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ABSTRACT

Context. In nature we observe galaxy aggregations that span a wide range of magnitude gaps between the two first-ranked galaxies of a
system (∆m12). Thus, there are systems with gaps close to zero (e.g., the Coma cluster), and at the other extreme of the distribution, the
largest gaps are found among the so-called fossil systems. The observed distribution of magnitude gaps is thought to be a consequence
of the orbital decay of M∗ galaxies in massive halos and the associated growth of the central object. As a result, to first order the
amplitude of this gap is a good statistical proxy for the dynamical age of a system of galaxies. Fossil and non-fossil systems could
therefore have different galaxy populations that should be reflected in their luminosity functions.
Aims. In this work we study, for the first time, the dependence of the luminosity function parameters on ∆m12 using data obtained by
the fossil group origins (FOGO) project.
Methods. We constructed a hybrid luminosity function for 102 groups and clusters at z ≤ 0.25 using both photometric data from
the SDSS-DR7 and redshifts from the DR7 and the FOGO surveys. The latter consists of ∼1200 new redshifts in 34 fossil system
candidates. We stacked all the individual luminosity functions, dividing them into bins of ∆m12, and studied their best-fit Schechter
parameters. We additionally computed a “relative” luminosity function, expressed as a function of the central galaxy luminosity,
which boosts our capacity to detect differences – especially at the bright end.
Results. We find trends as a function of ∆m12 at both the bright and faint ends of the luminosity function. In particular, at the bright
end, the larger the magnitude gap, the fainter the characteristic magnitude M∗. The characteristic luminosity in systems with negligible
gaps is more than a factor three brighter than in fossil-like ones. Remarkably, we also find differences at the faint end. In this region,
the larger the gap, the flatter the faint-end slope α.
Conclusions. The differences found at the bright end support a dissipationless, dynamical friction-driven merging model for the
growth of the central galaxy in group- and cluster-sized halos. The differences in the faint end cannot be explained by this mechanism.
Other processes – such as enhanced tidal disruption due to early infall and/or prevalence of eccentric orbits – may play a role. However,
a larger sample of systems with ∆m12 > 1.5 is needed to establish the differences at the faint end.

Key words. galaxies: clusters: general – galaxies: groups: general – galaxies: luminosity function, mass function

1. Introduction

The existence of fossil galaxy groups was proposed for the first
time by Ponman et al. (1994). In that work, it was suggested
that the isolated elliptical galaxy RX J1340.6+4018 was prob-
ably an evolved compact group of galaxies. They claimed that
those galaxies that were close to the center of the system could
have merged in a single elliptical galaxy. This is why they are
called “fossil groups” (FGs). The most accepted observational
definition for this kind of object was proposed by Jones et al.
(2003). They defined a system of galaxies as a fossil if it presents

a magnitude gap of at least two magnitudes between the two
brightest member galaxies (∆m12 ≥ 2) in the r-band within half
of its virial radius and if the central galaxy is surrounded by an
extended X-ray halo of LX,bol > 1042 h−2

50 erg s−1. The latter cri-
terion was adopted to distinguish large isolated galaxies from
group-sized systems, but it is a lower limit, so it does not exclude
the existence of “fossil clusters” (as proposed by Cypriano et al.
2006; Mendes de Oliveira et al. 2006; Zarattini et al. 2014). For
this reason, we refer to fossil systems, but we prefer to maintain
the classical notation of FGs, which is usually accepted in the
literature, as we did in the other papers of this series.
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Different observational properties of FGs were studied. The
properties of the hot intracluster component were analyzed us-
ing scaling relations that include some X-ray properties of the
system. The LX − TX relation is generally similar to that of nor-
mal clusters (see Khosroshahi et al. 2007; Harrison et al. 2012),
whereas differences have been found in scaling relations that
combine both optical and X-ray properties, such as the LX−Lopt,
LX − σv, and TX − σv relations. In fact, some works explor-
ing these relations suggest that fossil systems are brighter in the
X-ray range (or fainter in the optical range) than normal groups
and clusters (for example, see Proctor et al. 2011). In contrast,
Khosroshahi et al. (2014) find that fossils are underluminous in
the X-ray range. However, these differences can be attributed to
observational biases (see Voevodkin et al. 2010; Harrison et al.
2012). Recently, Girardi et al. (2014) have analyzed a sample of
15 spectroscopically confirmed FGs, finding no significant dif-
ferences in the LX−Lopt relation. Particular attention was paid to
the homogeneity of the data set and the analysis process in this
work.

The brightest group galaxies (BGGs) of FGs are considered
the most massive galaxies in the Universe, and as such they
have been studied well in the literature. For example, Harrison
et al. (2012) show that both the absolute magnitude of the BGGs
and the fraction of light contained in them are correlated with
the magnitude gap, results that we have recently confirmed in
Zarattini et al. (2014). Moreover, their luminosity is correlated
with the system velocity dispersion (Khosroshahi et al. 2006).
Observations of the BGGs isophotal shape are not conclusive.
Khosroshahi et al. (2006) show that these objects present disky
isophotes in the central part, whereas both isolated ellipticals and
central ellipticals in clusters show boxy isophotes. In contrast,
La Barbera et al. (2009) and Méndez-Abreu et al. (2012) find
no differences in this sense between fossil and non-fossil sys-
tems. In addition, the size-luminosity relation, the fundamental
plane, and the Faber-Jackson relation are similar for fossil and
non-fossil central galaxies (Méndez-Abreu et al. 2012). Recent
studies of the stellar population of BGGs seem to indicate that
their age, metallicity, and α enhancement are similar to those of
central galaxies in non-fossil systems (La Barbera et al. 2009).
Moreover, the absence of large gradients in the metallicity radial
profiles rules out the hypothesis of the monolithic collapse for
BGGs in FGs (Eigenthaler & Zeilinger 2013). In summary, these
observational properties indicate that BGGs in fossil and non-
fossil systems show similar properties. The only relevant differ-
ence is the fraction of light enclosed in the BGG. This shows that
BGGs in fossil groups may have formed via similar (but perhaps
more efficient) physical mechanisms to non-fossil ones.

All these observational properties can be explained in terms
of the formation scenario of FGs. Numerical simulations show
that the halo of a FG comprises half of its mass at z > 1
(D’Onghia & Lake 2004; D’Onghia et al. 2005; Dariush et al.
2010). Then, it grows via minor mergers alone, accreting
only one third of the galaxies of regular groups or clusters
(von Benda-Beckmann et al. 2008). Moreover, in simulations,
FGs always show an assembled mass that is, on average, higher
than non-fossil systems at any redshift (Dariush et al. 2007).
These simulations seem to favor what is considered to be the
“classical” formation scenario for FGs. They are thought to be
very old systems that were able to assemble the majority of their
mass at high z, where the M∗ galaxy population has been canni-
balized by the BGG.

Nevertheless, the formation of the BGG could be a long-
term process. Díaz-Giménez et al. (2008) claim that the last
major merger for the BGG occurs at a later time in fossil than

in non-fossil systems. Gozaliasl et al. (2014) suggest that the
BGGs of fossil systems are the result of multiple mergers of
M∗ galaxies in the past 5 Gyr. Moreover, von Benda-Beckmann
et al. (2008) claim that the fossil phase could be only transitional
and that the interaction with other groups or clusters could erase
the gap in magnitude. There is another possible scenario that is
completely different from all of those mentioned above. This is
the so-called failed group scenario, which was first proposed by
Mulchaey & Zabludoff (1999). In this scenario the gap in mag-
nitude is not due to the evolution of the system; rather, it appears
by chance during the formation of the system itself. However,
recent simulations matching subhalo abundance (Hearin et al.
2013) seem to indicate that this scenario is not a good represen-
tation of reality.

The short formation time described in the classical scenario
would give fossil systems enough time to merge all M∗ galax-
ies to form the massive central galaxy. The M∗ galaxies are the
natural candidates for the merging process, since the dynami-
cal friction – which is responsible for the decay of the orbits
(Chandrasekhar 1943) – is higher for more massive satellites.
Moreover, FGs are supposed to host M∗ galaxies in more radial
orbits, and this can boost the efficiency of the merging process
(Sommer-Larsen 2006; Boylan-Kolchin et al. 2008). This means
that fossil and non-fossil systems should have different luminos-
ity functions (LFs).

The LF gives the number density of galaxies per luminosity
interval, and it is a very powerful tool for studying the galaxy
population in groups and clusters. A recent review of the princi-
pal results can be found in Johnston (2011). In the case of FGs,
because there are so few known systems, the majority of publi-
cations have analyzed the LFs of individual FGs. In particular,
each analyzed system seems to show a peculiar LF that does
not accord with the others (see Khosroshahi et al. 2006; Mendes
de Oliveira et al. 2006; Aguerri et al. 2011; Adami et al. 2012;
Khosroshahi et al. 2014). Thus, a systematic and homogeneous
study is still required. For this reason, we present a large study
here of a sample of 110 systems, containing 19 confirmed fos-
sils. The criteria in the definition of fossils are those reported in
Zarattini et al. (2014). With this unique data set, we are able to
present the first study of the dependence of the LF on the magni-
tude gap in group- and cluster-sized systems within half the R200
radius.

This work is part of the FOssil Group Origins (FOGO)
project. This is a multiwavelength study focused on the sam-
ple of 34 FG candidates proposed by Santos et al. (2007). A
detailed overview of the FOGO project is presented in the first
paper of the series, Aguerri et al. (2011, hereafter FOGO I). In
Méndez-Abreu et al. (2012, hereafter FOGO II), we explored
the properties of the central galaxies; in Girardi et al. (2014,
hereafter FOGO III), we presented the study of the LX − Lopt
relations; and the characterization of the sample was given in
Zarattini et al. (2014, hereafter FOGO IV). The structure of this
paper is as follows. Section 2 is devoted to describing the sam-
ple; Sect. 3 shows how the LFs are calculated; Sect. 4 describes
the dependence of the LFs on the magnitude gap; and Sects. 5
and 6 present the discussion and the conclusions, respectively.

For this work, the adopted cosmology is:
H0 = 70 km s−1 Mpc−1, ΩΛ = 0.7, and ΩM = 0.3.

2. Description of the sample

We used two samples of galaxy aggregations to analyze their
LF and their dependence on the magnitude gap. The first sam-
ple (hereafter S1) is composed of 34 groups and clusters of
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galaxies selected by Santos et al. (2007) and analyzed in de-
tail in FOGO IV. These systems were selected as FG candidates
from the Sloan Digital Sky Survey Data Release 5 (SDSS DR5;
Adelman-McCarthy et al. 2007), and they present a wide range
in redshift (0 < z < 0.5). However, in our detailed analysis of this
sample using deep r-band images and multi-object spectroscopy,
it is shown that only 15/34 systems meet at least one of the defi-
nitions of fossil systems given by Jones et al. (2003) and Dariush
et al. (2010). The former authors claim that a cluster or group of
galaxies is fossil if it has a gap in magnitude larger than 2 in the
r-band between the two brightest member galaxies (∆m12 ≥ 2).
The latter authors suggest that a system is fossil if the gap in
the r-band between the first- and fourth-ranked galaxies is larger
than 2.5 (∆m14 ≥ 2.5). Both quantities are defined within half
the virial radius.

The need for a second sample comes from the mean value of
∆m12 being ∼1.5 in the S1 sample. Only four systems have gaps
lower than 0.5. We are interested in studying the dependence of
the LF on the ∆m12 key parameter, so we need to extend the
sample toward systems with small ∆m12.

For these reasons, we used a second sample (hereafter S2),
taken by Aguerri et al. (2007). These systems were selected as all
the galaxy aggregations with known redshift at z < 0.1 from the
catalogs of Abell et al. (1989), Zwicky et al. (1961), Böhringer
et al. (2000), and Voges et al. (1999) that were mapped in the
SDSS DR4 (Adelman-McCarthy et al. 2006). This selection re-
sults in 88 systems. Of these, we used only those for which the
two brightest members were spectroscopically confirmed, which
limits the final number of systems from this sample to 76. For
this sample, the mean value of ∆m12 is ∼0.7, with a standard
deviation of ∼0.5.

The general properties of the two samples are presented in
Zarattini et al. (2014) for the S1 sample and in Aguerri et al.
(2007) for the S2 sample. Both samples are mapped in the SDSS,
and we used their r-band model magnitude (see Stoughton et al.
2002). The selection was done using SDSS DR5 for the S1 sam-
ple and DR4 for the S2 sample, but the magnitude used for this
work were taken from the more recent SDSS-DR7 (Abazajian
et al. 2009). These magnitudes were corrected for galactic ex-
tinction and K-correction. The former was obtained by using
the r-band extinction parameter provided by SDSS. The lat-
ter was computed following the Chilingarian et al. (2010) and
Chilingarian & Zolotukhin (2012) prescriptions. Moreover, the
R200 radius of each system was computed using X-ray data from
the ROSAT satellite (see FOGO III and FOGO IV). The LFs of
this work were computed within half the obtained R200 radius.

The X-ray luminosity of S1 ranges between 41.9 ≤

log (LX,S1 [erg s−1]) ≤ 45.1, whereas that of the S2 sample
varies in the range 41.6 ≤ log (LX,S2 [erg s−1]) ≤ 45.2. The me-
dian values of the X-ray luminosity of the S1 and S2 samples
are log(LX,S1 [erg s−1]) = 44.1 ± 0.7 and log(LX,S2 [erg s−1)] =
43.8± 0.7. Masses can be obtained using Eq. (3) of Rykoff et al.
(2008), after an adequate cosmology correction, and it varies
in the ranges 13.1 ≤ log (M200,S1 [M⊙]) ≤ 15.0 and 12.9 ≤
log (M200,S2 [M⊙]) ≤ 15.1 for the S1 and S2 samples, respec-
tively. The median values of the masses are log (M200,S1 [M⊙]) =
14.6 ± 0.4 and log (M200,S2 [M⊙]) = 14.4 ± 0.4, respectively.
Finally, the velocity dispersion of the S1 and S2 galaxy sys-
tems span the ranges 250 ≤ σv,S1 [km s−1] ≤ 1200 and 250 ≤
σv,S2 [km s−1] ≤ 1000, respectively. The median values are
759 ± 253 km s−1 and 557 ± 170 km s−1, respectively. The
Kolmogorov-Smirnov test was applied to the X-ray luminosities,
masses, and velocity dispersion. Results from this test indicate
that the S1 and S2 samples do not come from the same parent

distribution. However, we are not directly comparing these two
subsamples, since we want to compute the LFs in bins of ∆m12.
In Sect. 5.1 we show that the four analyzed subsamples actually
come from the same parent distribution.

2.1. Magnitude gap determination

For determining∆m12 in the S1 sample we proceeded as follows.
We considered the four brightest galaxies of the systems within
the spectroscopically confirmed members and possible members
(see FOGO IV for both definitions), and then for each of these
galaxies, we computed the magnitude as the mean value of three
different magnitudes. We used the model and the Petrosian mag-
nitude from the SDSS (Stoughton et al. 2002) and the MAG-
BEST magnitude by obtained analyzing our own deep r-band
images with SExtractor (Bertin & Arnouts 1996). We used this
mean value to compute both ∆m12 and ∆m14 and used the stan-
dard deviation of the mean value for computing the uncertainties.
The detailed procedure can be found in the FOGO IV paper.

For the S2 sample, we used the same methodology to ob-
tain ∆m12 and ∆m14 except that we did not have our own photo-
metric images. Thus, we used the mean value of the model and
Petrosian magnitudes alone.

3. Galaxy luminosity function determination

3.1. Luminosity functions of individual systems

There are two methods that are widely used in the literature to
compute the LFs of individual systems: the spectroscopic and
the photometric ones. The former is, in principle, the most accu-
rate. It is based on an extended redshift catalog, which allows for
a detailed study of the system membership. Nevertheless, it re-
quires a large amount of observational time and generally larger
telescope apertures than the photometric one. This method has
mainly been applied to the study of nearby individual clusters
(e.g., Rines & Geller 2008; Agulli et al. 2014). The photometric
method requires less observing time and consists in computing
the galaxy number counts, as a function of magnitude, within the
system region and in a region of the sky in which no structure
is present. The difference between these two quantities repre-
sents the galaxy system LF. It is a statistical method, so its main
problem is that wherever the background field is located, it will
not be exactly the same background of the system itself, mainly
because of cosmic variance. Moreover, if the system is poor, it
could have very limited contrast with respect to the background,
leading to large uncertainties in the LF.

The LFs of individual systems, computed in half the R200
radius, were obtained by using a hybrid method. This procedure
uses both the photometric and spectroscopic information that we
have for each system. The galaxy LF of each system in the jth
magnitude bin is given by

φ j = Nm, j + (N j − Nv, j) × P j, (1)

where Nm, j is the number of spectroscopically confirmed mem-
bers, N j the total number of galaxies, and Nv, j the number of
galaxies with recession velocity measurements. Finally, P j is
given by

P j = (N j − Nb, j)/N j, (2)

where Nb, j is the number of background galaxies. We notice that
P j represents the probability that a galaxy would be considered
in the LF when only photometry is available. The background
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Fig. 1. Galaxy background estimations. Red filled circles represent the
background used in this work, black asterisks are taken from Capak
et al. (2004), blue triangles from Yasuda et al. (2001), violet stars from
Huang et al. (2001), and green plus signs from Metcalfe et al. (2001).

was obtained by averaging four different fields used in the lit-
erature (Yasuda et al. 2001; Metcalfe et al. 2001; Huang et al.
2001; Capak et al. 2004). The resulting background distribu-
tion is shown in Fig. 1. The completeness limit of our LFs is
r = 21.5 mag, and it is a conservative choice since the nominal
completeness of SDSS DR7 r-band is 22.2 mag.

The advantage of using this methodology is that we obtained
a quasi-spectroscopic LF for the brightest bins, where the magni-
tude gap arises. In fact, the S1 sample is ∼85% complete down to
mr = 17 and the S2 sample is ∼90% complete down to mr = 17.5
(see Fig. 4 of Zarattini et al. 2014 and Fig. 1 of Aguerri et al.
2007). Then, when we move to fainter magnitudes, the number
of measured redshifts decays rapidly and the LF is dominated
by the statistical background subtraction. What we obtained is a
hybrid LF that is more accurate at the bright end than the photo-
metric one, but that is not as time consuming in terms of observa-
tions as a full spectroscopic LF in the faint end. The uncertainty
associated to the LF is calculated using the error propagation of
the terms in Eq. (1) and adding in quadrature the cosmic variance
following Huang et al. (1997).

In Fig. 2 we show some examples of the individual LFs
calculated with this procedure. For some rich objects, the in-
dividual LFs are clearly defined (e.g., Abell 1066 or FGS02),
but for poorer systems the LFs present large uncertainties (e.g.,
Abell 724 or FGS15). All the LFs presented in this work were
computed excluding the BGGs, as is usually proposed in the
literature.

3.2. Stacked luminosity functions

We stacked the individual LFs for all the S1 and S2 systems with
z ≤ 0.25 to deal with small numbers. This cut in redshift was
needed to guarantee that all systems will reach at least a mag-
nitude of Mr = −19.5 (given a completeness limit of the SDSS
of mr = 21.5) so that they can be normalized using the region
−21 ≤ Mr ≤ −19.5. As noted by other authors (e.g., Popesso
et al. 2005), stacked LFs are not only a useful tool for checking
the universality of the LF, but they are useful for calculating the
LF of systems with high accuracy when the individual ones have
poor statistics.

There are different methods in the literature of stacking LFs.
We used the one proposed by Colless (1989), in which the

stacked LF can be obtained by combining the individual ones
according to the formula

φc j =
Nc0

m j

∑

i

Ni j

Ni0
, (3)

where φc j is the number of galaxies in the jth bin of the stacked
LF, Ni j the number of galaxies in the jth bin of the ith individual
system’s LF, Ni0 the normalization of the ith system LF in the
region −21 ≤ Mr ≤ −19.5, m j the number of systems contribut-
ing to the jth bin, and Nc0 is the sum of all the normalizations
(Nc0 =

∑

i Ni0).
The formal errors are computed according to

δφc j =
Nc0

m j

⎡

⎢

⎢

⎢

⎢

⎢

⎣

∑

i

(

δNi j

Ni0

)2⎤
⎥

⎥

⎥

⎥

⎥

⎦

1/2

, (4)

where δφc j and δNi j are the formal errors in the LF’s jth bin for
the composite and ith system, respectively.

The Colless method can be safely used under a few condi-
tions: first of all, the magnitude limit of all stacked systems must
be fainter than the values used for normalization (Mr = −19.5
in our case). Second, the normalization region should be large
enough to be representative of the richness of the systems.
Finally, the number of systems contributing to each bin should
be statistically relevant.

As introduced at the beginning of this section, we applied
this method to all the systems in our sample with z ≤ 0.25. Using
this subsample, we satisfied all the requirements for applying
the Colless method. The total number of systems turns out to
be 102, and the resulting composite LF is presented in Fig. 3.
We fit neither a single nor a double Schechter function to the
data, because the Spearman test told us that none of them was
representative of the data. We fit an exponential function to the
faint end of the LFs using the last five points. The form of the
exponential is 10km, where m represents the magnitude and k is
related to Schechter’s α parameter by

α = −

(

k

0.4
+ 1

)

. (5)

The resulting faint-end slope is α = −1.27 ± 0.11. Hereafter,
all the presented exponential slopes were fitted using the five
faintest points of each LF.

4. Dependence of the luminosity function

on the magnitude gap

We divided the sample of the 102 systems with z ≤ 0.25 into four
subsamples, which differ from one another in the value of ∆m12.
The first subsample is composed of 31 systems with ∆m12 < 0.5,
the second of 24 systems with 0.5 ≤ ∆m12 < 1, the third of
26 systems with 1 ≤ ∆m12 < 1.5, and the fourth of 21 systems
with ∆m12 ≥ 1.5. This division is arbitrary and was done in or-
der to have a statistically significant number of systems in each
range of ∆m12 and to trace the dependence of the LF with ∆m12
in the best possible way. In Fig. 4 we show the stacked LFs for
the four subsamples. Qualitatively, the slope of the bright end is
similar for the four LFs, but not the faint-end one. In particu-
lar, the systems with ∆m12 < 0.5 show a steeper faint end than
those with ∆m12 ≥ 1.5, whereas the other two subsamples rep-
resent intermediate cases. To quantify this effect, we fit a single
Schechter function to each LF shown in Fig. 4. In this case, the
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Fig. 2. Examples of individual LFs for 9 systems taken from our sample. For the more massive ones, such as ABELL0085 and FGS02, the LFs are
determined well, whereas for less massive systems, such as ABELL0724 and FGS15, the LFs have large uncertainties.

Fig. 3. Stacked LF for all the systems of our sample with z ≤ 0.25. The
solid lines represent the faint-end slope for α = −2.0, which is the value
predicted by standard CDM theories, α = −1.3, obtained from our fit,
and α = −1.0, which is the value for a flat LF.

Spearman test confirms that a single Schechter function is a rea-
sonable representation of the data of each subsample.

The Schechter function (Schechter 1976) is the most ac-
cepted expression to describe the galaxy LF parametrically. Its
formulation can be written as follows:

φ(M)dM = φ∗
(

100.4(M∗−M)
)

(α+1)exp
(

−100.4(M∗−M)
)

dM, (6)

where φ∗ is a normalization factor defining the overall density of
galaxies and M∗ is the characteristic magnitude. The parameter

α describes the faint-end slope of the LF, and it is typically
negative. The results of the fit are shown in the upper part of
Table 1. There are differences in both the bright and the faint
ends. In the former, the larger the gap, the fainter the M∗. In the
latter, the larger the gap, the flatter the α. We plotted the 68%,
95%, and 99% confidence level (c.l.) contours for M∗ and α of
the Schechter fit in Fig. 5. We refer to LFs computed using this
method as “regular” LFs.

Moreover, for the faint end, we fit an exponential function
as well. This check is useful for two reasons: it helps to quan-
tify the effect of the known degeneracy between M∗ and α, and
it can be useful to compare the results with other LFs that are
not well described by a Schechter function. The obtained val-
ues for the exponential faint-end slope are α = −1.43 ± 0.12,
−1.39 ± 0.17, −1.18 ± 0.31, and −1.02 ± 0.32 for the four LFs
with an increasing gap, respectively. These values are higher
than for Schechter’s α parameter, but the trend is the same.
However, the differences in α between the four slopes are not
statistically significant because of the large uncertainties of the
stacked galaxy LFs for systems with larger ∆m12.

The BGGs in our sample span a four-magnitude range (see
Zarattini et al. 2014). This can affect the shape of the bright end
of the stacked LFs, because the individual LFs are not aligned in
magnitude. To avoid any effect associated with the stacking of
different galaxy populations, we have computed the stacked LFs
as a function of the relative magnitude. This was obtained by
calculating the differences between the magnitude of the galax-
ies and the BGG (∆Mr = Mr − Mr,BGG) for each system. Using
this method, all the BGGs are located at ∆Mr = 0. We refer to the
resulting LF as the “relative” LF. In this picture the value of M∗

loses its physical meaning, but we are interested in highlighting
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Fig. 4. Lower panel: stacked LFs of systems with different gaps in mag-
nitude. Black open squares are systems with gap ≤0.5, red filled squares
represent systems with 0.5 < ∆m12 ≤ 1.0, violet open circles indicate
systems with 1 < ∆m12 ≤ 1.5, and green filled circles are systems with
gap ≥1.5. The four LFs have been moved by an arbitrary offset for dis-
play purposes. Upper panel: histogram of the number of systems that
are contributing to each bin. The color code is the same as in the lower
panel.

the differences in the Schechter parameters between the four
subsamples, not in their absolute values.

There are two differences between the methodology that we
applied for the regular LF and for the relative LF. The first dif-
ference is the already mentioned shift of the magnitudes in the
calculation of relative LFs. The second difference is that, for the
relative LF, spectroscopically confirmed zero-galaxy bins enter
into the stacking formula (Eq. (3)) for each bin of magnitude and
for each system. In contrast, for the regular stacking, this was not
possible because of the large difference in the magnitude of the
central galaxies. In fact, the stacking is actually a computation of
the mean value of the LF in each bin, but when the dominant pa-
rameter is the absolute magnitude, mixing massive systems with
small groups could be misleading. If a group is dominated by
a central galaxy of Mr = −22 and has, for example, a spectro-
scopically confirmed two-magnitude gap, when we try to stack
it with a massive cluster whose central galaxy has Mr = −25, the
spectroscopically confirmed gap of the group would affect a part
of the cluster that is three to five magnitudes fainter than the cen-
tral galaxy of the cluster itself. This part, assuming a Schechter
profile for the distribution of galaxies, would probably be lo-
cated beyond the elbow (M∗) of the LF of the cluster. Thus, we
expect that in this region the cluster presents a large number of

Table 1. Best-fitting parameters of a Schechter fit to the regular (top)
and relative (bottom) LFs.

∆m12 M∗ α

∆m12 < 0.5 −22.30+0.61
−0.70 −1.23+0.09

−0.10

0.5 ≤ ∆m12 < 1.0 −22.16+1.06
−0.83 −1.13+0.12

−0.11

1.0 ≤ ∆m12 < 1.5 −21.40+1.19
−1.53 −0.90+0.52

−0.22

∆m12 ≥ 1.5 −21.04+0.43
−0.52 −0.78+0.26

−0.15

∆m12 M∗ α

∆m12 < 0.5 0.05+0.86
−1.4 −1.26+0.10

−0.10

0.5 ≤ ∆m12 < 1.0 1.59+0.53
−0.68 −1.03+0.13

−0.10

1.0 ≤ ∆m12 < 1.5 1.95+1.04
−1.50 −0.93+0.28

−0.17

∆m12 ≥ 1.5 2.85+0.55
−0.64 −0.77+0.32

−0.15

Notes. Reported uncertainties represent the 99% confidence level (c.l.)
of each parameter.

Fig. 5. Uncertainty contours for the Schechter fits of Fig. 4. Contours
represent 68%, 95%, and 99% c.l. and the color and symbol codes are
the same as in Fig. 4. The error bars are the 1σ uncertainties of the
Schechter fit as reported in Table 1.

objects. Doing the stacking in this case would imply reducing
the galaxies that are present in that bin by a factor of 2. Clearly,
if the number of systems is more than two, as in our case, the
effect would be softened, but we expect a flattening of the elbow
region if we do not take this aspect into account.

In Fig. 6 we show the stacked relative LF for the whole sam-
ple of 102 systems with z ≤ 0.25. As we did for the regular
LF, we fit an exponential to the faint end of the relative one.
The resulting slope is α = −1.25 ± 0.09, which is compatible
(within the uncertainties) with the value measured for the regular
LF. Figure 7 shows the relative LFs of the four subsamples with
different magnitude gaps. Qualitatively, we found differences in
both the bright and the faint ends of the four stacked relative LFs.
We fit a single Schechter function to these relative LFs and show
the obtained M∗ and α parameters in Table 1. Their uncertainties
are shown in Fig. 8. The Schechter parameters of the smallest
and largest magnitude gap regimes have a greater difference in
value for the relative LFs than the regular LFs. Once again, we
fit an exponential to the faint end of the four LFs. The resulting
faint-end slopes are −1.37 ± 0.12, −1.43 ± 0.13, −1.24 ± 0.22,
and −0.95 ± 0.17, moving from the smaller to the larger gap.
In this case, the exponential fits also show differences at the 1σ
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Fig. 6. Stacked relative LF for all the systems of our sample with
z ≤ 0.25. The two solid lines represent the same α values as in Fig. 3.

Fig. 7. Same as Fig. 4 but with relative LFs.

level between the systems with ∆m12 < 0.5 and ∆m12 ≥ 1.5. The
larger uncertainties are due to the small number of data points
available for the exponential fit. This fit has been performed as a
test to break the degeneracy between M∗ and α that is obtained
when both the bright and faint ends are fitted at the same time.
The exponential fit of the LF faint end is statistically less signif-
icant. But, it has to be considered as a double check of the slope
derived by fitting the full LF with a Schechter function.

Fig. 8. Uncertainty contours for the Schechter fits of Fig. 7. Contours
represent 68%, 95%, and 99% c.l. and the color and symbol codes are
the same as in Fig. 4. The error bars are the 1σ uncertainties of the
Schechter fit as reported in Table 1.

In Fig. 7, there are some points in the LFs that are located
at a magnitude difference from the BGG that is smaller than the
magnitude gap used to define the four subsamples. For example,
in the sample with ∆m12 ≥ 1.5 the LF starts at ∆m12 = 1. This
apparent contradiction is due to the definition of the magnitude
gap. It is obtained by only using possible members. The selection
of possible members cannot be made using a statistical back-
ground subtraction, because we need individual galaxy informa-
tion. For this reason, in the determination of the gap we used a
generous cut in photometric redshift to account for possible clus-
ter members (see Zarattini et al. 2014, for details). Nevertheless,
no photometric-redshift cut was applied for the computation of
the galaxy LF. The methods are not incoherent, since the error
bars of these peculiar points are always compatible with zero.
These points should be considered as statistical fluctuations in
the very bright part, but they do not affect the results owing to
their large uncertainties.

4.1. Dwarf-to-giant galaxy ratio

It is important to remember that the stacked LFs is arbitrarily
normalized, which means that looking at the absolute number of
galaxies at both the bright and the faint ends of the LFs can be
misleading. For this reason, we analyzed the so-called dwarf-to-
giant galaxy ratio (DGR) for the four subsamples. We defined
as giant galaxies those in the range −22.5 ≤ Mr ≤ −20, and
as dwarf galaxies those in the range −19 ≤ Mr ≤ −17. The re-
sulting DGR for the four subsamples with increasing magnitude
gaps are 2.27 ± 0.03, 1.70 ± 0.02, 1.37 ± 0.02, and 1.33 ± 0.02.
The DGR is very difficult to compare with the literature. For
example, Popesso et al. (2005) defined galaxies in the range
−18 ≤ Mr ≤ −16.5 as dwarfs and those with Mr ≤ −20 as gi-
ants, Sánchez-Janssen et al. (2008) considered as dwarfs those
with Mr > M∗r + 1 and as giants those with Mr < M∗r , and
Weinmann et al. (2011) defined as dwarf galaxies those with
−16.7 > Mr > −19 and as giant those galaxies with Mr < −19.
While the exact value of the DGR is therefore highly arbitrary,
the important result of this exercise is to show that we recover
the trend previously found using the fits to the LF: the relative
number of dwarfs systematically decreases in systems with pro-
gressively larger magnitude gaps.
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Fig. 9. Stacked LFs for both clusters (black filled rectangles) and groups
(red open rectangles) in the upper panel. Here we considered objects
with σv ≤ 580 km s−1 as groups and objects with σv > 580 km s−1 as
clusters.The ratio of the two LFs is plotted in the lower one.

5. Discussion

5.1. Caveats of the results

In Figs. 4 and 7 we have stacked all the available systems, mixing
clusters, and groups. This can affect the result, since in some of
the four magnitude-gap bins we could be dominated by massive
clusters, while in others the dominant systems could be groups.
Differences can be found in the literature between the Schechter
parameters of clusters and groups (e.g., Zandivarez & Martínez
2011). To test this aspect, we ran a Kolmogorov-Smirnov test,
which confirmed that the distributions of σv (which is a mass
proxy, as suggested by Munari et al. (2013), and it has been ob-
tained from LX) for the four subsamples that are not different.
Moreover, we computed the median σv for the four subsamples.
The resulting values are σv = 557, 591, 587, and 545 km s−1,
with standard deviations of 171, 159, 206, and 200 km s−1,
for the four subsamples ordered with increasing magnitude gap.
These two tests indicate that the four subsamples show the same
mean velocity dispersion, hence the same mean mass. We also
divided the whole sample (S1+S2) into two mass bins, defining
as groups those systems with σv ≤ 580 km s−1 and as clusters
those with σv > 580 km s−1. This value represents the median
value of σv calculated over the whole S1+S2 sample. In Fig. 9
we present the stacked LFs according to the mass of the sys-
tems and the ratio between the two LFs. It can be seen that the
LFs are in good agreement with one another, because the dif-
ferences are always compatible with zero except for one point,
Mr = −18.5. In fact, in this point there is a dip in the more mas-
sive systems, as already found by other authors (see Fig. 11 in

Fig. 10. Local background (black dots) superimposed on the 1σ and 3σ
contours of the global background (red and gray shaded areas, respec-
tively). The vertical dotted line is the completeness limit of this work.

Trentham & Hodgkin 2002). In conclusion, the observed differ-
ences in the LFs do not seem to be related to the mass distribu-
tion of the systems in the four subsamples.

As pointed out in Sect. 3.1, we used a galaxy background in
order to compute the galaxy LFs. We tested how the results were
affected by changing the adopted galaxy background. We used
the 26 systems of the S1 sample that are closer than z = 0.25.
These systems are representative of the whole S1+S2 sample in
terms of mass (σv), and their R200 are smaller than 15 arcmin.
We then calculated a local background for each system in an an-
nulus between two to four times their R200 radius. We divided
the annulus into 20 regions of the same area, as proposed by
Popesso et al. (2005). Then, we counted the number of galaxies
for each bin of magnitude in each sector, and finally we calcu-
lated the mean value of the local background by averaging all
the sectors, using a sigma-clipping algorithm to exclude sectors
that are at more than 3σ from the global mean value. In Fig. 10
we show the values of the local background for each system and
the 1σ and 3σ uncertainties of the global background presented
in Fig. 1. It can be seen that up to mr = 17 the local and global
backgrounds seem to disagree with one another, but this does
not present a problem in our case because, as we already men-
tioned, we are using a hybrid method for the LF, and both the S1
and the S2 samples have a spectroscopic completeness of more
than 85% up to mr = 17. Moreover, for magnitudes brighter
than mr = 17, the local background method is less reliable, since
bright galaxies are scarce, and a large area is needed to properly
take them into account. For magnitudes between mr = 17 and
mr = 21.5, which is our conservative completeness limit, the
global and local backgrounds are in good agreement, so no large
differences are expected in the calculation of the LF by varying
the background.

The stacking procedure computes a mean LF, using for each
bin of magnitude only those clusters where the magnitude limit
is fainter than each specific bin. Thus, each bin of the compos-
ite LF is formed by a different number of averaged points. At
the faint end, the systems that are contributing are the closest in
terms of redshift, since our sample is limited in apparent mag-
nitude. However, the faint-end slope is not expected to change
in the redshift range 0 ≤ z ≤ 0.25 (Gozaliasl et al. 2014), thus
we think that the method does not introduce any bias into the
dependence of the faint-end slope on the magnitude gap. In the
bright end, differences could arise due to the use of our hybrid
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method. Nevertheless, no differences are expected in the bright
end when applying a fully photometric or a fully spectroscopic
method, although the latter has smaller uncertainties. Thus, the
use of a hybrid method should not affect the computation of the
M∗ values, but it should help in reducing their uncertainties. We
have plotted in Figs. 4 and 7 the histograms showing the number
of systems per bin of magnitude used in computing the stacked
LFs.

We also analyzed the differences in the redshift distributions
of the four subsamples. The Kolmogorov-Smirnov test indicates
that the four redshift distributions differ from one another. The
median redshift value for subsamples with increasing magni-
tude gap are z = 0.064, 0.077, 0.088, and 0.11, respectively.
Nevertheless, the differences in redshift are small, and Gozaliasl
et al. (2014) show that no evolution is expected in the faint-
end slope for both fossil and non-fossil systems since z = 1.
Moreover, the lookback time at z = 0.1 is ∼1 Gyr, which is a
small amount of time to see an evolution. Thus, we think that
the differences in redshift in the four subsamples do not repre-
sent a bias for our results.

To conclude our analysis of the possible caveats, we
investigated how the uncertainties in the magnitude determina-
tion depend on the magnitude itself, and how this can affect the
computation of the LFs. We used SDSS model magnitudes, so
to constrain the uncertainties we analyzed the distribution of the
modelMagErrr parameter. The median uncertainty at mr = 21.5
– our conservative completeness limit – is 0.15 mag. Since our
bins are 0.5 mag wide, we expect that the photometric uncertain-
ties do not affect the results.

5.2. Comparison with the literature

We can use the regular LFs to compare the results of this work
with other results in the literature for the r-band. For example,
Popesso et al. (2005) found a slope of α = −1.30 ± 0.06 for
the bright part (Mr ≤ −18) of the stacked LF of ∼100 clusters
inside 1 Mpc, and a slope of α = −1.29 ± 0.09 for the same
sample within 0.5 Mpc. In contrast, de Filippis et al. (2011)
find a faint-end slope of α = −0.990.01

0.02 for a stacked LF of
∼1500 systems. We can also try to compare our stacked LF
with individual systems analyzed in the literature. For exam-
ple, Rines & Geller (2008) analyzed spectroscopic LFs of Abell
2199 and the Virgo cluster, finding α = −1.02 ± 0.05 for the
former and α = −1.28 ± 0.06 for the latter. These results, ob-
tained with different techniques, are compatible with our faint-
end slope of α = −1.27 ± 0.11, with the only exception being
de Filippis et al. (2011). Finally, Barrena et al. (2012) find no
difference in the α parameters in relaxed and unrelaxed clusters
with α = −0.86 ± 0.27 and α = −0.99 ± 0.21. This result is of
particular interest since fossil systems are thought to be old and,
thus, more relaxed than non-fossils.

The evolutionary state of the system could be seen as an ex-
planation of our results, too. In fact, Iglesias-Páramo et al. (2003)
studied two clusters (Coma and Abell 1367) with similar X-ray
luminosities and redshifts and found significant differences in
their faint-end slopes. The authors suggest that these differences
could be explained by differences in the evolutionary state of the
two clusters. Thus, if applying this result to our case, a possible
explanation for the observed differences is that the ∆m12 param-
eter could be an indicator of the evolutionary state of a system.
Either way, extended work on the substructure in fossil systems
remains to be done, so differences in their evolutionary state can-
not be proved.

It is also interesting to compare the result of the ∆m12 ≥ 1.5
subsample with the results found for fossil systems in the liter-
ature. In fact, in this subsample, 13 out of 21 systems are spec-
troscopically confirmed fossils. Khosroshahi et al. (2006) find
α = −0.61 ± 0.20 for the background-corrected photometric
LF within 0.5 R200 and Mendes de Oliveira et al. (2006) find
α = −0.64 ± 0.30 in ∼0.3 R200, whereas in FOGO I we found
α = −0.54 ± 0.18 for LFs within 1 Mpc. It can be seen that,
despite the large uncertainties, all the results seem to point to a
value of the faint-end slope that is higher than −1 for fossils. In
this sense, our result agrees with the literature, since our faint-
end slope in 0.5 R200 for systems with large magnitude gaps is
α = −0.78±0.12 for the regular LF and α = −0.77±0.14 for the
relative LF. That our result is the lowest one can be interpreted
as an effect of non-fossil systems being in this subsample, ow-
ing to its definition. The effect of this contamination would be
a steepening of the LF. This agrees with our general result that
the faint-end slope increases with the gap in magnitude. In a re-
cent work, Lieder et al. (2013) analyzed the FG NGC 6482. They
present a deep spectroscopic LF, down to Mr = −10.5. The faint-
end slope they found was α = −1.32 ± 0.05 in one virial radius,
which is steeper than the other works in the literature. However,
their result is not directly comparable to the others, since they fit
the faint-end slope down to a much deeper magnitude. Finally,
in a very recent work, Wen & Han (2015) have analyzed the de-
pendence of the bright end of the LF on the cluster dynamical
state. They used the method presented in Wen & Han (2013)
to create three subsamples of clusters with different dynamical
states. They conclude that more relaxed clusters have fainter M∗.
Thus, our results for the bright end would indicate that systems
with a larger magnitude gap would be more dynamically relaxed.
Nevertheless, a general study of the dynamical state as a function
of the magnitude gap remains to be done.

It is worth noticing that the LFs of the four subsamples –
divided for different magnitude-gap bins and both in the reg-
ular and relative cases – are reasonably represented by a sin-
gle Schechter function. Nevertheless, the stacked regular and
relative LFs of the 102 systems are not well fitted by a sin-
gle Schechter function. These differences cannot be due to the
method, since only stacked LFs are analyzed. Thus, we interpret
this result as another hint that the observed differences in the M∗

and α parameters of the four subsamples are real and not due to
statistic effects.

5.3. Implications for formation scenarios

The main results of this work suggest that there is clear depen-
dence on the magnitude gap in the bright part of the LF and a
less significant dependence on the magnitude gap in the faint-
end slope of the LF. The characteristic magnitude of the LF can
be interpreted as the mean luminosity of the bright galaxy pop-
ulation of a system, when the BGG is excluded from the LF
(Cooray & Milosavljević 2005). Thus, the observed difference
of 1.3 mag in the M∗ parameter of the regular LF corresponds to
a factor ∼3 in the mean luminosity. These results are consistent
with the most accepted scenario for the formation of the magni-
tude gap, namely that it developed through dynamical friction,
and all the M∗ galaxies merged in a single, massive central ob-
ject (D’Onghia & Lake 2004). However, it is not clear whether
the magnitude gap of these systems was formed at high redshift
or more recently (Díaz-Giménez et al. 2008). In fact, Raouf et al.
(2014) suggest that ∆m12 alone is not a good age indicator. They
claim that there is a trend in age from groups to clusters, where
the former are, on average, older than the latter.
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Using their dating method, our sample of fossils would be
mainly dominated by young systems. Moreover, Smith et al.
(2010) suggest that the formation of the large magnitude gap
could depend on both the formation time or the recent infall his-
tory of the systems. Thus, a fossil system could also form in a
recent epoch, and it could evolve into a regular system in the
future, by interacting with other groups/clusters in the same re-
gion (see also von Benda-Beckmann et al. 2008). Nevertheless,
Deason et al. (2013) show that, on average, older and more con-
centrated halos have larger mass (magnitude) gaps, but the scat-
ter is important because of the transient nature of the satellite
population.

These two results show that the magnitude gap cannot be
used as an unambiguous age estimator for individual systems,
but that there is a statistical trend in the magnitude gap-age re-
lation. In this work we circumvent this limitation by comput-
ing stacked LFs for systems with similar magnitude gaps. For
this reason, it is reasonable to assume that the systems in the
larger ∆m12 bin are, on average, dynamically older than the oth-
ers. But not only age matters. Sommer-Larsen (2006) suggests
(using smoothed particle hydrodynamics simulations) that the
anisotropy of the orbits can play a role as well. This kind of orbit
can bring the infalling population close to the center of the po-
tential well, thus favoring the merging of massive galaxies. They
conclude that the more radial the orbits at the time of formation,
the more fossil the system will be at the present time.

The observed dependence of the faint-end slope of the LF
on the magnitude gap is more intriguing. There is some evi-
dence in the literature showing that some nearby galaxy clusters
(e.g., the Coma and the Virgo clusters) contain a small number of
dwarf galaxies in the innermost regions (see Aguerri et al. 2004;
Trujillo et al. 2002). Nevertheless, our results point out that the
number of dwarfs in the innermost regions (R ≤ 0.5R200) de-
pends on the magnitude gap as well. The low masses of dwarf
galaxies make them less susceptible to dynamical friction. In ad-
dition, the large velocity dispersion in galaxy clusters makes the
merging of dwarfs in the recent epoch a very rare event.

One appealing possibility is that the paucity of dwarfs in sys-
tems with large gaps is related to the more radial orbits predicted
by Sommer-Larsen (2006). These eccentric orbits can efficiently
bring infalling groups close to the center of the potential well.
Once there, not only will the more massive galaxies of these
groups merge on a relatively short timescale, but strong tidal
forces can efficiently disrupt lower mass halos. Furthermore,
if the assembly occurs at relatively early times, the surviving
subhalos will spend a significant amount of their history orbit-
ing within rather massive halos – thus increasing the chances
of eventual disruption. A similar tidal force-driven disruption
mechanism was proposed by López-Cruz et al. (1997) to explain
the flattening of the faint-end slope of the LF in the central re-
gions of clusters hosting cD centrals.

6. Conclusions

We analyzed a sample of 102 systems with redshift z ≤ 0.25
in order to determine the properties of their LFs. The sample
was divided into four subsamples, covering different ranges of
∆m12. In particular, the first subsample included systems with
∆m12 < 0.5, the second systems with 0.5 ≤ ∆m12 < 1.0, the
third systems with 1 ≤ ∆m12 < 1.5, and the fourth systems
with ∆m12 ≥ 1.5. The LFs were computed in half the R200 ra-
dius using a hybrid method, which allowed us to use both pho-
tometric and spectroscopic data. Moreover, to better define the
differences in the parameters between the four subsamples, we

calculated the relative LF. For each galaxy system, the relative
LF was obtained by shifting the LF in magnitude such that the
BGG magnitude is zero.

Our results can be summarized as follows:

– The faint-end slope of the regular stacked LFs of the 102
systems in our sample turns out to be α = −1.27± 0.11. The
slope of the relative stacked LF is α = −1.25 ± 0.09. The
two slopes are in good agreement. These slopes have been
obtained by fitting an exponential function and are calculated
using the last five points of each LF (−18 ≤ Mr ≤ −16.5 for
the regular LF and 4.5 ≤ ∆Mr ≤ 7 for the relative LF). We
fit an exponential to these stacked LFs because they are not
adequately described by either a single or a double Schechter
function.

– In both the regular and relative stacked LFs, if we divide
the sample of 102 systems into four subsamples of different
∆m12, the M∗ values of the Schechter fit change. In particu-
lar, the larger the gap, the fainter the M∗, as is expected if the
gap is created by dynamical friction. The differences for the
subsamples with the smallest and largest gaps are ∼1.3 mag
using the regular LF and ∼2.8 mag using the relative LF.

– The faint-end slope also shows a dependence on the mag-
nitude gap, although the results are less significant. The
Schechter faint-end slopes obtained for the four subsamples
follow a trend moving from smaller to larger gaps. The α pa-
rameter changes from α = −1.23 to α = −0.78 in the regular
LF, and from α = −1.26 to α = −0.77 for the relative LF. We
also fit an exponential to the data, finding the same trend in
both cases. This is unexpected because the dwarf galaxy pop-
ulation should not be affected by dynamical friction. Other
processes, such as more radial orbits or early dwarf galaxy
disruption, may play a role.

The uncertainties in the faint-end slopes are mainly due to photo-
metric uncertainties. To improve these results, it is important to
study deep spectroscopic LFs for systems with large magnitude
gaps. This is part of the future plans of the FOGO project.
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