NRC Publications Archive Archives des publications du CNRC

Biocomposites and bioplastics for automotive PA and ABS based biocomposites

Mihai, Mihaela; Stoeffler, Karen; Bravo, Victor; Legros, Nathalie

For the publisher's version, please access the DOI link below./ Pour consulter la version de l'éditeur, utilisez le lien DOI ci-dessous.

https://doi.org/10.4224/23000635

NRC Publications Archive Record / Notice des Archives des publications du CNRC : https://nrc-publications.canada.ca/eng/view/object/?id=6a9632f8-cba1-441e-9084-1e8f7ca82534 https://publications-cnrc.canada.ca/fra/voir/objet/?id=6a9632f8-cba1-441e-9084-1e8f7ca82534

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at https://nrc-publications.canada.ca/eng/copyright

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

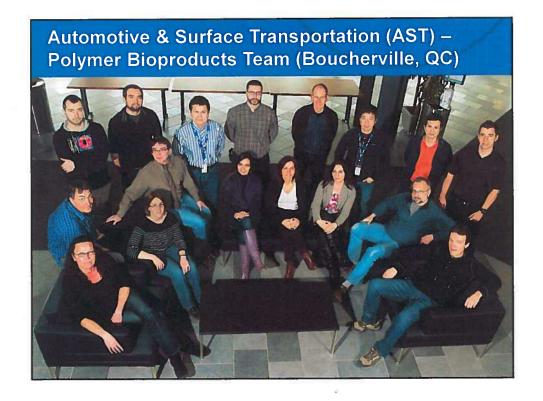
L'accès à ce site Web et l'utilisation de son contenu sont assujettis aux conditions présentées dans le site https://publications-cnrc.canada.ca/fra/droits

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D'UTILISER CE SITE WEB.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n'arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.



NRC-CNRC

Industrial Biomaterials Flagship Program (IBFP) ☐ Positions Canada as an international player in the field of industrial biomaterials: formulation, product development and fabrication; Engages industry and supports the development of the entire supply chain; ☐ Allows industry to <u>valorize products</u>: Transformation of biomass in biomaterials for key industrial sectors; ☐ Supports the <u>road to sustainability</u>: Substitution of petroleum-based resins, synthetic fibers and their composites by materials containing non food renewable resources COMMERCIALIZATION PROCESSING/ **BIOMASS RAW MATERIALS** MANUFACTURING Cheaper, lighter, stronger materials for the construction TREATMENT Supply, selection, harvesting, standards Flexible platforms, high through-put, reliability, new markets Characterization. fitness for use, handling

Summary

1- Introduction

2- PA and ABS Based Biocomposites for Automotive:

- 2.1- Biocomposites based on PA6 and PA6/PLA with short fibers
 - · Materials, Processing & Characterization Methods
 - · Results of characterization
- 2.2- Biocomposites based on ABS and ABS/PLA with short fibers
 - · Materials, Processing & Characterization Methods
 - · Results of characterization
- 2.3- PA6 with flax slivers, glass roving and hybrids (D-LFT)
 - · Materials, Processing & Characterization Methods
 - · Results of characterization

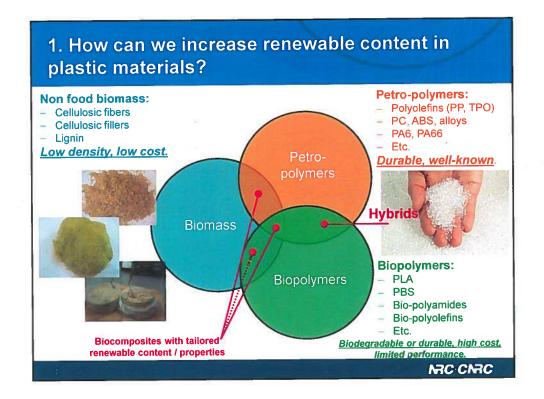
3- Conclusions

NRC CNRC

1. Introduction: **Greener Automotive Biomaterials**

- · The aim of this work is to develop greener and cost competitive engineering thermoplastic materials for automotive parts.
- 180 kg of thermoplastics are used in a car, i.e. 12 % from the car weight and 50% from the car volume. Most of these thermoplastics are used in fiberglass composites.
- Among those thermoplastics:
 - 9% are PA based parts mostly used in under-the-hood applications. They represent 16.2 kg/vehicle.
 - 8% are ABS and ABS/PC parts used in B/C pillars, interior door assemblies, overhead consoles etc. and represents 14.4 kg/vehicle
- The substitution of petroleum-based plastics and composites by biocomposites containing cellulosic fibers can allow weight and cost reductions.
- The substitution of a part of petroleum-based plastics by bioplastics is a way to increase renewable content.

In this presentation, focus is put on the replacement of PA6 and ABS based components by greener equivalents, while preserving thermal & mechanical performance, as well as durability.



NRC CNRC

2. PA and ABS Based Biocomposites with short fibers:2.1 based on PA6, PA6/PLA2.2 based on ABS, ABS/PLA

NC CNC

2. Materials

□ Polymers:

- PA6: injection molding / extrusion grade, PA Ultramid B27 from BASF.
- ABS: injection molding grade, Lustran Elite 1827 for high-heat application in automotive market. Typical applications: door panels, A&B pillars, consoles trims etc.
- PLA: an amorphous grade, 8302D from Nature Works was selected as the bio-sourced minor phase for the production of petro/bio hybrids.
- Coupling agents were used.
- · Fiber concentrations in polymers: 10% up to 40%wt.

☐ Bio-reinforcements:

- Flax: was supplied by Schweitzer Mauduit Canada.
- Thermo-mechanical pulp (TMP) was supplied by a Canadian producer.
- Wood fibers (WF) in the form of dices (WoodForce) were supplied by Sonae Industria.
- · Glass fibers, 3 cm in length.

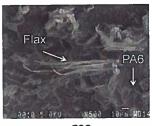
NAC CNAC

2. Processing & Characterization

□ Processing:

- Compounding was performed on a <u>Leistritz 34mm</u> twin screw extruder. All materials were dried before extrusion.
- Specimens for mechanical testing and foaming were injection-molded using a <u>Boy 34t</u> injection-molding machine.

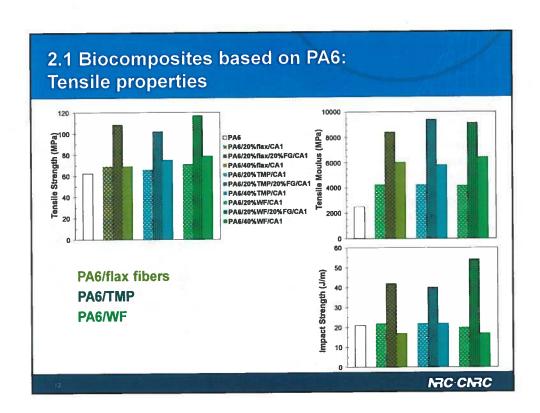
□ Characterization:

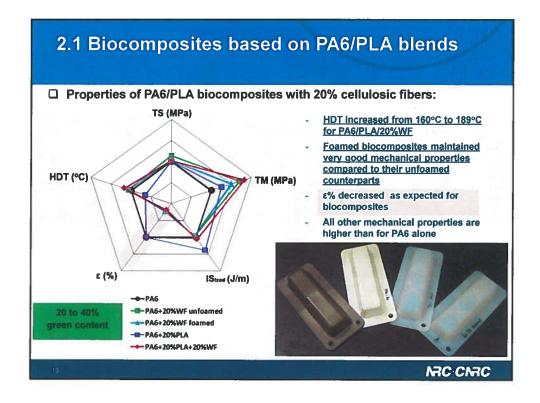

All materials were dried under vacuum for 24 h before testing:

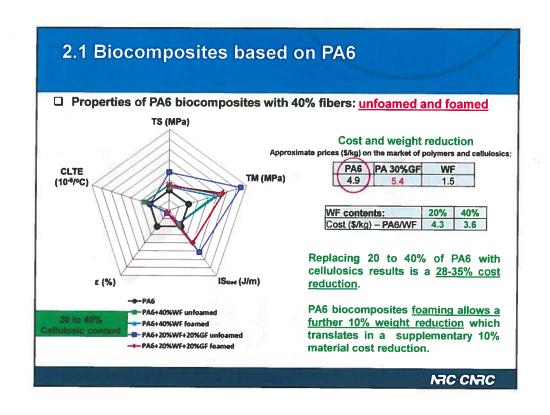
- Tensile properties (TS, TM, ε%) were determined according to <u>ASTM D638</u> using type I specimens and a crosshead speed of 5 mm/min.
- Impact strength (iS_{Izod}) was determined according to <u>ASTM D256</u> (Izod) using notched samples and a 2 ft.lb pendulum.
- Heat deflection temperature (HDT) was determined according to <u>ASTM D648 (method B: 0.45 MPa)</u>.
- Morphology: Jeol scanning electron microscopy.

MC CMC

2.1 Biocomposites based on PA6: Morphology of PA6/20%flax biocomposites:

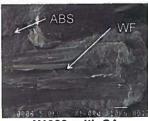

x100


x500

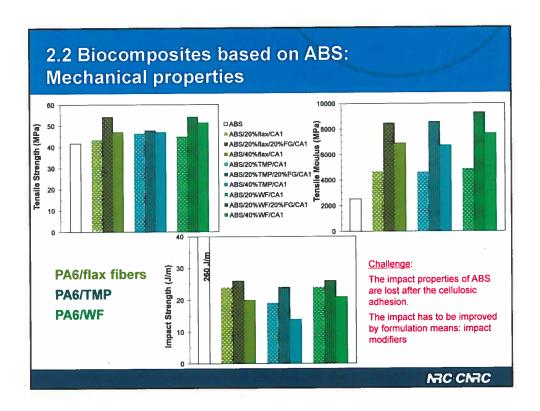

x1000

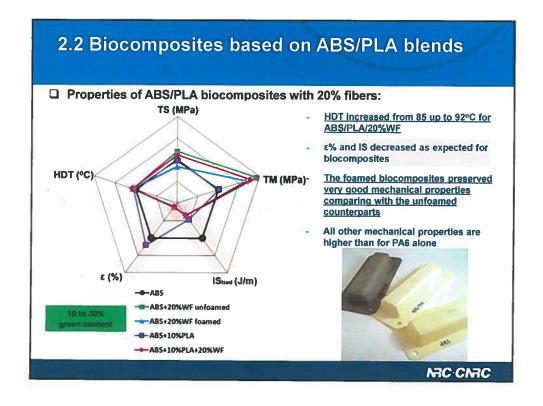
- Very good fiber distribution/dispersion (screw configuration was specifically designed to compound biocomposites).
- PA6 (hydrophilic polymer) and the hydrophilic cellulosic fibers present a good interfacial adhesion (fracture was produced throughout the cellulosic fiber).
- Using an adequate coupling agent allows to further increase interfacial adhesion.

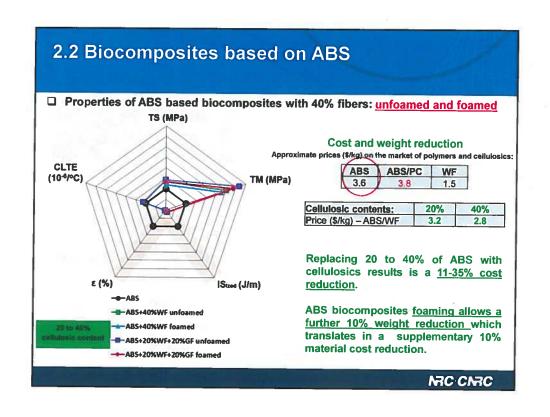
NRC CNRC

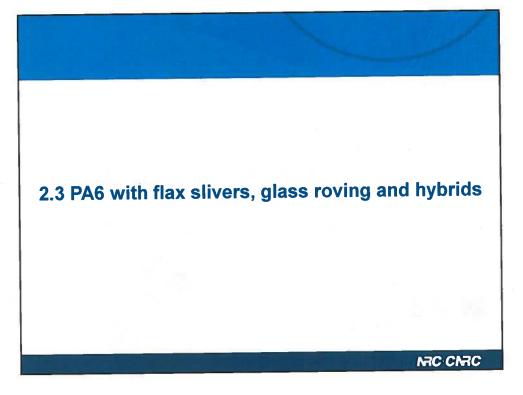


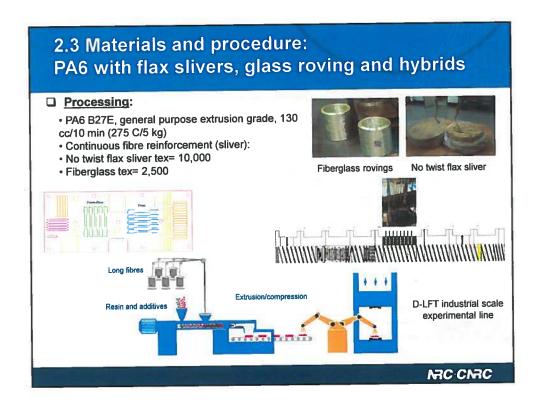
2.2 Biocomposites based on ABS: Morphology of ABS/20%WF biocomposites

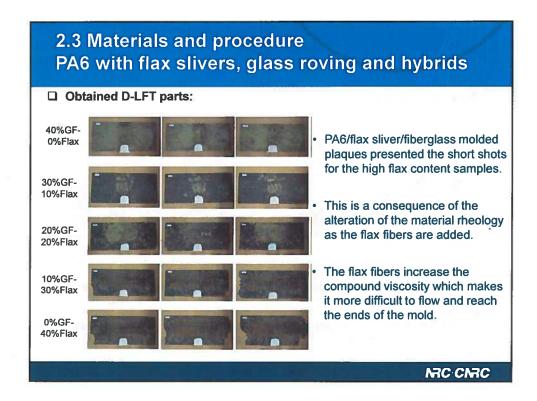

X500, no CA

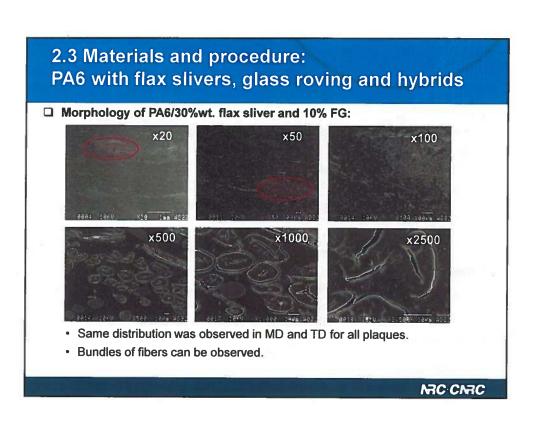

X500, with CA

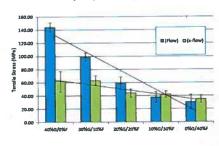

X1000, with CA

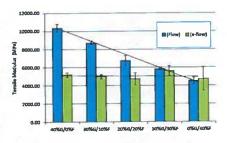

- Very good fiber distribution/dispersion (special design for screw configuration).
- There is no adhesion between the ABS, hydrophobic polymer, and the hydrophilic cellulosic fibers in the absence of the coupling agent.
- The fracture was produced throughout the cellulosic fiber in the presence of the coupling agent.
- Therefore, the use of an adequate coupling agent will allow to increase this adhesion and the mechanical properties of the biocomposites.


NRC CNRC





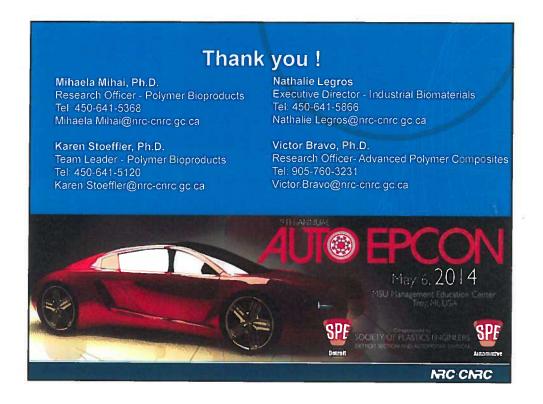




2.3 Materials and procedure: PA6 with flax slivers, glass roving and hybrids

☐ Tensile properties:

- The flow direction values of maximum tensile stress varied from 143 MPa for the 40 wt%. fiberglass sample to 36 MPa for the 40 wt%. flax sample
- The tensile modulus in the flow direction also showed a reduction as flax fibers were varied from 0% to 40%. This is evidence of the effect of glass fiber orientation on the part stiffness.
- The samples on the cross-flow direction showed no significant variation as the amount of flax fibers was gradually increased from 0% to 40% with a trend line almost perfectly horizontal.


NRC CNRC

3. Conclusions

- NRC can help you formulate and process <u>biocomposites and bioplastics</u> with improved renewable content according to the specifications of your products.
- As an example:
 - Our PA6 and PA6/PLA based biocomposites:
 - Contain up to 40 wt.% renewable resources,
 - Up to 40% lower weight and cost due to the incorporation of cellulosic fibers and chemical foaming in injection molding,
 - Offer mechanical and thermal properties comparable or higher than those of pure polymers classically used in automotive.
- ☐ We also develop:
 - PA6, ABS and PP based biocomposites hybrids with flax and glass rovings
 - PP/PLA and PP/PBS based biocomposites with cellulosic materials.
- We develop innovative green products for automotive under-bonnet and structural applications, as well as light products (ex: foamed components) for a variety of applications.

MC CMC

