near-circular orbit while scattering TNOs and capturing some into its wide resonances (Tsiganis
et al. 2005). Due to the chaotic nature of this model, reproducing simulations is difficult and many
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variations on the Nice model exist (e.g. Batygin et al. 2012; Nesvorný et al. 2013). One very recent
and promising variation on the Nice model scenario includes the gravitational effects of fairly large
(∼Pluto-sized) bodies that cause Neptune’s migration to be “grainy,” having small discrete jumps
as these larger bodies are scattered (Nesvorný & Vokrouhlický 2016). More dramatically, even larger
planetary-scale objects could have transited and thus perturbed the young Kuiper belt (Petit et al.
1999; Gladman & Chan 2006; Lykawka & Mukai 2008)
The level of detail that must be included in Neptune migration scenarios is increasing with the num-

ber of discovered TNOs with well-measured orbits; some recent examples of literature comparisons
between detailed dynamical models and TNO orbital distributions are summarized here. Batygin
et al. (2011), Dawson & Murray-Clay (2012), and Morbidelli et al. (2014) all use slightly different ob-
servational constraints to place limits on the exact eccentricity and migration distance of Neptune’s
orbit in order to preserve the orbits of cold classical TNOs as observed today. Nesvorný (2015a)
shows that the timescale of Neptune’s migration phase must be fairly slow (& 10 Myr) in order to
replicate the observed TNO inclination distribution, and Nesvorný (2015b) shows that including a
“jump” in Neptune’s semimajor axis evolution can create the “kernel” observed in the cold classical
TNOs (first discussed in Petit et al. 2011). Using the observed wide binary TNOs as a constraint on
dynamical evolution suggests that this fragile population formed in-situ (Parker & Kavelaars 2010)
or was emplaced gently into the cold classical region (Fraser et al. 2017). Regardless of the model
involved, using a Survey Simulator is the most accurate and statistically powerful way to make use
of output model TNO distributions from dynamical simulations such as these to gain constraints on
the dynamical history of the Solar System.
In this chapter, we discuss what it means for a survey to be “well-characterized” (Section 2) and

explain the structure and function of a Survey Simulator (Section 2.1). In Section 3, we then give
four explicit examples of how to use a Survey Simulator, with actual dynamical model output and
real TNO data. We hope this chapter provides an outline for others to follow.

2. WELL-CHARACTERIZED SURVEYS

The largest well-characterized TNO survey to date is the Outer Solar System Origins Survey (OS-
SOS; Bannister et al. 2016), which was a large program on the Canada-France-Hawaii Telescope
(CFHT) carried out over five years, and was specifically planned with the Survey Simulator frame-
work in mind. OSSOS builds on the methodology of three previous well-characterized surveys: the
Canada-France Ecliptic Plane Survey (CFEPS; Jones et al. 2006; Kavelaars et al. 2008b; Petit et al.
2011), the CFEPS high-latitude component (Petit et al. 2017), and the survey of Alexandersen et al.
(2016). The survey design is discussed extensively in those papers; the OSSOS survey outcomes
and parameters in particular are presented in detail in Bannister et al. (2016) and Bannister et al.
(in press). We here summarize the main points that are important for creating a well-characterized
survey.
These well-characterized surveys are all arranged into observing “blocks:” many individual camera

fields tiled together into a block on the sky (the observing blocks for OSSOS are each ∼10–20 square
degrees in size). The full observing block is covered during each dark run (when the Moon is closest
to new) for 2 months before, 2 months after, and during the dark run closest to opposition for the
observing block. The observing cadence is important for discovering and tracking TNOs, which
change position against the background stars on short timescales. The time separation between
imaging successive camera fields inside each observing block must be long enough that significant
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motion against background stars has occurred for TNOs, but not so long that the TNOs have moved
too far to be easily recovered by eye or by software. OSSOS used triplets of images for each camera
field, taken over the course of two hours. The exposure times are chosen as a careful compromise
between photometric depth and limiting trailing1 of these moving sources. The images are searched
for moving objects by an automated and robustly tested moving object pipeline (CFEPS and OSSOS
used the software pipeline described in Petit et al. 2004), and all TNO candidates discovered by the
software are visually inspected. Prior to searching the images, artificial sources (whose flux and
image properties closely mimic the real sample) are inserted into the images. The detection of these
implanted sources marks the fundamental calibration and characterization of the survey block in
photometric depth, detection efficiency, and tracking efficiency. Each observing block has a measured
“filling factor” that accounts for the gaps between CCD chips. Detection and tracking efficiencies are
measured at different on-sky rates of motion using implanted sources in the survey images, analysed
along with the real TNO data. This process is repeated for each observing block, so each block
has known magnitude limits, filling factors, on-sky coverage, and detection and tracking efficiencies
at different on-sky rates of motion. These are then parameterized and become part of the Survey
Simulator.
The tracking of the discovered sample provides another opportunity for biases to enter and the

process must be closely monitored. A survey done in blocks of fields that are repeated ∼monthly
removes the need to make orbit predictions based on only a few hours of arc from a single night’s
discovery observations. Such short-arc orbit predictions are notoriously imprecise, and dependence
on them ensures that assumptions made regarding orbit distribution will find their way into the
detected sample as biases. For example, a common assumption for short-arc orbits is a circular
orbit. If follow-up observations based on this circular orbital prediction are attempted with only a
small area of sky coverage, then those orbits whose Keplerian elements match the input assumptions
will be preferentially recovered, while those that do not will be preferentially lost. Correcting for
this type of ephemeris bias is impossible. Repeatedly observing the same block of fields, perhaps
with some adjustment for the bulk motion of orbits, helps ensure that ephemeris bias is kept to a
minimum. In the OSSOS project we demonstrate the effectiveness of this approach by managing to
track essentially all TNOs brighter than the flux limits of the discovery sequences (only 2 out of 838
TNOs were not tracked; Bannister et al. in press).
A well-characterized survey will have measured flux limits in each observing block from implanted

artificial objects, equal sensitivity to a wide range of orbits, and a known spatial coverage on the sky.
A Survey Simulator can now be configured to precisely mimic the observing process for this survey.

2.1. The Basics of a Survey Simulator

A Survey Simulator allows models of intrinsic Kuiper Belt distributions to be forward-biased to
replicate the biases inherent in a given well-characterized survey. These forward-biased simulated
distributions can then be directly compared with real TNO detections, and a statement can be made
about whether or not a given model is statistically consistent with the known TNOs. One particular
strength of this approach is that the effect of non-detection of certain orbits can be included in the

1 We note that clever algorithms can be used to obtain accurate photometry from trailed sources (e.g., Fraser et al.
2016).
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analysis. Methods that rely on the inversion of orbital distributions are, by their design, not sensitive
to a particular survey’s blind spots.
Directly comparing a model with a list of detected TNOs (for example, from the Minor Planet

Center database), with a multitude of unknown detection biases, can lead to inaccurate and possibly
false conclusions. Using a Survey Simulator avoids this problem completely, with the only downside
being that comparisons can only be made using TNOs from well-characterized surveys. Fortunately,
the single OSSOS survey contains over 800 TNOs, and the ensemble of well-characterized affiliated
surveys contains over 1100 TNOs with extremely precisely measured orbits (Bannister et al. in press).
This is roughly one third of the total number of known TNOs, and one half of the TNOs with orbits
that are well-determined enough to perform dynamical classification.
At its most basic, a Survey Simulator must produce a list of instantaneous on-sky positions, rates

of motion, and apparent magnitudes. These are computed by assigning absolute magnitudes to
simulated objects with a given distribution of orbits. These apparent magnitudes, positions, and
rates of motion are then evaluated to determine the likelihood of detection by the survey, and a
simulated detected distribution of objects is produced.
The OSSOS Survey Simulator follows this basic model, but takes into account more realities of

survey limitations. It is the result of refinement of this Survey Simulator software through several
different well-characterized surveys: initially the CFEPS pre-survey (Jones et al. 2006), then CFEPS
(Kavelaars et al. 2008a; Petit et al. 2011), then Alexandersen et al. (2016), and finally OSSOS
(Bannister et al. 2016). The OSSOS Survey Simulator software and methodology are now robustly
tested, and are presented below.

2.2. The Details of the OSSOS Survey Simulator

The Survey Simulator for the OSSOS ensemble of well-characterized surveys is available as a pack-
age2, and the list of observed characteristics of the TNOs discovered in these surveys is published in
Bannister et al. (in press). To forward-bias a distribution of objects to allow statistical comparison
with the real TNO discoveries in the surveys, the OSSOS Survey Simulator uses the following steps.
The instantaneous on-sky position, rate of motion, and apparent magnitude are computed from an
orbit, position, and H-magnitude, and can be written to a file that contains the “drawn” simulated
objects. This “drawn” file then represents the instantaneous intrinsic distribution of simulated ob-
jects. The Survey Simulator evaluates whether each simulated object falls within one of the observing
blocks of the survey, and if so, uses the tracking and detection efficiency files for that observing block
to calculate whether this object would be detected. If it is detected, the properties of this object are
written to a file containing the simulated detections. A very small fraction of on-sky motion rates
were detected and not tracked in the real survey (Centaurs sometimes shear off the field due to their
high rate of motion), which is accounted for in the Survey Simulator. The simulated objects will be
written to the simulated tracked object file with probabilities reflecting this.
The user must supply the Survey Simulator with a routine that generates an object with orbital

elements and an absolute H magnitude. How these are generated is free for the user to decide. The
user may edit the source software to include generation of orbits and absolute magnitudes within
the Survey Simulator, but it is recommended that a separate script is used in conjunction with
the unedited Survey Simulator. The software package comes with a few examples, and details are

2 https://github.com/OSSOS/SurveySimulator

https://github.com/OSSOS/SurveySimulator
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provided in the following paragraph showing how we on the OSSOS team have implemented the
generation of simulated TNOs.
The orbital elements of an object can be determined in a variety of ways. The Survey Simulator

can choose an orbit and a random position within that orbit, either from a list of orbits (as would
be produced by a dynamical model) or from a parametric distribution set by the user. Orbits from a
list can also be easily “smeared,” that is, variation is allowed within a fraction of the model orbital
elements, in order to smooth a distribution or produce additional similar orbits (however, one must
be careful that the distribution is dominated by the original list of orbits, and not by the specifics
of the smearing procedure). To determine the likely observed magnitude of the source, an absolute
H magnitude is assigned to this simulated object, chosen so as to replicate an H-distribution set
by the user. Tools and examples are provided to set the H-distribution as a single exponential
distribution, to include a knee to a different slope at a given H magnitude (see for example Fraser
et al. 2014), or to include a divot in the H-distribution (as in Shankman et al. 2016, Lawler et al.
subm.) The H-distribution parameter file also sets the maximum and minimum H values that will
be simulated. The smallest H-magnitude (i.e. largest diameter) is not as important because it is
set by the distribution itself. But the largest H-magnitude (i.e. smallest diameter) is important to
match to the population being simulated. If the maximum H-magnitude is smaller than that of the
largest magnitude TNO in the observational sample one wants to simulate, then the distribution
won’t be sensitive to this large H-magnitude tail. If the maximum H value is much larger than that
of the largest magnitude TNO in the sample, it is simply a waste of computational resources, since
the simulation will include many objects that were too faint to be detected in the survey. This does,
however, expose a strength of the survey simulator, as we can learn from these faint detections that
a hidden reservoir of small objects might exist.
The process of drawing simulated objects and determining if they would have been detected by

the given surveys is repeated until the desired number of simulated tracked or detected objects is
produced by the Survey Simulator. The desired number of simulated detected objects may be the
same as the number of real detected TNOs in a survey in order to measure an intrinsic population size
(as demonstrated in Section 3.3), or an upper limit on a non-detection of a particular subpopulation
(Section 3.4), or it may be a large number in order to test the rejectability of an underlying theoretical
distribution (as demonstrated in Sections 3.1) or to quantify survey biases in a given subpopulation
(Section 3.2).

3. EXAMPLES OF SURVEY SIMULATOR APPLICATIONS

Here we present four examples of different ways to use the Survey Simulator to gain statistically
valuable information about TNO populations. In Section 3.1, we demonstrate how to use the Survey
Simulator to forward-bias the output of a dynamical simulation and then statistically compare the
biased simulation with a distribution of real TNOs. In Section 3.2, we use the Survey Simulator to
build a parametric intrinsic distribution and then bias this distribution by our surveys, examining
survey biases for a particular subpopulation in detail. The Survey Simulator can also be used to
measure the size of the intrinsic population required to produce a given number of detections in a
survey; this is demonstrated in Section 3.3. And finally, in Section 3.4, we demonstrate a powerful
aspect of the Survey Simulator: using non-detections from a survey to set statistical upper limits on
TNO subpopulations. We hope that these examples will prove useful for dynamical modellers who
want a statistically powerful way to test their models.
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3.1. Testing the Output of a Dynamical Model: The Outer Solar System with a Distant Giant

Planet or Rogue Planet

This example expands on the analysis of Lawler et al. (2017), which presents the results of three
different dynamical emplacement simulations of the Kuiper Belt: one including just the currently
known Solar System planets, and two including a distant 10 Earth mass planet: one with a circular
orbit based on Trujillo & Sheppard (2014), and one with an eccentric orbit based on Batygin & Brown
(2016, popularly referred to as “Planet 9”). The methods outlined in Kaib et al. (2011) are used to
build the scattering and detached TNO populations: in addition to perturbations from the massive
planets, these simulations include galactic tides and stellar flybys. We also provide comparison with
a separate emplacement model that includes a two Earth-mass “rogue planet” that is ejected early
in the Solar System’s history (Gladman & Chan 2006).
The papers which propose the presence of a distant undiscovered massive planet (Trujillo & Shep-

pard 2014; Batygin & Brown 2016) rely on published detections of large semimajor axis (a), high
pericenter distance (q) TNOs, which have extreme biases against detection in flux-limited surveys3.
These large-a, high-q TNOs are drawn from different surveys, with unpublished and thus unknown
observing biases. The Minor Planet Center (MPC) Database, which provides a repository for TNO
detections, does not include information on the pointings or biases of the surveys that detected these
TNOs. Sample selection caused by survey depth and sky coverage can be non-intuitive, caused by
weather, galactic plane avoidance, and telescope allocation pressure, among other possibilities (Shep-
pard & Trujillo 2016; Shankman et al. 2017). Thus the assumption can not be made that a collection
of TNOs from different surveys will be bias-free. Further, the detected sample of objects in the
MPC Database provides no insight into the parts of the sky where a survey may have looked and
found nothing, nor to strong variation in flux sensitivity that occurs due to small variations in image
quality.
Here we demonstrate how to use the results of well-characterized surveys to compare real TNO

detections to the output of a dynamical model, comprising a list of orbits. We visualize this output
with a set of cumulative distributions. Figure 1 shows cumulative distributions in six different obser-
vational parameters: semimajor axis a, inclination i, apparent magnitude in r-band mr, pericenter
distance q, distance at detection d, and absolute magnitude in r-band Hr. The outputs from the
four emplacement models are shown by different colours in the plot, with the intrinsic distributions
shown by dotted lines. These intrinsic distributions have all been cut to only include the pericenter
and semimajor axis range predicted by Batygin & Brown (2016) to be most strongly affected by a
distant giant planet: q > 37 AU and 50 < a < 500 AU.
We cannot directly compare the output from these dynamical simulations covering such a huge range

of a and q to real TNOs because the observing biases present in the detected TNO distributions are
severe. Using a survey simulator combined with a carefully characterized survey, however, allows us
to impose the observing biases onto the simulated sample and determine what the detected simulated
sample would have been. We use the OSSOS Survey Simulator and the q > 37 AU, 50 < a < 500 AU
TNOs discovered by the OSSOS ensemble in this example (Figure 1).

3 Brown (2017) does attempt a numerical simulation to calculate likelihood of detection for different orbital parame-
ters in the high-q population, but this is backing out the underlying distribution in the observed sample and still relies
on assumptions about the unknown sensitivity of the surveys.
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Figure 1. Cumulative distributions of TNOs in six different parameters: semimajor axis a, inclination i,
apparent r-band magnitude mr, pericenter distance q, distance at detection d, and absolute magnitude in r-
band Hr. The result of four different emplacement models are presented: the known Solar System (orange),
the Solar System plus a circular orbit Planet 9 (blue), or plus an eccentric orbit Planet 9 (gray), and a
“rogue” planet simulation (purple; Gladman & Chan 2006). The intrinsic model distributions are shown
with dotted lines, and the resulting simulated detections in solid lines. Black circles show non-resonant
TNOs discovered by the OSSOS ensemble having q > 37 AU and 50 < a < 500 AU.

The solid lines in Figure 1 show the simulated detections from the Survey Simulator, and the
black points show the real TNOs detected in the OSSOS ensemble with the same a and q cut.
These can now be directly compared, as the same biases have been applied. The effect of observing
biases varies widely among the six parameters plotted, and can be seen by comparing the intrinsic
simulated distributions (dotted lines) with the corresponding biased simulated distributions (solid
lines) in Figure 1. Unsurprisingly, these surveys are biased toward detecting the smallest-a, lower
inclination, and lowest-q TNOs.
These models have not been explicitly constructed in an attempt to produce the orbital and magni-

tude distribution of the elements in the detection range, so the following exercise is pedagogic rather
than attempting to be diagnostic. All these models statistically fail dramatically in producing several
of the distributions shown here (discussed in detail later in this section), but how they fail allows
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one to understand what changes to the model may be required. All the models generically produce
a slight misbalance in both the absolute (lower right panel of Figure 1) and apparent magnitude dis-
tributions (upper right panel of Figure 1), with too few bright objects being present in the predicted
sample, when using the input Hr-magnitude distribution from Lawler et al. (subm.). Changes in the
H-magnitude exponents or break points that are comparable to their current uncertainties will be
sufficient to produce a greatly improved match, so this comparison is less interesting than for the
orbital distributions.
The orbital inclination distribution (upper center panel of Figure 1) of the detected sample (black

dots) is roughly uniform up to about i = 18◦, it has few members from 18−25◦, and then has the final
one third of the sample distributed up to about 40◦. This observed cutoff near 40◦ is strongly affected
by survey biases, as evidenced by the dramatic elimination of this large fraction of the intrinsic model
population that is present in the two P9 simulations (compare the distribution of dotted and solid
blue and gray lines). In contrast, the relative dearth in the 18 − 25◦ range of the observed TNOs
is not caused by the survey biases: none of the biased models show this effect. The rogue planet
model’s intrinsic distribution (dotted purple line) is a relatively good match to the detections up to
about i = 15◦; when biased by the Survey Simulator (solid purple line) this model predicts far too
cold a distribution. The rogue model used here was from a simulation with a nearly-coplanar initial
rogue planet; simulations with an initially inclined extra planet will give higher inclinations for the
Kuiper Belt objects and would thus be required in this scenario. The two P9 scenarios shown give
better (but still rejectable) comparisons to the detections.
The comparison of the models in the semimajor axis distribution gives very clear trends (upper

left panel of Figure 1). The rogue planet model (solid purple line) used seriously underpredicts the
fraction of large-a TNOs but does produce the abundant a < 70 AU objects in the detected sample
(black dots). This is caused by the rogue spending little time in the enormous volume beyond 100 AU
and thus being unable to significanly lift perihelia for those semimajor axes. In contrast, the control
(solid orange line) and P9 models (solid blue and gray lines) greatly underpredict the a < 100 AU
fraction because the distant planet has very little dynamical effect on these relatively tightly-bound
orbits; these models predict roughly the correct fraction, ∼20% of objects having a > 100 AU, but
the distribution of larger-a TNOs is more extended in reality than these models predict. Lastly, the
q > 37 AU perihelion distribution (lower left panel of Figure 1) of the rogue model (solid purple line)
is more extended than the real objects, due to this particular rogue efficiently raising the perihelia
of the a = 50 − 100 AU populations by a few AU, to a broad distribution. The control model’s q

distribution (solid orange line) is far too concentrated, while the P9 simulations (solid blue and gray
lines) qualitatively provide the match the real TNOs in this distribution.
In order to determine whether any of these biased distributions provide a statistically acceptable

match to the real TNOs, we use a bootstrapped Anderson-Darling statistic4 (Anderson & Darling
1954), calculated for each of the six distributions. This technique is described in detail in previous lit-
erature (e.g. Kavelaars et al. 2009; Petit et al. 2011; Bannister et al. 2016; Shankman et al. 2016), and
we summarize below. An Anderson-Darling statistic is calculated for the simulated biased distribu-
tions compared with the real TNOs; this statistic is summed for each distribution being tested. The
Anderson-Darling statistic is then bootstrapped by drawing a handful of random simulated objects

4 The Anderson-Darling test is similar to the better-known Kolmogorov-Smirnov test, but with higher sensitivity to
the tails of the distributions being compared.
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from the simulated distribution, calculating the AD statistic, summing over all distributions, then
comparing how often the AD statistic for the real TNOs occurs (following Parker 2015; Alexandersen
et al. 2016). If an AD statistic as large as the AD statistic for the real TNOs occurs in < 5% of
randomly drawn samples, we conclude this simulated distribution is inconsistent with observations
and we can reject it at the 95% confidence level.
When we calculate the bootstrapped AD statistics for each of the simulated distributions as com-

pared with the real TNOs in Figure 1, we find that all of the tested simulations are inconsistent with
the data and we reject all of them at > 99% confidence level. This may be surprising to those unaccus-
tomed to these comparisons. Matches between data and models that are not statistically rejectable
have almost no noticeable differences between the data and the biased model in all parameters than
are compared (see, e.g., Figure 3 in Gladman et al. 2012).
We note that none of the four dynamical emplacement models analysed here include the effects

of Neptune’s migration, which is well-known to have an important influence on the structure of the
distant Kuiper belt. Recent detailed migration simulations (Kaib & Sheppard 2016; Nesvorný et al.
2016; Pike et al. 2017; Pike & Lawler 2017) have shown that temporary resonance capture and Kozai
cycling within resonances during Neptune’s orbital evolution has important effects on the overall
distribution of distant TNOs, particularly in raising pericenters and semimajor axes. Incorporating
the effects of Neptune’s migration may produce a better fit between the real TNOs and the models
shown in Figure 1.
We reiterate that the point of this section has been to provide a walk-through of how to compare the

output of a dynamical model to real TNO detections in a statistically powerful way. The preceding
discussion of the shortcomings of the specific dynamical models presented here highlights that a
holistic approach to dynamical simulations of Kuiper belt emplacement is necessary. For example,
Nesvorný (2015a) uses the CFEPS Survey Simulator and CFEPS-discovered TNOs to constrain a
Neptune migration model presented in that work, and Shankman et al. (2016) uses the OSSOS Survey
Simulator and TNOs to improve the dynamical emplacement model of Kaib et al. 2011. We hope
that use of a Survey Simulator will become standard practice for testing dynamical emplacement
models in the future.

3.2. Using a Parametric Population Distribution: Biases in Detection of Resonant TNOs

In this section we show how to use the Survey Simulator with a resonant TNO population, in
order to demonstrate two important and useful points: how to build a simulated population from
a parametric distribution, and showing how the Survey Simulator handles longitude biases in non-
uniform populations. For this demonstration, we build a toy model of the 2:1 mean motion resonance
with Neptune, using a parametric distribution built within the Survey Simulator software (though we
note that this parametric distribution could just as easily be created with a separate script and later
utilized by the unedited Survey Simulator). The parametric distribution here is roughly based on
that used in Gladman et al. (2012), but greatly simplified and not attempting to match the real 2:1
TNO distributions. The Survey Simulator chooses from this parametric distribution with a within
±0.5 AU of the resonance center (47.8 AU), q = 30 AU, i = 0◦, and libration amplitudes 0 − 10◦.
There are three resonant islands in the 2:1 resonance, and the libration center 〈φ21〉 is chosen to
populate these three islands equally in this toy model. For the purposes of our toy model, we define
these angles as: leading asymmetric 〈φ21〉 = 80◦, symmetric 〈φ21〉 = 180◦, and trailing asymmetric
〈φ21〉 = 280◦. The resonant angle φ21 in the snapshot is chosen sinusoidally within the libration
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amplitude. The ascending node Ω and mean anomaly M are chosen randomly, then the argument
of pericenter ω is chosen to satisfy the resonant condition φ21 = 2λTNO − λN − ̟TNO, where mean
longitude λ = Ω + ω + M, longitude of pericenter ̟ = Ω + ω, and the subscripts TNO and N
denote the orbital elements of the TNO and Neptune, respectively. The last step is to assign an H

magnitude, in this case from a literature TNOH-distribution (Lawler et al. subm.) As each simulated
TNO is drawn from this distribution, its magnitude (resulting from its instantaneous distance and
H magnitude), on-sky position, and rate of on-sky motion are evaluated by the Survey Simulator to
ascertain whether or not this TNO would have been detected by the survey for which configurations
are provided to the simulator.
Figure 2 shows the results of this simulation. Due to the (unrealistically) low libration amplitudes

in this toy model simulation, the three resonant islands show up as discrete sets of orbits, with
pericenters in three clusters: symmetric librators are opposite Neptune, and leading and trailing are
in the upper right and lower left of the plot, respectively5. While the intrinsic distributions in this
model are evenly distributed among the three islands by design (33% in each), the detected TNOs
are not. This is because TNOs on eccentric orbits are most likely to be detected close to pericenter,
and in this toy model, the pericenters are highly clustered around three distinct positions on the
sky6 The red points in Figure 2 show the simulated TNOs that are detected by the OSSOS Survey
Simulator. Just because of the positions of survey pointings on the sky, the detections are highly
biased toward the leading island, which has over 2/3 of the detections, with fewer detections in the
trailing island, and only 10% of all the detections in the symmetric island. Without knowing the
on-sky detection biases (as is the case for TNOs pulled from the MPC database), one could easily
(but erroneously) conclude that the leading island is much more populated than the trailing island,
when in fact the intrinsic populations are equal.
The relative fraction of n:1 TNOs that inhabit different resonant islands has been discussed in the

literature as a diagnostic of Neptune’s past migration history (Chiang & Jordan 2002; Murray-Clay &
Chiang 2005; Pike & Lawler 2017). Past observational studies have relied on n:1 resonators from the
MPC database with unknown biases, or the handful of n:1 resonators detected in well-characterized
surveys to gain weak (but statistically tested) constraints on the relative populations. Upcoming
detailed analysis using the full OSSOS survey and making use of the Survey Simulator will provide
stronger constraints on this fraction, without worries about unknown observational biases (Chen
et al. in prep.)

3.3. Determining Intrinsic Population Size: The Centaurs

The Survey Simulator can easily be used to determine intrinsic population sizes. As described
in Section 2.1, the Survey Simulator keeps track of the number of “drawn” simulated objects that
are needed for the requested number of simulated tracked objects. By asking the Survey Simulator
to produce the requested number of simulated tracked objects over and over with different random
number seeds, different orbits and instantaneous positions are chosen from the model and slightly
different numbers of simulated drawn objects are required each time. The number of drawn simulated

5 We note that in reality the symmetric island generally has very large libration amplitudes and the pericenter
positions of symmetric librators overlap with each of the asymmetric islands (e.g. Volk et al. 2016), thus diagnosing
the membership of each island is not as simple as this toy model makes it appear.

6 While this is obviously an exaggerated example, pericenters in all of the resonant TNO populations are most
likely to occur at certain sky positions, and thus this is an important consideration when discussing survey biases (see
Gladman et al. 2012; Lawler & Gladman 2013; Volk et al. 2016, for detailed discussions and analysis of these effects
for resonant populations).
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Figure 2. Black points show the positions of TNOs in a snapshot from this parametric toy model of TNOs
in the 2:1 mean-motion resonance. The position of Neptune is shown by a blue circle, and dotted circles
show distances from the Sun. Red points show simulated detections after running this model through the
Survey Simulator. One third of the TNOs are in each libration island in the intrinsic model, but 2/3 of the
detections are in the leading asymmetric island (having pericenters in the upper right quadrant of this plot).
This bias is simply due to the longitudinal direction of pointings within the OSSOS ensemble and pericenter
locations in this toy model of the 2:1 resonance.

objects is a realization of the intrinsic population required for the survey to have detected the actual
number of TNOs that were found by the survey. By repeating this many times, we can measure the
range of intrinsic population sizes needed to produce a given number of tracked, detected TNOs in
a survey.
Here we measure the intrinsic population required to produce the 17 Centaurs that are detected in

the OSSOS ensemble. Once the parameters of the orbital distribution and the H-distribution have
been pinned down using the AD statistical analysis outlined in Section 3.1 (this is done in detail
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Figure 3. The range of intrinsic Centaur population sizes required for the Survey Simulator to produce the
same number of Centaur detections (17) as were discovered by the OSSOS ensemble, Hr < 8.66 intrinsic
populations shown in red (left panel) andHr < 12 shown in orange (right panel). The solid lines highlight the
median population, and dotted lines show the 95% upper and lower confidence limits on the intrinsic Centaur
population for each H-magnitude limit. Using the OSSOS ensemble, we measure an intrinsic populations of
111+59

−44 Hr < 8.66 Centaurs and 3500+1800
−1400 Hr < 12 Centaurs with 95% confidence.

for the Centaurs in Lawler et al. subm.), we run the Survey Simulator until it produces 17 tracked
Centaurs from the a < 30 AU portion of the Kaib et al. (2011) scattering TNO model, and record the
number of simulated drawn objects required. As the OSSOS detected sample discovered Centaurs
down to Hr ≃ 14, the Survey Simulator is run to this H-magnitude limit. We repeat this 1000 times
to find the range of intrinsic population sizes that can produce 17 simulated tracked objects.
Using the properties of simulated objects in the drawn file, we measure the intrinsic population

size to Hr < 12 (right panel, Figure 3). The median intrinsic population required for 17 detections is
3500, with 97.5% of population estimates falling below 2100, and 97.5% falling above 5400 (these two
values bracket 95% of the population estimates). The result is a statistically tested 95% confidence
limit on the intrinsic Centaur population of 3500+1800

−1400 for Hr < 12.
To ease comparison with other statistically produced intrinsic TNO population estimates (e.g.

Petit et al. 2011; Gladman et al. 2012), we also measure a population estimate for Hr < 8.66, which
corresponds to D & 100 km7 (left panel, Figure 3). Even though none of the detected Centaurs in
OSSOS had Hr magnitudes this small, this estimate is valid because it is calculated from our Survey
Simulator-based population estimate and a measured H-magnitude distribution (from Lawler et
al. subm.) For Hr < 8.66, the statistically tested 95% confidence limit on the intrinsic Centaur
population is 111+59

−44.

7 The approximate Hr magnitude that corresponds to D of 100 km is calculated assuming an albedo of 0.04 and
using an average plutino colour g − r = 0.5 (Alexandersen et al. 2016).
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Figure 4. Coloured points show the relative populations and semimajor axis-eccentricity distributions from
the CFEPS L7 model of the Kuiper belt, where absolute population estimates have been produced for each
subpopulation in the well-characterized CFEPS survey (Petit et al. 2011; Gladman et al. 2012), populations
are scaled to Hg < 8.5 and colour-coded by dynamical class. A low-e artificial test population has been
injected at 60 AU (black points); the number of points shows the upper limit on this population determined
by zero detections in OSSOS, extrapolated to match the L7 model (Hr < 8), see text for explanation.

3.4. Constraints from Non-Detections: Testing a Theoretical Distant Population

Here we show a perhaps unintuitive aspect of the Survey Simulator: non-detections can be just as
powerful as detections for constraining Kuiper Belt populations. Non-detections can only be used if
the full pointing list from a survey is published along with the detected TNOs. An examination of
the orbital distribution of TNOs in the MPC database makes it clear that there is a sharp dropoff
in the density of TNO detections at a & 50 AU and q & 40 AU (Figure 2 in Sheppard & Trujillo
2016, demonstrates this beautifully). Is this the result of observation bias or a real dropoff? Without
carefully accounting for survey biases (Allen et al. 2001, 2002), by using the MPC database alone,
there is no way to know.
Randomly drawing zero objects when you expect three has a probability of 5%, assuming Poisson

statistics; thus, the simulated population required to produce three detections is the 95% confidence
upper limit for a population that produced zero detections. As our example for non-detection upper
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limits, we create an artificial population in the distant, low-eccentricity Kuiper belt, where OSSOS
has zero detections. Figure 4 shows the CFEPS L7 debiased Kuiper belt8 (Petit et al. 2011; Gladman
et al. 2012), where this low-eccentricity artificial population has been inserted at 60 AU (small black
points) to demonstrate the power of non-detections, even in parameter space with low sensitivity
(i.e., low-e TNOs at 60 AU would never come very close to the Sun, thus would always remain faint
and difficult to detect). We run this artificial population through the Survey Simulator until we have
three detections in order to measure a 95% confidence upper limit on this population. At this large
distance, we are only sensitive to large TNOs (Hr . 7, corresponding to D & 180 km for an albedo of
0.04). For there to be an expectation to detect three objects in the survey fields, the Survey Simulator
tells us that there would need to exist a population of ∼90 such objects, which is our upper limit on
this population. Extrapolating this population to match the CFEPS L7 subpopulations plotted in
Figure 4, the total number of which are scaled appropriately for Hg < 8.5, gives ∼700 objects in this
artificial population with Hr < 8.
This is a very small population size. For comparison, at this absolute magnitude limit (Hr < 7),

the scattering disk is estimated to have an intrinsic population of ∼4000 (Lawler et al. subm.), the
plutinos are estimated to have an intrinsic population of ∼500 (Volk et al. 2016), and the detached
TNOs are estimated to number ∼1000 (Petit et al. 2011). The 3:1 mean-motion resonance, which
is located at a similar semimajor axis (a = 62.6 AU), is estimated to have an Hr < 7 population of
∼200 (Gladman et al. 2012). The 3:1 TNOs, however, are much more easily detected in a survey
due to their higher eccentricities as compared with our artificial 60 AU population. This statistically
tested population limit essentially shows that not very many low eccentricity, distant TNOs can be
hiding from the OSSOS survey ensemble, especially when compared with other TNO populations.

4. CONCLUSION

Using TNO discoveries from well-characterized surveys and only analysing the goodness of fit
between models and TNO discoveries after forward-biasing the models gives a statistically powerful
framework within which to validate dynamical models of Kuiper belt formation. Understanding the
effects that various aspects of Neptune’s migration have on the detailed structure of the Kuiper belt
not only provides constraints on the formation of Neptune and Kuiper belt planetesimals, but also
provides useful comparison to extrasolar planetesimal belts (Matthews & Kavelaars 2016). There
are, of course, many lingering mysteries about the structure of the Kuiper belt, some of which may
be solved by detailed dynamical simulations in combination with new TNO discoveries in the near
future.
One such mystery is explaining the very large inclinations in the scattering disk (Shankman et al.

2016, Lawler et al. subm.) and inside mean-motion resonances (Gladman et al. 2012). Some possible
dynamical mechanisms to raise inclinations include rogue planets/large mass TNOs (Gladman &
Chan 2006; Silsbee & Tremaine 2017), interactions with a distant massive planet (Gomes et al. 2015;
Lawler et al. 2017), and diffusion from the Oort cloud (Kaib et al. 2009; Brasser et al. 2012). These
theories may also be related to the recent discovery that the mean plane of the distant Kuiper belt
is warped (Volk & Malhotra 2017).
Explaining the population of high pericenter TNOs (Sheppard & Trujillo 2016; Shankman et al.

2017) is also difficult with current Neptune migration models. Theories to emplace high pericenter

8 Model available at http://www.cfeps.net

http://www.cfeps.net
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TNOs include dynamical diffusion (Bannister et al. 2017), dropouts from mean-motion resonances
during grainy Neptune migration (Kaib & Sheppard 2016; Nesvorný et al. 2016), dropouts from mean-
motion resonances during Neptune’s orbital circularization phase (Pike & Lawler 2017), interactions
with a distant giant planet (Gomes et al. 2015; Batygin & Brown 2016; Lawler et al. 2017), a stellar
flyby (Morbidelli & Levison 2004), capture from a passing star (J́ılková et al. 2015), and perturbations
in the Solar birth cluster (Brasser & Schwamb 2015).
Here we have highlighted only a small number of the inconsistencies between models and real TNO

orbital data. The level of detail that must be included in Neptune migration simulations has increased
dramatically with the release of the full OSSOS dataset, containing hundreds of the most precise TNO
orbits ever measured. The use of the Survey Simulator will be vital for testing future highly detailed
dynamical emplacement simulations, and for solving lingering mysteries in the observed structure of
the Kuiper belt.
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