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Model-Based View Planning
William R. Scott!

t Computational Video Group,
National Research Council of Canada, Ottawa,
Canada, K1A OR6
william.scott@nrc-cnre.ge.ca

Abstract

This paper presents a model-based view planning ap-
proach for automated object reconstruction or inspec-
tion using laser scanning range sensors. Quality objec-
tives and performance measures are defined. Camera
and positioning system performance is modeled sta-
tistically. A theoretical framework is presented. The
method is applicable to a broad class of objects with
reasonable geometry and reflectance properties. Sam-
pling of object surface and viewpoint space is charac-
terized, including measurement noise and pose error
effects. The technique is generalizable for common
range camera and positioning system designs.

1 Introduction

Overview Laser range sensors [4] are widely used
for high quality 3D object reconstruction and inspec-
tion. These processes involve planning views, phys-
ically altering the object-sensor pose, taking scans,
registering the geometric data in a common refer-
ence frame and integrating range images into a non-
redundant model. Efficiencies could be achieved
through automation, yet the view planning compo-
nent remains an open problem despite two decades of
research. We believe this is due to over-simplification
of the task. While view planning may appear straight
forward, numerous factors influence the outcome, in-
cluding subtle details of sensor and positioning system
performance plus wide variations in object shape com-
plexity and surface properties.

Imaging Environment The imaging environment
involves a triangulation-based range camera (e.g.
Figure 1), positioning system, fixtures and an ob-
ject. Modern range cameras are capable of precise,
dense, high speed, non-contact range measurements
[6]. However, the range measurement technique [7]
has implications for view planning for high precision
modeling and inspection. The optical baseline is sig-
nificant with respect to the stand-off distance, result-
ing in coverage shadow zones (Figure 2). Field of view

Figure 1: NRC Range Camera

(FOV) and depth of field (DOF) are limited. Measure-
ment precision and sampling density are non-uniform
within the frustum. Further, measurement is subject
to random non-isotropic geometric noise [3] and sev-
eral artifact phenomena [12]. Due to dynamic range
limitations, contemporary range sensors have difficulty
with highly absorbent or reflective material.

Imaging all sides of an object requires multiple view-
ing perspectives. Thus, a positioning system is needed
to move the sensor, the object or both. Positioning in-
accuracies degrade view planning performance. Sensor
pose is limited by the degrees of freedom and range of
motion of the positioning system. Generalized view-
points (v, As) [38] associate a camera configuration Ag
with each sensor pose v. Viewpoint space V is the
set of generalized viewpoints defined by the range and
sampling of these parameters. Surface space S is a
set of 3D points. Fixtures, the positioning system and
other structures in imaging workspace I introduce oc-
clusion and collision avoidance issues.

View Planning Problem (VPP) Stated infor-
mally, the VPP is - “For a given imaging environ-
ment and target object, find a suitably short view plan
N satisfying the specified reconstruction/inspection
goals and achieve this within an acceptable compu-
tation time.” The VPP involves reasoning about ob-
ject surface space S, viewpoint space V' and imaging
workspace I. The problem’s complexity is apparent
from the high dimensionality of S, V and I. Refer to
Scott et al.[32] for an in-depth discussion and survey.



View Planning Requirements Development of
the algorithm described in this paper was driven by
a set of view planning requirements derived from ex-
amination of the state-of-the-art and consideration of
nature of the problem to be addressed [32]. In sum-
mary, a view planning algorithm should:

e incorporate quantified model quality objectives,

e be generalizable to other imaging technologies,

e handle generalized viewpoints,

e provide overlap for integration and registration,

® be robust to sensor and positioning errors,

e be competitive with human operator efficiency,

e be self-terminating,

e require limited a priori knowledge,

e handle a wide range of object shapes and topologies,
e handle a wide range of object material properties,
e model the shape of the sensor frustum,

¢ include shadow effects,

e model measurement variation within the frustum,
plus common sensing artifacts,

e handle unconstrained pose space,

e handle positioning system limitations and

e model pose error over the imaging workspace.

No existing method fully meets these requirements
[32]. This paper presents a specification-driven,
model-based technique satisfying most of these crite-
ria and advancing performance on the main open view
planning issues - efficiency, accuracy and robustness.

Outline The remainder of this paper is organized
as follows. Sections 2 and 3 describe the algorithm
and provide a theoretical framework. Sections 4 and 5
analyze discretization of surface and viewpoint space
while section 6 addresses pose error. Experimental
results are presented in section 7. Section 8 concludes
the paper and discusses issues for future work.

2 Modified Measurability Ma-
trix Algorithm

2.1 Multi-Stage Model-Based View
Planning

Object reconstruction requires both scene exploration
and precise measurement. Traditional view planning
methods [32] attempt these functions simultaneously.
They repetitively take an image, acquire new infor-
mation, augment a partial scene model and select the
next-best-view (NBV). The strategy is inherently sub-
optimal as early selections cannot be revoked.

View planning for inspection [39, 21] is intrinsically
model-based as it starts with a CAD model. Some
contour following schemes [36, 17] utilize an initial low
resolution object scan for subsequent view planning
purposes. Garcia [15] first attempts to sample most
of the object using an occlusion edge method, leav-
ing computationally expensive visibility analysis to a
second hole-filling stage.

Our approach, multi-stage model-based view plan-
ning [28], separates scene exploration from precise
measurement. We begin with a rapid, preprogrammed
exploration phase to acquire a sparsely-sampled ex-
ploratory or rough model. This approximate repre-
sentation is used to plan a precise, dense scanning
phase to acquire the desired high quality reconstruc-
tion, the fine model. Exploiting scene knowledge em-
bedded in the rough model, the precision measurement
phase can use optimized revocable viewpoint selection
strategies. Efficient sampling of surface and viewpoint
space is achievable due to the high degree of intrinsic
redundancy. Sensing physics provide important clues
for viewpoint optimization. Consequently, we follow
a generate and test procedure concentrating measur-
ability estimation on a coarse surface representation
with respect to a modest number of well-chosen can-
didate viewpoints. In practical implementation of a
fully automated system, we anticipate a third problem
identification and resolution phase would be required
to handle any residual model deficiencies'. This paper
focuses on the second phase, which we believe is the
key to view plan automation for high precision mod-
eling and inspection.

2.2 Specification-Driven Reconstruc-
tion and Inspection

Specification-driven (or “performance-oriented”) [26,
23] view planning starts with explicit, quantified qual-
ity objectives in a model specification and finishes
with quantified performance measures. Currently, our
model specification applies quantitative requirements
for measurement precision and sampling density uni-
formly across the object with an implicit full coverage
requirement. In some applications, it may be appro-
priate to limit coverage to specified regions or to apply
non-uniform measurement criteria. Quantified output
measures include view plan quality and efficiency (Sec-
tion 2.4). The approach requires good system models:
(1) a sensor model describing camera and frustum ge-

1Such a problem identification and resolution phase would
realistically be required for any production view planning sys-
tem with high quality measurement objectives.



ometry and characterizing measurement performance
within the calibrated region and (2) a positioning sys-
tem model describing the degrees of freedom, range of
motion and positioning performance within the cali-
brated movement envelope.

Cowan and Kovesi [11] use a constraint satisfaction
approach for sensor pose. Tarabanis et al [38] synthe-
size views for intensity cameras based on a task spec-
ification, models for scene geometry and sensor and
illumination optics. Soucy et al [36] digitize an ob-
ject’s surface to a prescribed sampling density using
contour following. Prieto [21] sets CAD-based inspec-
tion criteria based on range sensor performance char-
acterization. A number of authors consider grazing
angle as a subjective quality factor. Otherwise, most
view planning research has been implicitly limited to
full surface observation.

2.3 Measurability Matrix

Our basic data structure is a measurability matrix
M = [m;;]. Rows span discretized surface space S
(vertices of the rough model mesh) while columns span
discretized viewpoint space V. The computational
complexity of the original measurability matrix ap-
proach by Tarbox [39] was prohibitive, given the span
of the discretized variables. Our modification applies
objective output requirements (measurement precision
and sampling density) in lieu of subjective grazing an-
gle constraints. We also mathematically model sensor
and positioning system performance, optimize surface
and viewpoint space sampling prior to computing M
and address sampling and pose error impacts. Both
binary and analogue measurability matrices can be de-
fined. The binary version is more compact and best
suits the needs of the current work.

2.4 Terminology and Performance

Measures

Measurability matriz element m;; is a binary estimate
of the measurability of a rough model surface point s;
from viewpoint v;, subject to the following tests:
a. Frustum occupancy - s; must lie within the world
space sensor frustum defined by v;.
b. Visibility - s; must be visible to the optical source
and receiver positions defined by v;.
c. Specification-compliance - The estimated measure-
ment precision and sampling density for s; as sampled
by v; must be within specification.

The measurability of a single viewpoint m(v;) or,
equivalently a range image, is the ratio of the coverage

Figure 2: Measurability Projection: (L) Sensor Bore-
sight View, (R) Orthogonal View ; Black - unmea-
sured, White - samples meeting measurement criteria

|S;| of that viewpoint relative to the size of the surface
patch as a whole |S|. That is m(v;) = |5;|/|S|.

Similarly, the composite measurability of a set
of viewpoints is the ratio of the joint coverage of
those viewpoints to the size of the surface patch -
m(Vl,Vz,.. . ,Vk) = |Sl USyU... USk|/|S|

A measurability projection is a 2D projection of a
labeled rough or fine model mesh whose vertices are
encoded with their binary measurability. In this pa-
per, binary measurability projections are shaded black
for unmeasured and white for measured in compliance
with the model specification. Regular grey scale shad-
ing is superimposed to convey shape. The example at
Figure 2 represents two views of one range sampling of
the rear of the Tsimshian stone mask object described
in Section 7. Shadowing and surface inclination effects
on measurability can be observed?.

The view planning algorithm operates on estimated
measurability of viewpoints based on an approximate
exploratory scene model. When the view plan is exe-
cuted by a real sensor against the real object or by a
sensor model against a simulated fine model, the result
is verified measurability.

The following metrics evaluate view planning algo-
rithm performance [32]. View plan quality is deter-
mined by its composite verified measurability m,. The
goal is m, = 1.0.

View plan efficiency is the length of the generated
view plan relative to the optimum i.e. e, = nop/n,
where n = |N|. As determining nop; may be impracti-
cal for complex tasks, a surrogate is the length of the
best solution np.s; found thus far amongst all tech-

2The patchy sampling observed in this example is commonly
seen in range images. Most conventional view planning tech-
niques would have difficulty handling such discontinuous data.
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Figure 3: Line-scan Range Camera Geometry

niques examined for the same task i.e. nopt X NBest-
The goal is e, = 1.0.

View plan computational efficiency measures are
computational complexity and execution time on a de-
fined platform.

2.5 Sensor Performance Model

Range Camera Geometry We have modeled the
performance of several range camera designs, includ-
ing line and raster scanning modes. The imaging ge-
ometry of a common configuration, the line-scan cam-
era, is shown at Figure 3. By convention, the camera
axis defines the negative z-axis. Scanning occurs opti-
cally in the x-z plane, where ¢, is the instantaneous
laser scan angle, and mechanically in the y-z plane
by physical movement of the camera along its y-axis.
The frustum is defined by ®, (x-z plane angular field
of view), L, (y-z plane linear scan length) and R,in
and R, (minimum and maximum scanning ranges).
Separated by the optical baseline b, the transmitter
(laser) and receiver (detector) are housed in a single
physical unit and move in unison.

Measurement Precision We estimate the statis-
tics of post-calibration, residual random measurement
error of the range sensor as 6, = Cy2, 6y = Cyz, 6, =
C.z%. In the foregoing, 6,,6,,6, are standard devi-
ation estimated geometric noise components. Coeffi-
cients (Cy,Cy,C;) are derived from curve fitting cal-
ibration data (e.g. [13]). As noise along the sensor
boresight predominates, we use 6, as a surrogate for
measurement precision. This is further modified by an
experimentally-based grazing angle model®. Incidence

3Excepting Prieto [21], grazing angle effects [39, 1, 19, 20]
have generally been treated subjectively by giving preference to

angle effects are most noticeable in the plane of trian-
gulation, the yz-plane, where they generally follow an
inverse cosine relationship up to a cut-off angle ¢,, due
to distortion of the shape of the envelope of received
energy on the camera detector. There is no noticeable
inclination effect in the scanning plane up to a cut-off
angle t,,, at which point the received energy drops
below threshold. Typical thresholds are ¢,, = 60° and
tg, = 70°. Thus, we model estimated precision as
follows, where U(6) is the unit step function.

N C,z2

O = .
Cos 03/2 [1 - U(|0y2| - tyz)] [1 - U(|0zz| - t:cz)]

1)

Sampling Density We use a conservative chord-
based estimate for sampling density p., where dx and
oy are x- and y-axes sampling intervals. Then,

1
N, = 2
P = 5 1 o ?
o, 1
where dz = szm 080y, ?
L, 1
and dy N, — 1cosf,, W

In Equation 3, R,, = 2/ cos ¢, is the slant range,
®,/(N, — 1) is the angular sampling interval and
1/ cosf,, is the inclination effect in the x-z plane. In
Equation 4, L, /(N,—1) is the linear sampling interval
and 1/ cos b, is the inclination effect in the y-z plane.
Image size is N,-by-N, samples. Combining these ex-
pressions, the estimated sampling density becomes

(N, — 1)*(N, — 1)®cos? 0, cos® 6.

Pz =
(5)

2.6 Positioning System Error Model

A variety of positioning systems are in common us-
age, covering a wide range of accuracy, including
co-ordinate measuring machines, translation stages,
turntables and robot arms. It is difficult to charac-
terize accuracy of positioning systems with multiple
degrees of freedom [34, 35, 9]. We therefore adopt
a simplified pose error model [31]. As for the sensor,
we assume calibration removes systemic errors, leaving

low grazing angle viewpoints rather than evaluating the objec-
tive effects of grazing angle on measurement quality.

RzzzthQ(Ny —1)2cos? 6, + LyQ(Nw —1)2cos28,,



Acquire rough model by pre-programmed exploration
Decimate the rough mesh model
Segment the rough model by feature type (optional)
While (Unscanned rough model regions)
Generate optimal candidate viewpoint set
Compute measurability, form measurability matrix
Solve the set covering problem, select viewpoints

Table 1: Modified Measurability Matrix (3M) Algo-
rithm Pseudo Code

only residual stochastic errors. Errors in sensor posi-
tion, boresight axis and boresight rotation (twist) are
modeled as independent random processes. Position
error is modeled as a 3D vector uniformly distributed
in direction, whose magnitude is a zero-mean Gaus-
sian process with standard deviation o,. Axis error is
modeled by a unit vector uniformly distributed on a
cone centered on the boresight whose half-angle is a
zero-mean Gaussian process with standard deviation
0q. Twist error is modeled as a zero-mean Gaussian
process with standard deviation o;. We assume con-
stant pose error statistics but spatially-varying perfor-
mance can be accommodated. In practical application
of our view planning algorithm, this simplified pose
error model should be replaced by one tailored to the
specific positioning system configuration in use.

2.7 Modified Measurability Matrix
(3M) Algorithm

Table 1 shows the 3M algorithm in pseudo code.

Rough Model Acquisition A rough model is ac-
quired by a rapid, preprogrammed view plan and ro-
bust model building techniques [22]. Polygonal meshes
are used for their inherent flexibility. The approach to
automated rough model acquisition will depend on rel-
ative object size and imaging system capabilities. A
coarsely sampled view sphere approach [32] would be
suitable for objects comparable in size or smaller than
the sensor frustum. For large objects, a coarsely sam-
pled space carving technique would be suitable [32].

Rough Model Decimation The rough model is
decimated [37] to a level just adequate for view plan-
ning. This level is experimentally determined for the
application domain. Decimation concentrates sam-
pling in high curvature regions, which is of interest
both for viewpoint generation and for shape fidelity.
Section 4 examines object surface space sampling.

Rough Model Segmentation For a given view-
point, object coverage is limited by the sensor cross-
sectional footprint and by occlusion. Segmenting the
object surface into patches along the boundaries of
major geometric features reduces the net cost of com-
puting M. However, this complexity reduction adds
a preprocessing step, may increase view plan length
due to patch edge effects and may introduce occlusion
estimation errors by localizing view planning to indi-
vidual surface patches. The technique should be used
sparingly. Some objects with distinct edges lend them-
selves to segmentation (e.g. the mask object shown
later), others do not. Segmentation is frequently ap-
propriate for inspection.

Viewpoint Generation Candidate viewpoints are
generated that are most likely to measure the surface
in accordance with the specified criteria. In the sim-
plest case, a candidate generalized viewpoint is created
for each surface point which is optimal for that sur-
face point - that is, for each vertex of the rough model.
Section 5 describes optimized viewpoint generation.

Measurability Estimation Using the input spec-
ification and system models, a measurability matrix
is computed for the entire rough model or for each
surface patch, if segmented. Each element m;; of M
is subject to the frustum occupancy, visibility and
specification-compliance tests. For segmented models,
visibility analysis is local to the target surface patch.

Viewpoint Selection Upon computation of the
measurability matrix or matrices, a number of tech-
niques are available to solve the set covering problem
(Section 3) to derive a set of viewpoints, the view plan.
If the rough model has been segmented, component
view plans are merged.

Summary The 3M algorithm is specification-
based, using objective measurability criteria from
experimentally-derived system performance models.
Complexity is reduced by optimized, sparse sampling
in S and V plus optional segmentation of the problem
into smaller components.

3 Theoretical Framework

VPP Solution Landscape Pose uncertainty due
to positioning system inaccuracy necessitates image-
based registration [5], in turn requiring a degree of im-
age overlap i.e. viewpoint correlation. Viewpoint cor-
relation also impacts discretization of viewpoint space.
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Figure 4: Measurability Matrix Row and Column Vec-
tors

We desire candidate viewpoints sufficiently nearby to
satisfy registration and integration requirements yet
far enough apart for efficient sampling of viewpoint
space. A physics-based VPP set covering algorithm
based on this paradigm may be possible.

Measurability Matrixz It is instructive to partition
M into column vectors Mg ; and row vectors M; v .
The set S; of surface elements measurable by view-
point v; is defined by the corresponding column vector
M, ;. Similarly, the region V; of viewpoint space from
which surface element s; is measurable corresponds to
the row vector M, y. These relationships are illus-
trated in Figure 4 with 2D slices through an object
resembling a coffee cup. Thus, the solution to the
VPP is simply to cover the rows of M with a minimal
subset of its columns. Consequently, it is immediately
apparent that the VPP is isomorphic to the set cover-
ing problem (SCP), a well-studied problem in combi-
natorial optimization known to be NP-complete [16].

IP Formulation We can then formally express the
VPP as the following integer programming (IP) prob-
lem [27], where we use IP notation conventions:

v
Minimize Z = _ ¢;x; , subject to (6)
i=1
v
Zmiij-Zl;z'zl,...,s, (7)
j=1

Ckj Z!Ek.’L‘j; kzl,---,(v—l); j:k+1,---,v , (8)

g €{0,1};i=1,...,0. )

Equation 9 applies an integer constraint on view-
point variable z;. X = [z;] spans viewpoint space V
as sampled by the viewpoint generation stage. The
optimal view plan X is the lowest cost viewplan. In
the objective function (Equation 6), coefficient c; is
the movement cost associated with viewpoint j. This
usage would apply to a positioning system with sig-
nificant, non-uniform movement costs?. Otherwise,
movement costs can be set to 1, an easier case known
as the unicost SCP [2], the case for experiments re-
ported herein. Equation 7 ensures each row of M
(each surface point) is covered by at least one view-
point. Equation 8 imposes an image-based registra-
tion constraint, where c; is 1 if a registration path
exists between viewpoints x; and z; and 0 otherwise.
The technique for computing cj; from M is based on
viewpoint correlation [27, 29]. There is no need to in-
clude a viewpoint feasibility constraint in the above
formulation. It is more efficient to avoid generating
infeasible viewpoints.

Set Covering Algorithms Several  well-
established techniques are available to solve the
set covering problem, including simulated annealing
[33], genetic algorithm [2], Lagrangian relaxation
[8, 10] or other methods [25]. For most reconstruction
tasks, we have found that the unsophisticated but fast
greedy search algorithm [14] provides good results.
View plan lengths are close to the optimal. Marginal
view plan inefficiency is offset by improved immunity
to various planning and data acquisition errors
provided by view plan redundancy. Tasks demanding
high view plan efficiency, such as industrial inspection
applications involving repetitive view plan execution
or some object reconstruction tasks, can employ one
of the more efficient but computationally expensive
set covering algorithms.

Computational Complexity As a pre-planned
activity, physically scanning and building the ex-
ploratory model has constant complexity, which is not
to say that the time taken for these activities is neg-
ligible. The set covering problem is NP-complete but
has a variety of sub-optimal solution techniques. Con-
structing M is the computational crux. M has sv el-
ements, where s = |S| is the number of rows (surface

4An example is a rotary joint limited to a discrete set of ac-
curate orientations where change requires a unlock-rotate-relock
sequence. In some cases, system recalibration may be required
upon reconfiguration of a positioning system component.



points) and v = |V is the number of columns (view-
points). The most computationally intensive task is
visibility analysis. In general, ray tracing is required
twice per m;; - once each for the optical source and
receiver. Each ray tracing operation involves testing
transmit or receive rays with each triangle ¢; of the
rough model mesh. As the number of triangles ¢t = s,
the complexity of deriving M is O(s?v). For seg-
mented models, consider (for analysis purposes only)
uniform segmentation into ¢ segments. For each seg-
ment, s = s/c and v — v/c due to our viewpoint
generation scheme (Section 5). Visibility analysis is
local to each segment, equivalent to partitioning the
global measurability matrix. Computing one matrix
has complexity O(s?v/c?®) and all matrices, O(s?v/c?).
It is evident that success with measurability matrix
algorithms requires sparse sampling of object surface
space and viewpoint space. The power of the tech-
nique is also immediately apparent for we have, in one
data structure, all information necessary to construct
an accurate, robust and efficient view plan. This raises
important questions, which we address next:
e How rough can the exploratory model be? (Sec. 4)
e How to optimally sample viewpoint space? (Sec. 5)
e View plan tolerance to pose uncertainty. (Sec. 6)

4 Sampling Object Surface

Space

The required level of model detail has received lim-
ited attention in the view planning literature. Tar-
box’s analysis of sampling density [39] was limited to
grazing angle effects. Range imaging is subject to lim-
itations of a sampled representation of a continuous
surface, so aliasing effects can be anticipated. Sur-
face sampling density dominates measurability matrix
computation and influences estimating accuracy for
surface normals, grazing angles and feature visibility.

Experiments [28] have shown a rough model sam-
pling level 32 times lower than the target fine model
provides good measurability prediction for deep cav-
ities, a scanning challenge for triangulation-based
range cameras, and for natural objects with multiple
shadow features. Sampling density can be further re-
duced for less complex shapes, such as manufactured
objects with smoothly flowing lines. The lower bound
is constrained by frustum cross-section, pose error and
registration/integration overlap requirements. A rule
of thumb for the lower bound on rough model sampling
density is A,/25 where A, is the frustum cross-section

area at the sensor’s optimal stand-off distance.

These experiments also showed that sampling noise
as high as o, = 0.02R,;, had only a minor impact.
Measurability estimate uncertainty was marginally in-
creased but average measurability was largely un-
changed. On average, there was a slight increase in
view plan length. This additional scanning cost was
offset by improved robustness to other error sources
from the more extensive covering of viewpoint space.

These sampling rate and error tolerance levels are
suitable initial parameter settings but will require ex-
perimental optimization for each imaging environment
set-up and class of object shape complexity.

5 Sampling Viewpoint Space

Conventional Schemes A common stratagem to
constrain the high dimensionality of V is to use a vir-
tual, object-centered “view sphere”. Almost all view
sphere approaches [32] use a fixed stand-off distance
such that the sensor frustum encloses the entire ob-
ject. The strategy does not take sensor performance
variability with stand-off distance into account, is a
poor match for the mobility envelopes of many posi-
tioning systems and fails completely when object size
exceeds frustum dimensions.

With few exceptions[38, 20], traditional methods fail
to recognize the importance of sensor parameters in
addition to pose. Difficult view planning tasks cannot
ignore configurable sensor parameters.

Prieto [21] synthesizes optimum viewpoints patch-
by-patch by computing surface normals from NURB
surfaces in a CAD model. If not occluded from the tar-
geted patch, the viewpoint is set along the surface nor-
mal at the optimum stand-off distance, else it is moved
until visibility is achieved at a minimal grazing angle.
The technique is used to generate view swathes [32] in
an inspection application for manufactured parts.

In Lamb’s contour following approach [17], pose is
constrained by maintaining sensor stand-off so that
the surface is centered in the sensor DOF, scanning
perpendicularly and minimizing orientation changes.
In general, these are mutually exclusive constraints.
Soucy’s contour following approach [36] is somewhat
similar. Both schemes generate view swathes.

Model-based Viewpoint Generation To the first
order (Equation 1), measurement precision deterio-
rates quadratically with range and inversely in pro-
portion to the cosine of the grazing angle in the plane
of the optical baseline. Optimal precision will there-
fore be achieved with the camera positioned at mini-
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Figure 5: Viewpoint Generation - Optimal Scanning
Zone Algorithm

mum range, perpendicular to a targeted surface point,
ensuring both incidence and scanning angles are zero.
The set of all such viewpoints, corresponding to point-
by-point dilation of surface points along their local
normals, forms an optimal viewpoint zone So. S is
smooth and well behaved in regions corresponding to
planar and convex portions of the object. Depend-
ing on surface curvature and stand-off distance, self-
intersections may occur in regions corresponding to
surface concavities. The local topology of S, remains
unchanged by dilation. We now describe two view-
point generation algorithms based on this concept.

Optimal Scanning Zone Algorithm An ideal
candidate generalized viewpoint (v,)\g) with pose v
and parameters Ag is created for each surface point
(Figure 5). Each rough model vertex is dilated along
the local surface normal by a stand-off distance fyR,,
where f; is a stand-off adjustment factor and R, is the
optimum scanning range, usually equal to Rn. f4
is an experimentally-derived constant slightly greater
than one to allow for rough model sampling errors.
We find fq = 1.02 is a good choice. The dilated vertex
becomes the position of the corresponding candidate
viewpoint. The viewpoint’s axis is set to the nega-
tive of the dilation vector. Setting twist orientation is
less straightforward as it is influenced by shadow ef-
fects arising from object shape over a broader surface
region. We have experimented with several different
approaches [23]. In one of these, dubbed “variable”,
sensor twist angle is set to maximize the distance of
the receiver from the surface patch to enhance visibil-
ity of most features.

We postulate the algorithm provides a near-optimal
sampling of V' for objects with Lambertian scattering
properties®. Viewpoint parameters \g are optimized

5For specular surfaces, imaging geometry is more sensitive
and must take the location of both the optical transmitter and

Surface Point Set S

Sparse .- Measurability Matrix M
surface
sampling
decimation factor d, \\
Very sparse 1:d, mapping Viewpoint space
suface [ @00 . @&\ — — — — sampling:
sampling . - very sparse position
twist discretization
discretization - multiple orientations
factor d; per position

Viewpoint Set V

Figure 6: Viewpoint Generation - Decoupled Algo-
rithm

for each candidate viewpoint. The optimal scanning
zone can be mapped to two dimensions, reducing V' to
2D from 6D*. With a 1 : 1 mapping between S and

V', computational complexity becomes (9(‘2—2)

Decoupled Algorithm It is useful to decouple dis-
cretization of V from S. Rough model decimation con-
centrates vertices in high curvature regions, desirable
for conserving shape fidelity and for viewpoint gener-
ation. While viewpoint correlation is strongly influ-
enced by object shape, it is evident that sampling of
viewpoint space remains highly redundant, suggesting
we can afford a further sub-sampling by an additional
decimation factor d,, reducing v to s/d,. A further
consideration is minimization of shadow effects which
are sensitive to sensor twist orientation. Experiments
have shown it is difficult to reliably characterize such
features to automatically set twist orientation. Sub-
sampling the twist component into d; quantization in-
tervals resolves this problem. Overall computational
complexity becomes O(gjgz) We find good results
are obtained for d;/d, =~ 1.

The essence of the decoupled algorithm, then, is fur-
ther decimation of the already coarse rough model for
more efficient viewpoint generation. We now use two
rough model variants (Figure 6) - one to represent sur-
face geometry and the other for viewpoint generation.
The original rough model RM, remains the basis for
sampling surface space and is tied to rows of M. It is
further decimated to create RM, which becomes the
basis for viewpoint generation and relates to columns
in M. The strategy maintains coarse sampling in RM,
at a level of shape fidelity sufficient for visibility anal-
ysis and surface normal estimation. Very sparse sam-

receiver into account.
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Figure 7: View Planning with Pose Uncertainty

pling in the position component of viewpoint space in
RM, reduces viewpoint correlation to a more efficient
level while increased sampling of the twist component
of orientation is more robust with respect to object
shape complexity and shadow effects.

Viewpoint Filtering Collision of the sensor and
positioning system with themselves, the object or any
other structure in the imaging environment is a con-
cern. Viewpoints violating collision avoidance zones
are deleted with the expectation that associated sur-
face regions will be covered by adjacent viewpoints
on S,. Pose constraints due to mobility limitations
are applied on a case-by-case basis, mapping the op-
timum viewpoint to the nearest feasible pose. Exces-
sive mobility constraints will negate the advantages of
the proposed viewpoint generation scheme. Finally,
configurable sensor parameters are optimized for each
candidate viewpoint based on the model specification,
system capabilities and rough model surface charac-
terization. For the sensor studied in the present work,
one parameter (scan length) is configurable.

Summary Our viewpoint generation approach op-
timizes sampling of V' with generalized viewpoints by
exploiting a sensor performance model and knowledge
of approximate object geometry.

6 View Planning with Pose Un-
certainty

6.1 Pose Error Effects

When a view plan is sent to a positioning system
whose accuracy is inferior to the sensor, the cover-
age of individual viewpoints and the view plan as a

whole are compromised. Image coverage, measure-
ment precision, sampling density and feature visibil-
ity are effected (Figure 7). We can recover an ac-
tual pose estimate post-facto with suitable registration
techniques and subsequently re-estimate measurement
quality. However, the process is still left with data ac-
quisition differing from that which had been planned.
As pose error deteriorates, the computationally inten-
sive view planning phase is progressively compromised
- ultimately to be rendered futile. Consequently, there
is a need to make the process robust to pose error.
Our analytical and experimental examination of
pose error effects on range sensing [31, 30] has shown
the phenomena to be complex. Pose position error ef-
fects on a single view are minor. Pose twist orientation
errors are amplified by the length of the sensor baseline
but their impact is also minor at anticipated error lev-
els. Axis orientation error is particularly troublesome
as the effects are amplified by standoff range. Due
to view plan redundancy, partial-to-complete mask-
ing of pose error effects is found at low error levels,
followed by a rapid decrease in average measurability
and rapid increase in measurability variance with pose
error deterioration. As coverage failure in reconstruc-
tion and inspection tasks implies costly rework, such
unpredictability may be unacceptable.

6.2 Pose Error Compensation

The problem of pose error effects and their compensa-
tion has received scant attention. Tarabanis et al [38]
use a synthesis approach for generalized viewpoints
which seeks to centralize viewpoints in the admissi-
ble domain. Tarbox [39] uses morphological erosion
of viewpoints on the periphery of viewpoint sets to
reduce pose error vulnerability. While useful, neither
approach is based on objective performance criteria
nor the actual error mechanisms.

Pose error impacts all three measurability tests -
frustum occupancy, visibility and specification com-
pliance. Within expected pose error levels, frustum
occupancy is degraded the most, while the impact on
the other measurability tests is minor.

Two mechanisms can mitigate pose error effects -
view plan redundancy and conservative adjustments
to the estimation processes for frustum occupancy,
specification compliance and visibility. View plan re-
dundancy has a major mitigating effect. As a conse-
quence, view plans for objects with complex geometry
are less vulnerable to pose error because shape com-
plexity drives up view plan redundancy. The reverse
is true for objects with simple geometric shape.

Our pose error compensation scheme [24] operates



at the measurability matrix computation stage for the
exploratory model. It compensates for error in esti-
mating frustum occupancy and specification compli-
ance by substituting more conservative test parame-
ters®. The adjustments are based on a statistical anal-
ysis of pose error effects [31] for the applicable imag-
ing environment. These parameters are modified by
a user-selected percentage compensation factor. The
compensation factor is generally set at a low value,
typically 10% - 40%, to maintain view plan efficiency.
Too high a compensation value unnecessarily drives up
view plan length. The approach is a beneficial trade-
off between statistically-based measurability parame-
ter adjustment and view plan redundancy naturally
associated with object shape complexity.

As results in the next section illustrate, the compen-
sation scheme improves view planning performance for
a given view plan by raising the expected value of
measurability to almost the pose-error-free case and
by reducing measurability variance. Pose error com-
pensation is particularly advantageous for inspection,
which usually involves multiple executions of a single
view plan. The technique is also useful for reconstruc-
tion but results will be less predictable as the view plan
is normally executed only once. Appropriate system
design should specify positioning system performance
compatible with the target measurement precision and
sampling density goals. Pose error compensation can
then be applied to further mitigate pose error effects.

7 Experimental Results

Ezxperimental Process Our approach to examin-
ing the view planning problem has been to use a
high fidelity closed loop simulation of the environment.
The experimental process (Figure 8) begins with a
model specification, an imaging environment specifi-
cation (range camera and positioning system) and a
detailed object model acquired by a high performance
range camera. To simulate rough model acquisition,
the fine model is decimated and sampling noise is op-
tionally added. A view plan is then computed by the
3M algorithm based on the rough model, model spec-
ification and environment specification. The derived
view plan is optionally corrupted with pose error. The
loop is subsequently closed by executing the noisy view
plan against the original fine model. Finally, perfor-
mance measures are computed.

SWe do not presently make allowance for the impact of pose
error on visibility estimation, but this could be added without
difficulty.
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Figure 8: Experimental Process - Measurability Veri-
fication

Specification H Sensor 1 H Sensor 2
XZ-plane FOV (2,) 27° 24°
Optical baseline (b) 180mm 100mm
Min range (Rmzn) 142mm 205mm
Max range (Rma,:c) 407mm 265mm
YZ-plane max scan (Ly) | 300mm 200mm
Max image size (rangels) || 256x256 1024x1024

Table 2: Range Sensor Specifications

We have chosen to concentrate on the rough model
to fine model stage, believing this to be the crux of
specification-driven view planning. The simulation
method was chosen for its ability to explore the sub-
ject matter extensively by conducting a large number
of experiments with full control and access to system
parameters. A variety of existing techniques are avail-
able to acquire an approximate object model at the
scene exploration stage [32].

Two experiments are reported to demonstrate the
3M algorithm. The experiments examine two range
cameras with different capabilities, different model
specifications, two objects presenting difficult scan-
ning challenges and two viewpoint generation schemes
with the added dimensions of rough model approxima-
tion error, pose error and pose error compensation. In
other work, we examine rough model approximation
error [28], pose error effects [30, 31] and pose error
compensation [24] in greater detail.

Both modeled range cameras (Table 2) are line-scan
configurations but use different range measurement
technology. Sensor 1 is an early generation commer-



Figure 9: Tsimshian Stone Mask

cial Biris scanner characterized by a large optical base-
line and depth of field. In comparison, sensor 2, an
early generation autosynchronized scanner, exhibits a
shorter optical baseline, narrower depth of field and
larger range image size. These technologies are de-
scribed at www.vit.iit.nrc.ca/VIT . html.

Variable Algorithm The Tsimshian stone mask’
(Figure 9), carved from stone in the form of a thick
shell, is a case where segmentation is advantageous.
A high quality model acquired by the NRC colour
range camera was decimated to a lower resolution
mesh (s = 244) and partitioned into front and back
segments. Featuring smaller cavities and ridges within
the main steep-walled cavity, the rear segment pre-
sented a difficult view planning challenge for sensor
1’s long baseline. The specification called for 50 um
and 2 s/mm?. Surface sampling noise was not added
in the trials reported here but pose error was intro-
duced for a second set of experiments. The “variable”
viewpoint generation algorithm was used (Section 5).

In the absence of sampling or pose errors, the view
plan of size nys = 7 computed by the variable algo-
rithm with greedy search produced verified measur-
ability of m, = 0.9807 with respect to the specified
goals. The shortest view plan found by the probing
method [25] (size npest = 5) gave m, = 0.9663. The
efficiency of these plans is e, = 0.714 and e, = 1.0,
respectively. Figure 10 presents the verified measur-
ability covering for the more efficient view plan. The
left column shows measurability projections along the

"The Tsimshian stone mask is a masterpiece of northwest
coast art in the collection of the Canadian Museum of Civiliza-
tion (VII-C-329). It was collected at the Tsimshian village of
Kitkatla in 1879 by I.W. Powell.
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View Comp. || Measur. Measur.
Plan (average) (std dev)
NBest =5 || 0% my = 0.9523 || oy, = 0.0120
Ngs =7 0% my = 0.9664 || oy, = 0.0123

Table 3: Verified Measurability - Mask with Pose Er-

ror, no Compensation

View Comp. || Measur. Measur.
Plan (average) (std dev)
NBest =5 || 35% my = 0.9642 || 0y, = 0.0114
Ngs =7 35% my = 0.9795 || o, = 0.0066

Table 4: Verified Measurability - Mask with Pose Er-
ror Compensation

camera boresight for individual viewpoints while cu-
mulative measurability projections are shown on the
right from an orthogonal perspective. For display con-
ventions, see Section 2.4. All surface points are mea-
sured within specification excepting a few spots on the
steep side walls of the main cavity beyond the reach
of this long baseline sensor. These results are compa-
rable to what a skilled operator could achieve.

Next, the computed view plan was corrupted by
pose error using the model described in Section 2.6.
Table 3 shows average and standard deviation veri-
fied measurability in the presence of pose error (o, =
3%Rmin = 4.26mm, 0, = 0 = 3°) without pose error
compensation. Table 4 shows the impact of compen-
sation for the same level of pose error. In both cases,
twenty trials were conducted. Compensation allows us
to recover, on average, almost the same level of mea-
surement performance in the absence of pose error.

Decoupled Algorithm The second test object, the
well known bunny (Figure 11 (a)), presents a challenge
from difficult self-occlusion problems in the vicinity of
closely-spaced, large protuberances (the ears). Less
obvious, but just as difficult, are subtle shadowing
problems around a variety of folds and creases in the
bunny’s fur as well as small crevices around the legs,
feet, chin, ears and tail. Sensor 2’s shallow depth of
field presents an additional planning challenge. The
model specification called for 40 pum and 10 s/mm>.
Segmentation was not used and view plans were com-
puted for the object as a whole. Viewpoints were gen-
erated by the “decoupled” algorithm previously de-
scribed at Section 5. A rough model (|[RM,| = 702)
captured the complex shape and was further deci-



Figure 10: Verification of Tsimshian Mask View Plan
Left - Individual Viewpoint Measurability Projections
- Camera Boresight View

Right - Cumulative Measurability Projections - Or-
thogonal View
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Figure 11: Bunny Models: (a) High Resolution Model,
(b) Noisy RMj, (c) Noisy RM,

View Comp. || Measur. Measur.
Plan (ave) (std dev)
NBest = 16 || 0% my, = 0.9978 || o, = 0.0029
NpBest = 16 || 40% m, = 0.9992 || o,,, = 0.0011

Table 5: Verified Measurability - Bunny with Pose
Error Compensation

mated to |RM,| = 72 for viewpoint generation. The
twist component of viewpoint orientation was quan-
tized in d; = 10 intervals of 36°.

In a baseline experiment without sampling or pose
errors, the shortest view plan found by the probing
method (size npest = 16) produced verified measura-
bility m, = 1.0, e, = 1.0 while the greedy search view
plan of size nys = 18 gave m, = 1.0, e, = 0.889.

Next, sampling noise 0.3%Rpin = 0.615mm was
added, giving the rough models a noticeably crumbled
appearance (Figure 11 (b) and (c)). Pose error was not
added at this stage. The decoupled algorithm pro-
duced view plans of ngs = 20 with m, = 1.0, e, = 0.8
and size npesy = 16 with m, = 0.9993, e, = 1.0.
While less efficient, it can be seen that redundancy in-
herent with greedy search set covering protects against
modest levels of rough model sampling error.

Maintaining sampling error, we next added pose er-
ror o, = 6.15mm, 0, = oy = 3°. Table 5 shows verified
measurability statistics for a constant view plan length
n = 16 at these levels of sampling and pose error, with
and without pose error compensation. Compensation
recovers average measurability to the pose error free
case and reduces measurability variance.

Figures 12 and 13 present one trial of the verified
measurability covering for the most efficient view plan
(nBest = 16) in the presence of surface error and pose
error at the levels described plus pose error compen-
sation. As before, individual shaded measurability
projections are shown on the left while cumulative
measurability projections along the principal axes are



shown on the right. It will be seen that most of the ob-
ject is measured within approximately half of the view
plan, with the remainder addressing small, difficult to
measure patches. In this trial, all surface points were
measured within specification with the exception of
one vertex in the nap of the neck, giving m, = 0.9999.
The statistical performance of 40 trials in this series is
shown in Table 5. These results are also comparable
to what a skilled operator could achieve.

Computational Efficiency The 3M algorithm
computed view plans for the mask rear segment in
3.6 minutes and the bunny object in 28.1 minutes,
running on a 2.6 GHz Pentium 4 PC. Computing the
measurability matrix is the dominant process. These
times are well within our goal [32] of producing a
specification-compliant plan for a moderately complex
object within one hour. Coded in C++, the present
research implementation emphasizes robustness and
flexibility. Substantial improvement would be achiev-
able with production code efficiencies, more narrowly-
specified functionality and with parallelization, as the
algorithm is inherently parallelizeable.

3M Algorithm FEvaluation We now evaluate the
3M algorithm with respect to the criteria specified
in the introduction. Other contemporary techniques
have been similarly evaluated at [32].

e Model specification Quantified precision and
sampling density requirements are imposed in a model
specification for the view planning task.

e Generalizable algorithm The method is appli-
cable to any triangulation-based active range sensor
and positioning system whose performance can be
mathematically modeled.

e Generalized viewpoints Generalized viewpoints
are optimized at the viewpoint generation stage prior
to measurability matrix computation. Parameters
are defined as fixed or configurable, with nominal
values and limits. For comparable computational
complexity, experiments show that performance of
the decoupled algorithm is superior to the variable
algorithm, particularly for natural objects with
randomly-oriented shadow features.

e View Overlap We use a viewpoint correlation
constraint, equivalent to an image overlap constraint.
Image overlap is a necessary but not sufficient condi-
tion for registration. For completeness, the constraint
should also require sufficient shape complexity in
the overlap region and incorporate measurement
uncertainty. Note, however, that view plans for most
objects of interest have such inherent redundancy
that the registration constraint is rendered moot.
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e Robust Several features contribute to robustness
i.e. multi-stage problem solving, sensor and posi-
tioning system performance models, tolerance of
surface sampling errors at the exploratory phase and
pose error countermeasures. However, measurement
challenges remain, notably specular reflectance and
other sensing artifacts.

e Efficient The rough-to-fine modeling portion of
the present experimental configuration meets the
one hour processing objective and is amenable to
further speed-up. However, rough modeling processes
remain to be fully implemented and integrated in the
experimental system.

o Self-terminating A variety of self-terminating
set covering algorithms can be utilized. For many
applications, a simple greedy search process provides
a good compromise between view plan efficiency and
overall error tolerance.

e Limited a priori knowledge The only prior
object knowledge required is approximate object
bounding dimensions and centroid.

e Shape constraints The approach is effective with
a wide range of object shapes. Empirically-derived
rules of thumb have been provided for rough model
sampling rates and error tolerance.

e Material constraints The current work assumes
objects characterized by Lambertian scattering.
Dropouts and outliers resulting from limited sensor
dynamic range remain an important open issue.
Sensor improvements will help but not eliminate the
problem. Further improvements should be possible by
incorporating reflectance measurement and modeling
in the scene exploration stage, which could also
address other error sources.

e Frustum The sensor frustum (DOF, FOV and scan
length/arc) is modeled.

e Shadow effect The sensor model specifies the
optical baseline. Visibility is computed from both the
laser source and receiver.

e Measurement performance Measurability esti-
mation error is low. Good results are obtained with
coarse rough model sampling. The most important
first-order sensing phenomena are addressed - mea-
surement, variation within the frustum and surface
inclination effects. However, important sensing arti-
facts remain, notably geometric and reflectance step
edges and multiple reflections. Methods to deal with
geometric step edges include “space-time” processing
[12] and more sophisticated low level sensor signal
processing.  Object reflectance modeling [18] has
the potential to handle reflectance step edges and
multiple reflections.



Figure 12: Verification of Bunny View Plan: Views 1-8
Left - Individual Viewpoint Measurability Projections - Camera Boresight View
Right - Cumulative Measurability Projections: +x, -x, +y, -y, +z, -z axes
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Figure 13: Verification of Bunny View Plan: Views 9-16
Left - Individual Viewpoint Measurability Projections - Camera Boresight View
Right - Cumulative Measurability Projections: +x, -x, +y, -y, +z, -z axes
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e 6D Pose The algorithm provides a near-optimal
sampling of 6D pose space.

e Pose Constraints Pose constraints are applied on
viewpoint generation.

e Positioning system performance Pose error is
modeled over the imaging workspace, with optional
pose error compensation. For production use, the
current generic pose error model should be replaced
by one tailored to the specific configuration in use.

8 Conclusion and Future Work

Summary The 3M method meets the specified view
planning requirements for automated object recon-
struction or inspection with the exception of material
reflectance properties, aspects of the overlap require-
ment and some range camera artifacts.

In the work reported in this paper, rough model ac-
quisition for object reconstruction has been simulated
for closed-loop performance evaluation. A CAD model
is a given for inspection applications. We believe the
computational cost of this preliminary phase is reason-
able for high performance reconstruction applications,
but it is not negligible. A multi-sensor fusion approach
may be advantageous - using a fast, wide field-of-view,
low precision sensor for scene exploration and collision
avoidance in combination with a high quality range
sensor for precise surface measurements.

The current work addresses open issues as follows:
e Accuracy is addressed through a quantified spec-
ification of model quality objectives, modeling of
camera and positioning system performance, and by
exploitation of approximate geometric knowledge in
an initial exploratory scene model.

e Robustness is addressed by the foregoing as well
as pose error compensation and tolerance to rough
modelling errors.

o Efficiency is addressed by multi-stage problem
solving, sparse and optimal discretization of surface
and viewpoint spaces and optional rough model
segmentation. Additionally, the 3M algorithm is
inherently parallelizable.

The algorithm can provide accurate and robust view
planning for automated object reconstruction or in-
spection applications with high quality sensing ob-
jectives using triangulation-based active range cam-
eras on objects characterized by Lambertian scatter-
ing. The technique is generalizable for common range
camera and positioning system designs and could be
extended to handle sensor dynamic range limitations
and a variety of sensing artifacts.
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Open Issues and Future Research The capabili-
ties and limitations discussed above point to remaining
open issues in view planning. There are a number of
ways in which the sophistication of the sensor model
could be improved, which would address several out-
standing issues.

(1) Accuracy and robustness

- Measure and model object reflectance to handle
shiny objects and compensate for the limited dynamic
range of range cameras.

- Avoid or compensate for geometric step edges,
reflectance step edges and multiple reflections.

(2) Efficiency

- Fast and efficient techniques for acquiring a rough
scene model.

- Fine tune discretization schemes in surface and
viewpoint space.

- Tune the performance of set covering algorithms
to the data characteristics associated with the view
planning problem.

- Automate surface segmentation for view planning.

- Develop performance benchmarks for objective
comparison of view planning algorithm performance.

(3) Theory

- Develop a theory for optimal discretization of
surface and viewpoint space.

- Extend the theory to include shape complexity in
the overlap constraint.
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