i+l

NRC Publications Archive
Archives des publications du CNRC

Discriminative vs. Generative Classifiers: An In-Depth Experimental
Comparison using Cost Curves
Drummond, Chris

For the publisher’s version, please access the DOI link below./ Pour consulter la version de I'éditeur, utilisez le lien
DOI ci-dessous.

https://doi.org/10.4224/8913277

NRC Publications Record / Notice d'Archives des publications de CNRC:
https://nrc-publications.canada.ca/eng/view/object/?id=5063ea6c-4490-49f9-94dc-b7e80cec5c9a

https://publications-cnrc.canada.ca/fra/voir/objet/?id=5063ea6c-4490-49f9-94dc-b7e80cec5c9a

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at
https://nrc-publications.canada.ca/eng/copyright
READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

L’acces a ce site Web et I'utilisation de son contenu sont assujettis aux conditions présentées dans le site
https://publications-cnrc.canada.ca/fra/droits
LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

Questions? Contact the NRC Publications Archive team at
PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the
first page of the publication for their contact information.

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la

premiere page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez
pas a les repérer, communiquez avec nous a PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

National Research  Conseil national de C dl*l
Council Canada recherches Canada ana, a,



I*I National Research Conseil national
Council Canada de recherches Canada

Institute for Institut de technologie
Information Technology de l'information

NC-CN\NC

Discriminative vs. Generative Classifiers: An
In-Depth Experimental Comparison using
Cost Curves *

Drummond, C.
December 2005

* published as NRC/ERB-1135. 30 pages. December 2005. NRC 48480.

Copyright 2005 by
National Research Council of Canada

Permission is granted to quote short excerpts and to reproduce figures and tables
from this report, provided that the source of such material is fully acknowledged.

Canada



I*I National Research Conseil national ERB-1135

Council Canada de recherches Canada

Institute for Institut de technologie
Information Technology de l'information

NC-CN\NC

Discriminative vs. Generative
Classifiers : An In-Depth
Experimental Comparison
using Cost Curves

Drummond, C.
December 2005

Copyright 2005 by
National Research Council of Canada

Permission is granted to quote short excerpts and to reproduce figures and tables from this report,
provided that the source of such material is fully acknowledged.

i+l

Canada NRC 48480



Discriminative vs. Generative Classifiers:
An In-Depth Experimental Comparison using
Cost Curves.

Chris Drummond
Institute for Information Technology,
National Research Council Canada,

Ottawa, Ontario, Canada, K1A OR6
Chris.Drummond@nrc-cnre.ge.ca

December 20, 2005

Abstract

This technical report discusses the experimental comparison of com-
monly used algorithms both in their traditional discriminative form and
as generative classifiers. The performance is compared using cost curves
to see what benefits might be gained by using a generative classifier when
the misclassification costs, and class frequencies, are unknown. There is
some evidence that learning a discriminative classifier is more effective for
a traditional classification task. Focusing on algorithms that have gener-
ative and discriminative forms, allows a clear comparison between these
two types of classifier without being obscured by algorithmic differences.
The report compares the performance of the classifiers over 16 data sets
and for the full range of misclassification costs and class frequencies. The
experiments show that there is some merit in using generative classifiers
for cost sensitive learning but more work is needed to make them as ef-
fective as using multiple discriminative classifiers.

1 Introduction

Many experiments have shown that discriminative classifiers have better perfor-
mance than generative ones on a traditional classification task [1, 2, 3, 4]. There
is also some theory suggesting why this holds true, at least asymptotically [2].
The intuition is that to do more than you have to for a task is not only unnec-
essary it is also potentially harmful. Nevertheless the debate continues, with
some research showing that the conclusion is not as simple as the discriminative
classifier being always better. Some restrictions on the sort of distributions the
generative model learns have been shown to improve the accuracy of classifica-
tion [5] over and above that of discriminatory classifiers. Here, the intuition is



that knowledge restricts the size of the hypothesis space leading to better per-
formance. Generative classifiers are a natural way to include domain knowledge,
leading some researchers to propose a hybrid of the two [6, 7].

The author of this technical report is strongly interested in cost sensitive
learning. Cost sensitive learning is a research area which has grown considerably
in recent years, as evidenced by various bibliographies [8, 9]. This type of
learning is a natural fit with generative classifiers. Without clear knowledge
of the class frequencies and misclassifications costs, a discrimination boundary
cannot be constructed whereas class likelihood functions can still be learned.

This report details experiments using popular algorithms, for which various
researchers have suggested simple ways of modifying them for probability esti-
mation. This allows a natural framework for experimental comparison, where
the same basic algorithm is used to generate both discriminative and generative
classifiers. The performance measure used is expected cost. This measure is a
very natural way to include not only the actual costs often found in industrial
problems but also more qualitative human concerns. Cost curves are used to
visualize the difference in expected cost between classifiers over the full range
of misclassification costs and class frequencies.

2 Cost Curves

This section gives a brief introduction to cost curves [10, 11], a way to visualize
classifier performance over different misclassification costs and class distribu-
tions.

The error rate of a binary classifier is a convex combination of the likelihood
functions P(—|+), P(+|—), where P(L|C) is the probability that an instance of
class C is labeled L and the coefficients P(+4), P(—) are the class priors:

E[Error] = P(—|+) P(+) + P(+|-) P(—)
—— ———
FN FP

Estimates of the likelihoods are the false positive (FP) and false negative
(FN) rates. A straight line, such as the one in bold in Figure 1, gives the error
rate on the y-axis (ignore the axis labels in parentheses for the moment), for
each possible prior probability of an instance belonging to the positive class on
the x-axis. If this line is completely below another line, representing a second
classifier, it has a lower error rate for every probability. If they cross, each
classifier is better for some range of priors. Of particular note are the two trivial
classifiers, the dashed lines in the figure. One always predicts that instances are
negative, the other that instances are positive. Together they form the majority
classifier, the shaded triangle in Figure 1, which predicts the most common
class. The figure shows that any single classifier with a non-zero error rate will
always be outperformed by the majority classifier if the priors are sufficiently
skewed, therefore of little use. Even a good classifier produces too many false
positives when negative examples are very common [12].
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Figure 1: Visualizing Perfor-
mance Figure 2: The Cost Curve

If misclassification costs are taken into account, expected error rate is re-
placed by expected cost, as defined by Equation 1. The expected cost is also a
convex combination of the prior probabilities, but plotting it against the priors
would produce a y-axis that no longer ranges from zero to one. The expected
cost is normalized by dividing by the maximum value, given by Equation 2.
The costs and priors are combined into the Probability_Cost(+) on the x-axis,
as in Equation 3. Applying the same normalization factor results in an x-axis
that ranges from zero to one, as in Equation 4. The positive and negative
Probability_Cost(-)’s now sum to one, as was the case with the probabilities.

E[Cost] = FNx*C(—|4+)P(+)+ FP«C(+|—-)P(-) (1)
max(E|Cost]) = C(—|+)P(+)+ C(+|-)P(-) (2)
PC(+) = C(-[+)P(+) (3)
Norm(E[Cost]) = FNx PC(+)+ FPx*PC(—) (4)

With this representation, the axes in Figure 1 are simply relabeled, using
the text in parentheses, to account for costs. Misclassification costs and class
frequencies are more imbalanced the further away from 0.5, the center of the
diagram. The lines are still straight. There is still a triangular shaded region,
but now representing the classifier predicting the class that has the smaller
expected cost. For simplicity we shall continue to refer to it as the majority
classifier.

In Figure 2 the straight continuous lines are the expected cost for discrim-
inative classifiers for two different class frequencies, or costs, indicated by the
vertical dashed lines. To build a curve requires many different classifiers, each
associated with the PC(+) value used to generate it. Let’s assume each classi-
fier is used in the range from half way between its PC(+) value and that of its




left neighbor to half way between this value and that of its right neighbor. The
resulting black curve, which includes the trivial classifiers, is shown in Figure 2.
It has discontinuities where the change over between classifiers occurs.

To produce a curve for a generative classifier, each instance is associated with
the PC(+4) value at which the classifier changes the way it is labeled. If the
instances are sorted according to this value, increasing PC(+) values generate
unique F'P and TP pairs. A curve is constructed in the same way as that for
the discriminative classifiers. But now there are many more points, one for each
instance in the test set, typically producing a much smoother looking curve.

3 Experiments

This section discusses experiments comparing the performance of various pop-
ular algorithms, as implemented in the machine learning system called Weka
[13]. The main set of experiments compares the expected cost of a single gen-
erative classifier to that of a single discriminative classifier and to a series of
such classifiers trained on data sets with different class frequencies. The ques-
tion it addresses is to what extent the existing variants of standard algorithms
are effective for cost sensitive learning. Further experiments look at how these
probability estimators might be improved, firstly by calibration and secondly
by using more balanced training sets.

To produce different PC(+) values, the training set is under-sampled, the
number of instances of one class being reduced to produce the appropriate class
distribution. This is done for 16 PC(+) values, roughly uniformly covering the
range 0 to 1. The F'P and TP values are estimated using ten-fold stratified
cross validation. The experiments use 16 data sets, 14 from the UCI collection
[14] and plus two used by the author in earlier work [15].

3.1 Decision Trees

We begin with the decision tree algorithm J48, Weka’s version of C4.5 [16].
Figures 3 and 4 show cost curves for the 16 data sets (the name is just above the
x-axis). The gray solid curves give expected cost using the class frequency at the
leaves to estimate probabilities. To interpret these graphs, let us note that, in
these experiments at least, there is little or no difference between discriminative
and generative classifiers for the particular PC(+) value at which they were
trained. The main advantage of a generative classifier is that it will operate
effectively at a quite different PC(+) values. The solid black curve is for 14
discriminative classifiers generated by under-sampling. It acts, essentially, as a
lower bound on the expected cost of using the generative classifier. The bold
black straight line is the standard classifier trained (with default settings) at
the original data set frequency, indicated by the vertical line. At this frequency,
the black line, the gray solid curve, and the black curve have the same expected
cost (being exactly the same classifier). The cost sensitivity of the generative
classifier is seen by comparing the distance of the gray curve to the straight



black line and the distance to the black curve, as one moves away from the
original frequency. Closer to the black curve is better.

Although close to the original frequency there is little to separate the curves,
the difference grows as the distance increases. For PC(4) values closer to zero
and one, the solid gray curves are much better than the single discriminative
classifiers and quite close to the multiple ones. Unfortunately, here the per-
formance is worse than the majority classifier, making any gain over the dis-
criminative classifier of dubious merit. One way to improve the probability
estimates is to use Laplace correction at the leaves of an unpruned tree [17]. In
Figures 3 and 4 this variant is indicated by the dashed gray curve. Generally,
this improves on the standard algorithm, again it is most clear far away from
the original frequency. For some data sets, e.g. letterK and Sick, it is indistin-
guishable from the black solid curve. But for some data sets, e.g. credit-a and
hepatitis, without pruning means it is worse than the standard classifier around
the original frequency.

There are two commonly used approaches to improve cost sensitivity: cali-
bration and changing the training set distribution. Figures 5 and 6 compare the
cost curves to their lower envelopes, the dashed curves. The envelopes represent
perfect calibration. The sides of an envelope represent the best classifier chosen
for some range of PC(+) values (This is unachievable in practice as the best is
only know after testing).

For both variants of generative classifier not using Laplace correction, there
is a large potential improvement by using calibration. This occurs particularly
close to 0 and 1 on the x axis. Although it should be stressed that this im-
provement only amounts to potentially doing as well as the majority classifier
far away from the original frequency. Calibration has less of an effect for the
Laplace correction classifier, although there are are some data sets where there
is still some potential improvement. It is also noteworthy, that in many data
sets the Laplace correction not only improves on the basic curves without it,
it is also produces curves that are often better than the other classifiers lower
envelopes. So although it may gain much of its advantage through improved
calibration other factors also contribute to its success.

Figure 21 shows results for using different ratios for training the generative
classifier. A ratio of one gives a balanced training set, produced by under-
sampling the majority class. There are two additional ratios on either side of
the balanced one, twice as many of the positive class and twice as many of the
negative. For many data sets, like Bupa and Hepatitis, balancing the training
set makes the cost curve more symmetric and decreases the area under the
cost curve. This result is similar to that obtained by Weiss and Provost [18§],
a balanced data set is generally better. As with Weiss and Provost’s work,
sometimes other ratios still offer some improvement. A fact which warrants
further investigation and is the subject of future work.



3.2 Support Vector machines

The original Support Vector Machine [2], as its aim was to find a “maximum
margin hyperplane”, was intended purely as a discriminative classifier and had
no means of producing probability estimates. The Weka system uses Platt’s [19]
Sequential Minimal Optimization to learn the hyperplane, which produces the
black solid lines and curves in Figures 7 and 8. Platt [20] showed how a sigmoid
can be fitted to the training set (or by cross validation) using cross entropy as
the error measure. Figures 7 and 8 show that this variant, the gray curve, is
extremely competitive with the multiple discriminative classifiers. For only a
couple of data sets, letterK and credit-a, are the two discernibly different.

Figures 9 and 10 show there is typically little difference between the cost
curves (solid lines) and their lower envelopes (dashed lines), so calibrating the
classifier should have little effect. This is not surprising as fitting a sigmoid
is, itself, a form of calibration. Although the sigmoid only has two degrees of
freedom, one can see more flexible schemes are unlikely to improve calibration
much. This may be why no real benefit was seen using isotonic regression [21].

There is one data set, LetterK, that shows a large difference in expected
cost. This is an extremely imbalanced domain and by training the classifier on
a balanced data set, the black curves in Figure 21, considerable improvement is
gained. So to get an improvement for all class frequencies and misclassification
costs a balanced training set is better. But the diagrams suggest, although
further investigations needed, that if the intended PC(4) values were restricted
to be reasonably close to the original frequency value that a different training
set distribution might be better.

3.3 Neural Networks

Weka implements the traditional PDP algorithm [22] which is trained using back
propagation and minimizes the squared error of the network output. This can
be used as a discrimination classifier or, by using the standard sigmoid output
of the network, as a probability estimator. As Figures 11 and 12 show, much
like the standard decision tree, it improves on a single discriminative classifier
but mainly where the majority classifier is dominant. However using the sig-
moid output directly as a probability estimator results in a large performance
reduction with respect to the multiple discriminative classifiers.

Figures 13 and 14 show that there is typically a large separation between the
basic cost curve and its lower envelope suggesting that much of this performance
difference is due to poor calibration. Figure 22 shows that balancing the training
set offers some improvement but it is in correct calibration where there is most
potential gain. It is noteworthy that the Weka algorithm minimizes squared
error. Minimizing cross entropy, like the generative version of the Support
Vector Machine, should produce better probability estimates [23]. Further work
is needed to see if using cross-entropy as an error measure is sufficient to remove
the performance difference or if calibration is still necessary.



3.4 Nearest Neighbor

The nearest neighbor algorithm used is Weka’s implementation of IBk, the in-
stance based learning algorithm of Aha and Kibler [24]. Figures 15 and 16
show four variants of IBk. The solid curves are for K = 5, a neighborhood of
5 instances is used for classification. One nearest neighbor K = 1, the dashed
lines, is included as a reference point as it has often performed in the past very
competitively with other algorithms. With only a single neighbor, it assigns
probabilities of zero or one to instances. This produces roughly a straight line,
for probability estimation, with some variation due to the variation in test set
folds. The reasonably small neighborhood of 5 instances was chosen somewhat
arbitrarily but often has good performance, very close to that of the multiple
discriminative classifiers. It is also usually better than the 1 nearest neighbor
version.

Figures 17 and 18 show that for large ranges of PC(+) values there is little
difference between the curve and the lower envelope, between the gray and black
lines of the same type. It only at the extremes, close to one and zero, where
the difference becomes apparent and calibration would offer some advantage.
Most of the time the use of a distance function (1/distance and 1-distance) did
not improve the probability estimates and on occasion made them a lot worse.
Only for the “sick” data set did there seem to be any advantage. These nearest
neighbor algorithms, probably due to their local quality, seem to derive little
benefit from balancing the training set, as shown in Figure 21.

3.5 Naive Bayes

Naive Bayes is really the quintessential generative classifier, and there is no dis-
criminative version. It is included here only to investigate how well calibrated
are the different variants of naive Bayes. Figures 19 and 20 shows different ways
that Naive Bayes represents continuous variables: a Gaussian approximation,
a kernel approximation or discretization. The Gaussian variant certainly fares
the worst. For many data sets, the gray curve extends way outside the major-
ity classifier and is only useful for a small range of misclassification costs and
class distributions. For many data sets (colic, credit-a, glass2, sleepBR2, sonar)
the deviations are very large. The kernel approximation is much better but
even this does badly on a couple of data sets, 0il2 and glass2. The supervised
discretization method works the best.

Where there are large deviations, by the Gaussian and Kernel approxima-
tion methods, the distance to their respective lower envelopes (the black lines
of the same type) suggests much of this problem is due to poor calibration.
The supervised discretization method of Fayyad and Irani [25] does fairly well
without calibration. In fact, it is often better than the lower envelopes of the
other methods. How it gains this advantage is the subject of future work.



4 Discussion and Future Work

In summary, the sigmoid variant for the Support Vector Machine, with a bal-
anced training set, was extremely effective as a generative classifier. IBk with
a neighborhood of five was also effective. Decision trees with Laplace correc-
tion and, to lesser extent, the Multilayer Perceptron faired reasonably and both
showed potential for improvement. Generally, although balancing the training
set is useful, calibration offers the most potential benefit. It is notably inherent
in the Support Vector Machine sigmoid fitting procedure. Whether or not sim-
ple fitting procedures would offer the same degree of improvement for the other
algorithms is worth investigating further.

The experiments were carried out using Weka’s default setting for each al-
gorithm, and with some settings chosen somewhat arbitrarily. Many more ex-
periments are needed, with algorithms with different settings for these values,
before strong conclusions can be reached. There are also other algorithms, and
variants of the algorithms discussed in this technical report, worth exploring. A
very large scale experiment, using cost curves, will be carried out in the future
to make these comparison more comprehensive.

In this report, a curve made up of 16 discriminative classifiers has been used
as a “gold standard”. A good generative classifier is assumed to be one whose
performance is close to this “gold standard”. But to get good cost sensitive
performance, one could simply use the 16 classifiers. The main advantage of the
generative classifier is that it is a single classifier, reducing learning time and
storage considerably. Another advantage is that a single classifier is may be more
understandable. Yet neither the Support Vector Machine nor the Multilayer
Perceptron is easily understandable without extra processing. Even for J48
as the generative classifier is unpruned, it is more complex than any single
discriminative classifier. It may be possible that a few, a lot less than the 16,
judiciously chosen, discriminative classifiers would be very competitive. A tree
with a stable splitting criterion but variable cost sensitive pruning [15] would
have identical lower branches for all PC(+) values, making a collection of trees
more easily understandable.

5 Conclusions

This report experimentally compared the performance of discriminative and gen-
erative classifiers for cost sensitive leaning. It showed that variants of commonly
used algorithms produced reasonably effective generative classifiers. Where the
classifiers were less effective, simple techniques such as choosing the right train-
ing set distribution or calibrating the posterior probbaility show potential to
improve their performance considerably.
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Figure 5: (a) Calibration of Probability Estimate: J48

13



Normalized Expected Cost

Normalized Expected Cost

Normalized Expected Cost

Normalized Expected Cost

Generative

J48 -U
J48 -U -A

Generative

Jag
J48 -U
J48 -U -A

Normalized Expected Cost

hepatitis ionosphere
o2 o os o w o oo oz o os o
PC(+) — Probabilly Cost PC(+) — Probabilly Cost
Generative /\ °[ Generative /\
448
348 - (2NN
J48 -U -A 4 \
4 \
4 \
/
4
4 3
’ \ 3
\ &
\ i
/ \ g
/7 2
/7
4

letterk . oii2
o0 o o8 o W oo o o8 o w0
PC{(+) - Probabilly Cost PC{(+) - Probabilly Cost
Generatve 7\ [ Generaive 7\
J48 Vi Ja8 4
Jag -U \ Jag -U \
J48 -U -A / \ J4g -U-A / \
’ \ B
, 3
’
4
’ g,
4 \ B
\ g
\ i
4 \ £
/ 2
/ :
’ i
’ M
\
S E T \
___________ ok TEEE——) R sleepbr2
" PG — Probabity Cost " v " PG — Probabity Cost " "
Generative /\ E Generative /\
448 -U \ 48 LAY
J48-U-A ’ \ 48U 4 \
’ \ . 48U -A 4 \
’ \ ’
’ ’
’
8. \
3 H \
\ g \
3\ H 4 \
N Ty / \
2 ’ \
4 \
4 \
3 4 \
4 \
A
[sonar - vote - A‘\\"\

PCs) — Probability Cost

Figure 6: (b) Calibration

PCs) — Probability Cost

of Probability Estimate: J48

14



Generative Discriminative Generative /\ Discriminative
sMo , — smo
SMO -M \ - Swo-m
4 \
. 4 \
° ’
’
8 Sz
& & \
g gy 4 \
H H ’ \
4 \
/ \
5 4 \
4 \
2 \
7 i .
breast—cancer ! breast-w S
o o o o8 o W e o o o8 o w0
PC(+) — Probabilly Cost PC(+) — Probabilly Cost
°[ Generative Discriminative °[ Generative /\ Discriminative
sMo sMo , — smo
SMO -M SMO -M \ -- SMO-M
4 \
. . 4 \
H H , R
’
.
i
L . &
& & \
£ / £ \
H H \
\
4 A
3 . 7
3 N
N\
\
N bupa . colic
o0 02 08 o8 0 0o 02 08 08 0
PC(+) — Probabilly Cost PC(+) — Probabilly Cost
°|  Generative N Discriminative ° N Discriminative
SmMo 7 — swmo
SMO -M \ - - SMO-M
\
. / \ .
3 ’ 3
’
4
L g,
i i
H \ H
£ £
2 2

credit-a

credit-g

Normalized Expected Cost

PC(+) — Probabilty Cost PC(+) — Probabilty Cost
Generative /\ Discriminative °| Generative /\ Discriminative
/7 SM Vi — smo
SMO M SMO M -- sMO-M
4 \
° 7
Sl
&
ot
2
diabetes A glassg]

PCs) — Probability Cost

PCs) — Probability Cost

Figure 7: (a) Probability Estimation vs Undersampling: SMO
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Figure 14: (b) Calibration of Probability Estimate: MultilayerPerceptron
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Figure 15: (a) Probability Estimation vs Undersampling:IBK
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Figure 16: (b)Probability Estimation vs Undersampling: IBk
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Figure 17: (a) Calibration of Probability Estimate: IBk
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Figure 18: (b) Calibration of Probability Estimate: IBk
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Figure 19: (a) Calibration of Probability Estimate: NaiveBayes
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Figure 20: (b) Calibration of Probability Estimate: NaiveBayes
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Figure 21: (a) Probability Estimates
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Figure 22: (b) Probabilioty Estimates
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