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Abstract. The analysis of aircraft-based measurements of
clouds is critical for studies of aerosol and of clouds. Many
such measurements have been taken, but it is difficult to com-
pare such data across instruments, flights and campaigns. We
present a new open-source software program, SAMAC (Soft-
ware for Airborne Measurements of Aerosol and Clouds),
that may enable a more systematic and comparable approach
to the analysis of aerosol–cloud–precipitation data. The soft-
ware offers a cooperative and reproducible approach to the
analysis of aircraft measurements of clouds across cam-
paigns. SAMAC is an object-oriented software program in
which a cloud is an object; all the data related to a cloud
is contained in the cloud object. The cloud objects come
with built-in methods and functions that allow for the quick
generation of basic plots and calculations, SAMAC provides
a quick view of the data set and may be used to compare
clouds and to filter for specific characteristics. Other re-
searchers can readily use already submitted algorithms once
their data is placed in the cloud structure provided, and they
can contribute their own algorithms to the software for oth-
ers to see and use. This approach would improve compara-
bility, reproducibility and transparency by allowing others
to replicate results and test the same algorithms on differ-
ent data. SAMAC can be downloaded at https://github.com/
StephGagne/SAMAC/releases.

1 Introduction

The links between aerosol, clouds, and precipitation are of-
ten referred to as one of the least understood, and some of
the most important processes by which humans affect the
Earth’s climate (IPCC, 2007). Aerosols, clouds, and precip-
itation are described in global climate models (GCMs) us-
ing parametrizations (e.g Nenes and Seinfeld, 2003; Mor-
rison et al., 2005). The parametrizations are validated and
constrained using remote sensing or direct airborne mea-
surements (see e.g. Zhang et al., 2013), and have also been
developed based on these measurements (e.g. Boucher and
Lohmann, 1995). Measurements of aerosols, clouds, and pre-
cipitation in concert are crucial to better constrain global
climate models. Satellite observations are very helpful in
the study of aerosol–cloud–precipitation interactions because
they cover large and diverse geographical areas, but they are
not without some biases (e.g. they generally cannot sample
co-located aerosols and clouds). Therefore, airborne in situ
measurements are a necessary part of the improvement of
the aerosol and cloud processes in GCMs.

Airborne measurements of aerosol–cloud–precipitation
interactions have been performed on different cloud types,
and in different areas around the world (see e.g. campaigns
such as RICO (Rauber et al., 2013), VAMOS-VOCALS
(Wood et al., 2011), or MASE (Lu et al., 2007)). In many
cases, these measurements were performed using an aircraft
tracing a single path through clouds (e.g. Leaitch et al., 1996;
Johnson et al., 2000; Schmid et al., 2000; Sollazzo et al.,
2000; Kleinmann et al., 2012). This measurement method
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620 S. Gagné et al.: SAMAC

makes data analysis difficult because the relevant parame-
ters are measured at different time intervals and at different
places in 3-D space and subject to variability in the condi-
tions at the time (e.g. clouds may be in different stages of
their life cycle during sampling). Further, the aerosol effects,
while important, may be subtle relative to other aspects of the
cloud life cycle. Another difficulty of airborne measurement
is the lack of standardized instrumentation, data processing
and analysis. While, during a given measurement campaign,
all the clouds are likely to be measured with the same set
of instruments, it may not always be possible to perform the
same calculations for all of them. Between campaigns and
research groups, analysis of clouds can vary even more. Im-
proving the traceability and comparability of data analysis
would help with providing modellers with more transparent
and comparable data.

The creation and use of an open source standardized
database structure and software would allow researchers
from different institutions to compare their measurements
with those of others more easily. Moreover, a basic quan-
tity, such as the concentration of below-cloud aerosols, could
be calculated using exactly the same technique (algorithm),
making the quantity more comparable across various clouds,
campaigns, and in the literature. Such software could also
improve analysis speed by producing basic plots and calcula-
tions so that the analyst can visualize multiple aspects of the
measured clouds rapidly and then decide on the next analysis
steps to take. Sharing algorithms between researchers also
saves coding time for all participants in addition to providing
a good basis for comparison.

For this kind of software and data structure to be benefi-
cial for the whole research community, it should be freely
available for all researchers and easy to modify to fit their
needs. The modifications should be traceable and reference-
able. The software should hence be written in a free, cross-
platform programming language, be open-source and under
version control. The advantages are the following:

a. it can be modified by the users in order to better fit their
needs;

b. when a user makes a modification that could be useful
to others or that makes the software more flexible, the
modification can be included in the next public release;

c. when improvements are made to functions (a predefined
routine), version control ensures that the old function
can still be retrieved and used if needed. This way, cal-
culations are reproducible (as long as the function name
and the software version is mentioned in publications);

d. although there is a need for a coordinator overseeing
the quality and release of new versions of the software,
participative programming under version control means
that improvements can be made gradually by users who
need these improvements, sharing the effort between
users.

In this paper, we present a data structure for cloud measure-
ment data and analysis software, SAMAC (Software for Air-
borne Measurements of Aerosol and Clouds), that attempts
to answer the concerns and fulfil the specifications discussed
above. In this work, we first give an overview of SAMAC’s
capabilities after which we explain our coding choices. We
then give basic instructions and specify the requirements to
use and modify the software. Next, we describe the current
structure and the different function types in the software. Fi-
nally, we illustrate the uses of SAMAC with IPython, an in-
teractive python shell, using data from the Canadian SOLAS
2003 campaign (Gagné et al., 2016).

2 Overview of software capabilities

Software processing and visualizing airborne measurements
already exist, and some are complementary to SAMAC.
The ADPAA (Airborne Data Processing and Analysis, writ-
ten in IDL and C-shell) package developed at the Uni-
versity of North Dakota, “is intended to fully automate
data processing while incorporating the concept of miss-
ing value codes and levels of data processing.” (Delene,
2010). The EGADS software (EUFAR General Airborne
Data-processing Software, written in Python) designed at
EUFAR is “a toolbox for processing airborne atmospheric
data” (EUFAR-EGADS, 2016), https://code.google.com/p/
eufar-egads/). EGADS aims to be a community-driven soft-
ware for processing airborne data and already provides many
data-processing routines for common airborne instrumenta-
tion. MMM (Mesoscale and Microscale Meteorology) Soft-
ware, provided by UCAR and Java-based includes “data
analysis packages for radar, aircraft, surface mesonet, sound-
ing and gridded data” (Atmospheric Science Software Ap-
plications – UCAR Community Tools, 2009; https://www.
ucar.edu/tools/applications_desc.jsp). Unidata (2016) also
provides a visualization tool called IDV (Integrated Data
Viewer, Java-based) which can be used to display geoscience
data (Unidata | IDV, https://www.unidata.ucar.edu/software/
idv). All of these available software programs are focused
on earlier analysis, data correction or pre-processing. With
SAMAC, we propose to take the community effort to the next
level of analysis of airborne cloud measurements.

SAMAC was given a flexible and adaptable design
which makes it well-suited to support cooperation among
researchers. Adding an algorithm (called a function) to
SAMAC is fairly easy, and other researchers can see the
source code to review it and can use it directly on their own
data using SAMAC. With reproducibility of results being a
concern in the scientific community in the recent years (Na-
ture Editorial, 2014; Easterbrook, 2014), a version-controlled
open source code would address these concerns while de-
creasing the likelihood of bugs in the code by virtue of hav-
ing multiple users reviewing the code.
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In addition to the algorithms provided by other users,
SAMAC already has a number of methods and functions
(routines) that allows users to rapidly visualize their data, ex-
ecute standard operations, and add practical information to
their data. In this section, we present a brief overview of the
software’s features.

In order for the methods and functions to work on one’s
data, the measurement data must be filled in the cloud ob-
ject structure of SAMAC. Guiding software is available with
SAMAC but may need to be modified to fit different data/file
formats. Some tips are available on the SAMAC website.
Once the data is placed in the cloud structure of SAMAC,
some basic methods and functions become available to users,
along with functions developed by other users and gradually
added to the software package.

SAMAC comes with a set of figure-generating functions
that include time series, vertical profiles and adiabatic liq-
uid water content. Some examples from these plots can be
found in Fig. 1. A figure, or many figures in certain cases,
can be generated using only one line of code that calls the
plotting function. The code looks for the relevant data in the
cloud structure and no further input is needed from the user.
The figure-generating functions that are available in this ver-
sion of the software include a time series, maps of the air-
craft trajectory, various size-distribution figures, and differ-
ent types of vertical profiles (with altitude as the y axis).

This software also comes equipped with a suite of calcu-
lation functions. For example, with a single-line command, a
user can get the liquid water path, the average size distribu-
tion within a chosen aircraft manoeuvre or flight leg, an av-
erage cloud droplet number concentration, and more. As we
later show in Sect. 5.2, it becomes very easy to make plots
that aggregate results from many clouds, controlling for cer-
tain characteristics.

There are also a few “interactive” methods. Some are
based on users clicking on a figure to provide information
to the software. To define the time period of a manoeuvre
for example, the user can either determine the times and in-
sert them manually into the structure of the cloud instance,
or use a specially designed interactive function and click on
the beginning and end time of the manoeuvre on a time series
plot (top panel in Fig. 1). The same principle can be used to
define the base and top of a cloud. The clicking principle is
also used in a method created to help mask unphysical, er-
roneous or dummy data (Fig. 2). In this method, the points
within a rectangle defined by the user become masked af-
ter receiving confirmation. Another category of interactive
methods require the user to answer questions on the prompt.
For example, there is a method to assess the quality of liquid
water content profiles that asks users to enter quality flags for
profiles.

3 Programming techniques

We created and developed SAMAC in order to process mea-
surements of clouds spanning more than 30 years. The mea-
surements had taken place on several different measurement
campaigns with varying cloud types and the instrumentation
changing from one campaign to another. In order to compare
the different clouds with each other, standard structure and
calculation techniques had to be implemented. The structure
had to be flexible enough to allow adding new data in case
some instrument’s data had not been foreseen or were not
in the original data set. Another important feature, was that
if the original data had to be corrected or re-calibrated, all
the related calculations would be corrected automatically: the
user would not need to track down the repercussions of this
change, instead it would be done by the software itself.

It was decided that object-oriented programming would be
the best way to satisfy all these conditions. We define cloud
object as the overall class (or type of object) we use to repre-
sent measured clouds, and a cloud instance as a particular
individual cloud of the cloud object class. Each cloud in-
stance of a cloud object is a measured cloud in which the
data (e.g. time, altitude and cloud droplet concentration),
and a few basic subjective cloud characteristics (e.g. envi-
ronment type and cloud type) would be stored in a struc-
ture. Object-oriented programming also allows for methods
associated with an object. All cloud instances share the data
structure and methods associated with cloud objects. Meth-
ods are procedures that can be performed on an object (or
more precisely, on the data in each instance, Beazley, 2009).
The method can either change the instance itself or simply
use the data in the instance to return an output. In the case of
SAMAC, methods that modify the cloud instances are found
in the class file and functions that do not modify the cloud
instances are found separately from the class file.

We have chosen Python as a programming language for
SAMAC mainly for these reasons:

a. Python is a free, open-source, cross-platform, high-level
programming language;

b. Python is already used among researchers in the Earth
sciences (Lin, 2012; Perkel, 2015);

c. Python has a very clear, readable syntax (Python Pro-
gramming Language, 2013);

d. new scientific programming packages in Python are re-
leased on a regular basis (Yarkoni, 2013);

e. Python’s NumPy module provides Masked Arrays
(2013), which allow for the masking of unphysical
or missing/dummy data without having to delete or
overwrite them with flag values. Masks are preserved
through calculations (masked inputs give masked out-
puts);
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Figure 1. Figures generated by a selection of functions available in SAMAC. On the first row, the time series shows a selection of data as a
function of time. This function is used to provide an overview of a particular flight and the aerosol and cloud measurements (more detail on
the time series in Fig. 4a). On the left-hand-side figure of the middle row is a size distribution as a function of time during a vertical profile
manoeuvre. The colour represents the concentration and the black line the altitude. On the right-hand side, the average size distribution
is plotted for a selection of instruments for one manoeuvre. The two figures on the middle row can be generated for any size-distribution
instrument and manoeuvre. The maps on the bottom row show a general situation map and a zoomed-in trajectory of the aircraft in the cloud.
The size of the points correspond to the liquid water content. The colour corresponds to the time bar at the bottom of the time series (more
details on the maps in Fig. 4b). Finally, the figure in the lower right corner displays a profile of the measured and adiabatic liquid water
contents.

f. Python’s object-oriented programming allows for many
types of methods bound to the object and functions that
can interact with the object;

g. Python’s SciPy modules (SciPy.org, 2013), particularly
NumPy, Matplotlib (2016), Hunter (2007) and Pandas
are similar to Matlab and R which are two additional
programming languages that are widely used in the
Earth sciences. Python also has an interface module
with R: RPy (RPy: a simple and efficient access to R
from Python, 2013).

The software was tested using Python 2.7.1 with Matplotlib
0.99.3, NumPy 1.5.1, SciPy 0.8.0, and Basemap 1.0.1 on
Linux Mint 11; with Python 2.7.3 with Matplotlib 1.1.1,
NumPy 1.6.2, SciPy 0.10.1, Basemap 1.0.5 and h5py 2.0.1-
2 on Linux Mint 14; and with Python 2.7.3 with Matplotlib

1.3.1, NumPy 1.8.0, SciPy 0.13.0, Basemap 1.0.7 and h5py
2.2.0 on OSX 10.9.1 (Build 13B42).

Because the software was designed to handle cloud flex-
ibly (with different instrument types and number of instru-
ments, different aircraft trajectories and series of manoeu-
vres, etc.), SAMAC is ideal for use and modification by
other research groups to compare algorithms. Once the data
is placed inside the cloud instance, the methods and func-
tions can be applied right away. The use of SAMAC by other
research groups should serve to increase comparability, test
each others’ algorithms on one’s own data, and speed up
data analysis by using other researchers’ algorithms with-
out a need to adapt the code. Moreover, shared open-source
software makes data analysis more transparent, and possible
mistakes are more likely to be spotted and corrected (Challet
and Le Du, 2003; Barnes, 2010; Merali, 2010).

Atmos. Meas. Tech., 9, 619–630, 2016 www.atmos-meas-tech.net/9/619/2016/
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Figure 2. This is an example of an interactive method. In this case,
the method asks the user to choose a data type to display. The user
can then choose to use an automatic outliers removal tool or to zoom
in and select the points that need to be masked with a few clicks
of the mouse. Here, the points in the red rectangle will be masked
when the user confirms it.

SAMAC 1.0.0 can be downloaded at https:
//github.com/StephGagne/SAMAC/releases (http:
//dx.doi.org/10.5281/zenodo.35730) in the preferred
data compression format by clicking on the source code
button. SAMAC will work on any platform provided Python
2.7 and the modules listed in the wiki pages are installed.
Python is a free cross-platform programming language.
Documentation material is available on the wiki pages (book
icon, https://github.com/StephGagne/SAMAC/wiki). It
includes a description of the SAMAC cloud object structure,
a description of the methods and functions associated with
cloud objects, and a guide on how to create and populate
a cloud object. It also includes an example cloud object
with which to explore SAMAC. This example cloud, despite
similarities, is not the same cloud that is presented in this
manuscript. Git is used for version control. To participate
in improving the software and contributing algorithms, a
user needs to have an account on GitHub (2016). A GitHub
tutorial is available at https://help.github.com/. To contribute
a new algorithm, one can contact the software coordinator(s)
through the “Issues” section. That same section can also be
used to report any bugs or to suggest improvements.

SAMAC falls under the protection of the GNU General
Public License version 3. This license allows scientists to
use the code in SAMAC and contribute new algorithms to
the public version. It also allows them to add new algorithms
to their own version without ever making that piece of code
public, or they can also add it to SAMAC later, after their
work has been published. It is the author’s view that the GNU

General Public License version 3 allows for maximum flexi-
bility.

4 Object structure and associated methods and

functions

4.1 Structure of a cloud instance

As discussed earlier, in order to use SAMAC as a comparison
platform for different clouds with wide ranging characteris-
tics, we need a standard but flexible data structure that can
accommodate many situations. In this section, the structure
of the cloud object, ways to add to the structure, as well as
current methods and functions associated to cloud objects are
discussed. The current overall structure of a cloud object is
described in Fig. 3.

The structure’s core section is the “Basic Aircraft Data”.
This section includes the time series from all instruments
sharing the same time stamp as the aircraft data (with ex-
ception of the size distributions). The Basic Aircraft Data
section could contain, for example, time, altitude, latitude,
longitude, and other quantities that happen to share the same
time stamp. Titles and units of the data are also stored in
the structure so that it is possible to scan the data for spe-
cific quantities and keep track of the units. The methods and
functions are programmed to recognize a number of titles
and units combinations when looking for certain quantities.
If users have data that do not share the same time stamp as the
Basic Aircraft Data, these data can either be interpolated to
a common time stamp or be placed in a section called “Ex-
tradata”. When the data needed are not found in the Basic
Aircraft Data section, the software scans the Extradata sec-
tion for that data, and uses it if found. If the same data title
is found in both sections, the data found in the Basic Aircraft
Data is used.

Another important section is the “Size Distribution” sec-
tion. This section is designed especially to handle size dis-
tribution formats and representations, and is separate from
the Basic Aircraft Data section. It stores the aerosol, droplet,
or drizzle concentrations as a function of time and size. The
time and the average particle sizes are placed in their own
vectors, similarly to the total concentration, mean diameter
and median diameter. Each size distribution has a record of
the instrument’s name or distribution’s name, the concentra-
tion’s units and the distribution type (aerosol, cloud droplet,
etc.).

It may be a good idea to save the names and paths of the
original files from which the data originated in the cloud in-
stance itself. The structure is flexible enough to accommo-
date the addition of such information without affecting the
methods and functions.

The “Times of Manoeuvres” section keeps track of the
times when the aircraft is executing certain manoeuvres in
relation to the cloud. These times are determined by the user
who can use the graphical interface to visualize the cloud and
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Figure 3. Basic structure of the cloud object. All main sections are created upon initialization of a cloud instance (except for the Descriptive
Data section, which is created using the method describe).

aircraft position and click on the start and end time. In this
section, the beginning and end time of each manoeuvre is
stored as follows: the aircraft being in the area of the cloud
(as opposed to being on its way to or from the airport), being
above-, below-, horizontally in-cloud, and vertical profiles.
Because only the start and end times are stored, two manoeu-
vre types can take place at the same time and be treated as
separate manoeuvres without having to keep two copies of
the same data. For example, the last few seconds of a verti-
cal manoeuvre can also belong to the beginning of an above
cloud manoeuvre. Because of this section, it is easy to isolate
a particular manoeuvre to make a calculation, such as calcu-
lating the average aerosol size distribution below-cloud only.
This section can be populated manually or using a graphical
interface and clicking at the beginning and end time of each
manoeuvre.

The “Descriptive Data” section is where all the keywords
relevant to data analysis are stored. Such descriptive key-
words include the name of the measurement campaign or
project, the type of cloud, the cloud’s environment, the place
where the cloud is situated, etc. This allows for automatically
searching and selecting only the relevant cloud instances for
a given analysis project. There is a method that allows users
to populate and create new characteristics in this section.

Finally, the “Other Attributes” section contains attributes
of the cloud instance that cannot be calculated without hu-
man intervention. Because human intervention requires time,
these attributes are stored in this section to be retrieved when-
ever needed. This can, for example, include quality flags or
classification results. The data found in this section needs to
be reviewed when a change to the original data is made.

Other main sections like the ones described here can be
added to a cloud object. It can be added locally, only for the
user, by adding a section to a cloud instance, or globally by

adding a section to be created upon initialization of a new
cloud object (recommended). This can be done by modifying
the __init__function in the “Class” file (Cloud.py).

After creating cloud instances by populating the struc-
ture, it is recommended to store the cloud instances in a
list of instances and to save that list of cloud instances or
cloud database. Users can then load the database and mod-
ify the data further or start the analysis of the data set. It
is also possible to scan the cloud database for a selection of
clouds (based on some criteria) and compare them easily (see
Sect. 5.2 for illustration).

4.2 Methods and functions in SAMAC

Flexibility and the possibility to add new sections or new
data types to the structure is accommodated: a user can cre-
ate a new section at any point without disturbing the built-in
methods and functions, as long as the existing sections of the
structure are not affected by the modifications. Once the data
is in place in a cloud object, methods and functions (rou-
tines or algorithms) can be applied. SAMAC is also flexible
regarding functions: users can easily add new functions with-
out disturbing the existing ones.

Some of the routines available provide output (such as
calculation functions), and others do not (such as object-
modifying methods). In the case of SAMAC, these modi-
fying methods are used to add new data or filter data that
were downloaded from the source files. We try to avoid delet-
ing or modifying permanently any of the original data us-
ing methods to prevent accidental changes from taking place.
The users are, however, still capable of modifying the orig-
inal data by directly manipulating the cloud instance’s data.
There is also a method meant to filter erroneous or dummy
data using NumPy’s masked arrays. By using masked arrays,
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the erroneous data is masked (and thus not used in calcula-
tions or plots) yet the data is still stored and can be retrieved
if needed.

The existing output functions in SAMAC are mostly de-
signed to generate standard plots (e.g. profile plots) and re-
turn calculated quantities (e.g. average amount of drizzle
drops). The advantage with functions returning calculations
compared to calculating a quantity once and storing it, is that
the quantity is automatically updated if the original data is
modified (e.g. if it underwent a re-calibration). The next time
a user will access the calculated quantity, its value will be the
latest one. Through this procedure, there is virtually no risk
to forget to update the value because it is calculated every
time it is accessed.

SAMAC does not include any data pre-processing algo-
rithms i.e. instrument-specific corrections applied to raw data
(e.g. Bond et al., 1998; Anderson and Ogren, 1998; Virkkula,
2010 and Wiedensohler et al., 2012). Such a pre-processing
software for airborne measurements already exists, for ex-
ample, EGADS (EUFAR General Airborne Data-processing
Software). There are already efforts to harmonize these
processes, notably through the Workshop on Data Analy-
sis of Cloud Microphysical Measurements (interested read-
ers may contact the organizer, Darrel Baumgardner, at dar-
rel.baumgardner@gmail.com). The implementation of such
algorithms to SAMAC is out of the scope of this paper but
users are very welcome to add them to SAMAC if they so
wish.

5 Software use

5.1 Basic use of Python commands with SAMAC

In this section, we give example lines of code to create a
cloud instance and use it. Some samples of code we used to
create our own cloud instances from a data file are available
in the download package and the wiki pages. SAMAC has
so far been used with IPython and with IPython Notebook,
interactive shells for Python. We therefore recommend that
users install IPython/Notebook to run the software, so better
support can be provided.

The first step for using SAMAC is to create a cloud in-
stance. For example,
import Cloud

MyFirstCloud=Cloud.Cloud(data,

title,units,times,sizedists)

where data, title, units, times, and sizedists are input vari-
ables containing the cloud’s data in the specified cloud ob-
ject format, available in the wiki pages. The first line im-
ports the cloud class or cloud object, and the second line cre-
ates a cloud instance called “MyFirstCloud”. Explanations
as to how to generate an empty cloud instance are available
on the wiki pages under Initialization. These cloud instances
must be saved so they can be loaded (and further modified
if needed) in a later session. The authors have been suc-

cessfully saving/compressing their instances using the pickle
module on a single list of cloud instances that we call a cloud
database. Note that other compression methods than pickle
may also be suitable for SAMAC Cloud objects.

There are several ways to create a cloud instance. All
involve the command lines above, but the way the data
is put into it can vary. Along with SAMAC, we provide
our own code that guides the user into finding the relevant
data, shaping the data, and creating the cloud. This piece
of code is tailored for our own data formats and modifi-
cations will very likely be necessary. Another, and perhaps
simpler, way would be to prepare the data, title, units, times
and sizedists variables into the specified formats and use the
“Cloud.Cloud” command passing those variables as input.
Yet another way to create an instance would be to create an
empty cloud instance, and populate it manually afterwards.
It is also possible to use a mix of passing the data directly
and populating it afterwards. Post-populating the cloud can
be done using some of the built-in methods, especially the
methods timechange in the case of the variable times,
addsd for the variable sizedists, and add2basic for vari-
ables data, title, and units.

The data in the cloud object can be accessed using the
name of the cloud and its address. For example, the manoeu-
vre times are accessed like this:
MyFirstCloud.times

To calculate the average value of the total concentration of
the first size distribution in the list of distributions, the ad-
dress of the data is used as if it were a variable:
Average_value=numpy.mean

(MyFirstCloud.sd[0][‘‘total”])

where numpy.mean is an averaging function available in
the NumPy extension, and MyFirstCloud.sd[0][“total”] is the
address of the total concentration array for the first (indicated
by 0, because python uses zero-based numbering) size distri-
bution.

Methods must always be called with parentheses after their
name. For example, to create or modify a cloud’s description
section, a user would type the following:
MyFirstCloud.describe()

and then create or modify the section through questions in
the prompt. If input variables are required, these variables
are defined inside the parentheses. Functions always include
the cloud instance in their call, and they may also include in-
put variables or options other than the cloud instance. They
are added after the cloud instance. For example, the function
plotavsd plots the average size distribution for a given
manoeuvre and instrument. The function that generates this
plot must then be called like this:
samac.plotavsd(MyFirstCloud,prof=

’verticloud’,scan=2,inst=’FSSP’)

to get the average size distribution of the 3rd (indicated with
scan=2, because of zero-based numbering) vertical profile
(verticloud), for the instrument called FSSP (Forward Scat-
tering Spectrometer Probe).
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Figure 4. Panel (a) shows a qualitative view of the aircraft’s altitude, the measured particle and cloud droplet total concentrations, the liquid
water content and drizzle drop concentration in its upper subplot, and the aircraft’s latitude and longitude on the lower subplot. All the data
in the upper subplot can be magnified and/or offset (values of which are indicated in the rounded box on the right-hand side of the plot). At
its bottom, a colour-coded time tracker is inserted. The lower subplot shows the latitude (left axis) and longitude (right axis) of the aircraft or
probe. At its top, the colours indicate which manoeuvre the aircraft is making (magenta = vertical, cyan = below cloud, black = horizontal in
cloud and yellow = above cloud). Panel (b) shows the path of the aircraft or probe while the cloud instance was being measured. The subplot
on the left shows a zoomed-out map and the subplot on the right shows a zoomed-in situation, with the size of the points corresponding to
the liquid water content and the colour corresponding to the time tracker in the time series (Panel (a)).

In the case where input variables are required but default
values are already defined in the function, the user can choose
to define those variables (and change them) or not. For ex-
ample, the default for plotavsd is already defined in the
function and is prof=’belowcloud’, num=0, inst=’PCASP’.
If a user wants to see the average size distribution for the
first below-cloud manoeuvre from the PCASP (Passive Cav-
ity Aerosol Spectrometer Probe), it would be enough to type
this line:
samac.plotavsd(MyFirstCloud)

but this line would give the same result because these options
are the default options:

samac.plotavsd(MyFirstCloud,prof=

’belowcloud’,num=0,inst=’PCASP’)

Input variable definitions and default inputs are explained in
the help section of each method and function. To read the
description for function plotavsd, a user can request help
using this line:
help(samac.plotavsd)

and this line to read the description for method addsd:
help(MyFirstCloud.addsd)
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Figure 5. Two functions that display the vertical profile of a cloud. In this cloud instance, the aircraft made three vertical profiles (in
addition to two below-cloud manoeuvres, two above-cloud manoeuvres and one in-cloud horizontal manoeuvre). Panel (a) was created using
the function wholeprof and displays the liquid water content, FSSP total concentrations, PCASP total concentration, relative humidity,
drizzle concentrations above 100 and 200 microns, as well as temperature and theta Q for all the manoeuvres as a function of altitude on the
y axis. Panel (b) was created using the function vprof and displays the same quantities as (a) as well as the effective radii of the FSSP and
PCASP for the first vertical profile only, as a function of altitude on the y axis.
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5.2 Example use from the Canadian SOLAS 2003

campaign

The first measurement campaign on which the software was
tested was the Canadian SOLAS 2003 campaign (Leaitch et
al., 2010). In this section, we will use examples from that
campaign to illustrate how SAMAC can be used for scien-
tific research. In this version of the software, methods and
functions as well as the structure were designed to study the
aerosol–cloud–precipitation interaction, but we would like to
emphasize that it would cost little effort to add sections to the
structure or add methods and functions to fit other types of
studies while using SAMAC’s reproducibility and compara-
bility advantages.

In this section, we illustrate how SAMAC can be used for
research using a very simple example: we want to verify how
the amount of drizzle varies with varying LWP (liquid water
path) for clouds that were measured during SOLAS 2003. We
first need to place the measured data in the cloud structure,
as shown in the wiki pages.

After placing the original data into the SAMAC cloud
structure, we generated an overview of the results us-
ing the functions overview and mapcloud respectively
(Fig. 4). Using the colour-coded time tracker, we used
method timechange to click at the beginning and end of
each leg (below-cloud, above-cloud, vertically in-cloud, hor-
izontally in-cloud). We used the method describe to en-
ter general information on the cloud using existing keys and
adding new ones. We also used MaskData to filter unphys-
ical or erroneous data points (Fig. 2). We then used methods
defheight and defBGheight to define the cloud base
and cloud top by simply clicking on vertical profile plots
(Fig. 5). Finally, we used lwcflag to evaluate the quality
of the liquid water content profiles for every vertical profile.

We designed a new calculation function to calculate the
total amount of drizzle in vertical profiles that we called
totalvolprecip and saved it in a file identifying the
authors (with “Dal” in its name). With function contribu-
tions from other researchers, we could compare our respec-
tive functions and investigate differences in the results.

Using the functions and methods currently available in
SAMAC 1.0.0, we were able to easily plot an indicator of
precipitation as a function of the liquid water path for all ver-
tical profiles of stratiform, marine clouds using only a few
lines of code. With all the measured clouds in a list of clouds
called CloudList, these few lines generated Fig. 6.
1 index=[i for i,c in enumerate

(CloudList) if c.desc["cloudtype"]

=="stratiform" and c.desc

["environment"]=="maritime"] #

selects stratiform maritime

clouds Precip=list();

2 LWPs=list(); # initializes lists

3 for i in index: # for each cloud

4 for j in range(len(CloudList[i].

Figure 6. Figure resulting from the example code at the end of
Sect. 5.2. Here, we plotted an indicator of the drizzle volume in
a vertical profile as a function of the liquid water path. This is only
an example; many other possibilities exist.

times["verticloud"])):

# for each vertical leg

5 Precip.append(samac.totalvolprecip

(CloudList[i], abovesize=100,

scan=j,filler=0))

# uses totalvolprecip to

calculate an indicator of

precipitation and add it to

the list Precip

6 LWPs.append(samac.lwp

(CloudList[i])[j][0]) # uses lwp

to get the LWP and add

it to the list LWP

7 semilogy(LWPs,Precip,’bo’)

# plots the results

8 xlabel(’Liquid Water Path

(g m$ˆ{-2}$)’)

9 ylabel(’Total volumic

precipitation (a.u.)’)

Note that the numbers at the beginning of the lines are
to indicate line number and are not part of the code. Plotting
of complex quantities is simplified by the use of methods
and functions, and the list of clouds can easily be scanned
for cloud instances with selected characteristics.

6 Conclusions

We present a new software package, SAMAC, available
at https://github.com/StephGagne/SAMAC and designed for
the analysis of cloud measurement data using the program-
ming language Python 2.7. The use of SAMAC by the
aerosol–cloud–precipitation research community can speed-
up the analysis of cloud data and facilitate comparisons
among data sets and within and among research groups.
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Through the release of this software as an open-source
project, the quality of the software will improved because
of its evaluation by other researchers, and the existing func-
tions and the diversity of functions will improve because of
users coding according to their needs and submitting their
new functions. Moreover, by sharing this software, all users
save on coding time by distributing the work load. We illus-
trated how the use of the basic features of SAMAC could
be useful for research, and believe it would be particularly
useful when comparing algorithms.

Although we recognize the need for further improvements,
at its current stage, SAMAC is advanced enough for other
groups to profit from its use. Reciprocally, SAMAC will ben-
efit from a larger base of users with different needs, capable
of contributing to the software. Contribution to the software
should cost little effort other than harmonizing the user’s
code to the existing code and will centralize aerosol–cloud–
precipitation measurement handling, and make results more
comparable to other users’ results, thus providing more con-
sistent results to modellers. In the context of a call for pub-
lishing data analysis code with scientific articles to improve
traceability and reproducibility, we believe that SAMAC
would be a great platform around which the cloud measure-
ment community could gather and share parts of their data
analysis code.
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