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The free-induction decay ~FID! after saturation by a laser radiation pulse of finite duration is studied for

systems with spectral diffusion. The exact solution of the FID signal shape has been obtained in the framework

of a model of noncorrelated spectral exchange. The analysis accounts for the finite duration of the saturating

field and is valid at an arbitrary value of the spectral exchange rate and amplitude of the coherent field. An

exact expression for the FID signal is derived in the weak-external-field limit. A self-consistent explanation of

the experimental field dependence of the FID rate @A. Szabo and T. Muramoto, Phys. Rev. A 39, 3992 ~1989!#

is obtained using a model of slow noncorrelated spectral diffusion. @S1050-2947~97!00105-4#

PACS number~s!: 42.50.Md

I. INTRODUCTION

Investigation of coherent nonlinear phenomena gives in-
formation about the microscopic mechanisms of relaxation
processes in impurity-ion crystals. One of these phenomena
is free-induction decay ~FID! after steady-state saturation or
after excitation by a laser pulse. Recently, a number of stud-
ies @1–10# of FID in ruby have been published that demon-
strate the inapplicability of Bloch equations as a description
of the field dependence of the FID rate. This results from the
fact that the Bloch equations do not properly take into ac-
count the random modulation of impurity-ion frequencies in
solids. The frequency modulation of the ruby R1 transition is
due to random reorientation of spins in the crystal lattice.
The reorientation leads to a change in the local fields and
correspondingly to a change in the impurity-ion frequencies.
The random frequency modulation connected with the
dephasing perturbations evokes a relaxation in the system.
However, the coherent field influences the dephasing pro-
cesses. As a result, the relaxation coefficients depend on the
amplitude and frequency of the field in the master equation
for the density matrix when averaged over the random per-
turbations. There is no such dependence in the Bloch
scheme.

In study @11#, the analysis of existing theories of FID,
based on various models of random modulation of the tran-
sition frequency, was performed. In particular, the telegraph
noise model was examined and the inability to explain the
experimental data @2# was demonstrated. In this paper we
restrict our theoretical discussions to the FID after pulse
saturation in a system with noncorrelated spectral exchange.
The purpose of this study is to present a general theory of a
FID signal shape after saturation by a strong-field impulse of
arbitrary duration, as well as to explain the experimental
field dependence of the FID rate @2,3#.

II. FID AFTER PULSE SATURATION

Let us consider an ensemble of impurity ions that inter-
acts with a perturber reservoir and is driven by a resonant
monochromatic radiation field E5E0exp$ivt% within the time

T . Polarization of the ions is induced by the radiation im-
pulse and a FID signal is observed just after switching off the
field. Each impurity ion is modeled by a two-level system
~TLS! whose frequency @E2(t)2E1(t)#/\5v01e(t) is a
stationary random process and whose mean value v0 and
equilibrium distribution w(e) is conserved with respect to
time @E1,2(t) are the energy levels of the TLS#.

Since the value of v0 is distributed over the inhomoge-
neous line shape F(v0) caused by the crystal-field disper-
sion, the FID signal shape is defined by

R~T1t !5F0ImE dDvs12~T1t ,Dv !, ~1!

where Dv5v02v is the detuning frequency, v is the
saturating field frequency, F05F(v05v)5const,

s12(T1t ,Dv) is the off-diagonal element of a density ma-
trix that determines the polarization at time t after switching

off the field. The general expression for s12(T1t ,Dv) has
the following form:

s12~T1t ,Dv !5K s12~T ,Dv !expH iDvt

1iE
T

T1t

«~ t8!dt82t/T2J L , ~2!

where the angular brackets denote averaging over random
realizations of the process «(t), s12(T ,Dv) is the initial po-
larization induced by the saturating field, and T2 takes into
account the spontaneous decay of the excited level
~i.e., T252T1 where T1 is the lifetime!.

Usually when calculating R(t), the correlation of the TLS
frequency fluctuations before and after switch off of the field
is neglected. This makes possible the decoupling procedure
in Eq. ~2!, where s12(T ,Dv) and the exponent are averaged
separately. We obtain

s12~T1t ,Dv !5s12~T ,Dv !K~ t !exp$iDvt2t/T2%, ~3!

where
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K~ t !5K expH iE
0

t

«~ t8!dt8J L ~4!

is the correlation function of the frequency modulation. It
has been shown @9,12# that when exact expressions are used

for the average s12(T ,Dv) and K(t), then results for the
FID signal shape are obtained that are valid beyond the ap-
plicability range of perturbation theory ~PT! for random de-
tuning of the frequency. The condition for which PT is ap-
plicable ~fast frequency modulation limit! is

q2
5«2t0

2
!1, ~5!

where «2 is the dispersion of the frequency distribution and

t0
21 is the spectral exchange rate. It is in the framework of

approximation ~5! that the majority of theoretical efforts
@2–6# to explain the experiments @2# were undertaken. We
note that the applicability range of Eq. ~3! must be examined
in each particular case.

Expressions ~1! and ~2! are exact and determine the FID
signal shape in the general case. It has not yet been possible
to carry out the averaging procedure defined in Eq. ~2! in a
generalized form. Therefore, we specifically model the ran-
dom process «(t) and, in particular, consider the case where
the TLS frequency is modulated by a Markovian noncorre-
lated random process. This specification of the random pro-
cess «(t) allows the averaging in Eq. ~2! to be performed and
an exact expression for the FID signal shape to be obtained.

If the frequency of the TLS interacting with the laser ra-
diation field is modulated by a purely discontinuous Markov-
ian process, then in agreement with the sudden modulation
theory @13#, the averaging in Eq. ~2! can be represented as

s12~T1t ,Dv !5exp$iDvt2t/T2%

3E d« K~« ,t !s12~« ,T ,Dv !, ~6!

where K(« ,t) and s12(« ,T ,Dv) are marginal or conditional
averages @13# whose argument is equal to « when the field is
switched off.

Applying the Laplace transformation to Eq. ~6!, we get

s12~p ,p1 ,Dv !5E d« K~« ,p1!s12~« ,p ,Dv !, ~7!

where

K~« ,p1!5E
0

`

dt K~« ,t !exp$2p1t1iDvt2t/T2%. ~8!

The frequency modulation function for Markovian spec-
tral exchange has been thoroughly investigated @13–15#. To
obtain a general solution for the FID signal, we have to find
s12(« ,p ,Dv) ~which describes the polarization induced by
the radiation field! as a function of « . For this purpose we
will use the kinetic equations of the Markovian sudden
modulation theory @13#.

III. THE NONCORRELATED MARKOVIAN

FREQUENCY MODULATION

In this section we consider noncorrelated Markovian fre-
quency modulation. This model assumes that the frequency
exchange takes place inside of packets whose centers are
uniformly distributed over a wide spectral range. The fre-
quency of the TLS changes instantly and then remains con-
stant until the next jump. The distribution of the frequency
value after the jump does not depend on the one before the
jump @13#.

If the process is noncorrelated, then the kinetic equation
for the density matrix may be written as

ṙ~« !52L̂~« !r~« !1w~« !~ Ĝ r̄ 1L̂ !, ~9!

where

r~« !5S
s12~« !

s21~« !

n~« !
D , L̂~« !5L̂01i«L̂11Ĝ ,

L̂05S
1

T2

2iDv 0 2

ix

2

0
1

T2

1iDv
ix

2

2ix ix
1

T1

D ,

L̂15S
21 0 0

0 1 0

0 0 0
D ,

Ĝ5S
1/t2 0 0

0 1/t2 0

0 0 1/t1

D , L̂5S
0

0

n0

T1

D ,

s125s21
* 5̺12exp$ivt%, n5̺222̺11 is the population dif-

ference, n0 is the equilibrium population difference,
x5d12E0 is the Rabi frequency, T1 and T2 are the longitu-
dinal and transverse relaxation times due to spontaneous de-
cay, and w(«) is a static equilibrium frequency distribution.

We modified the terms that take into account the fre-
quency exchange in the system by introducing two different
parameters, 1/t1 and 1/t2. These parameters are the ex-
change rate for the populations and coherence, respectively.
The same modifications have been used for another systems
@16#. We will use following correlations t15tc and
t25ut1. In the case u51, we have the model studied earlier
for the FID signal after steady-state saturation @9#.

Employing the Laplace transformation, we can easily ob-
tain
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r~« ,p !5

w~« !

p1L̂~« !
Ĝ

1

12

w~« !

p1L̂~« !
Ĝ

Ĝ21S r01

1

p
L̂ D .

~10!

According to study @13–15#, we have for the Laplace rep-
resentation of the marginal function of the frequency modu-
lation

K~« ,p1!5

1

p11t22i~Dv1« !

3

1

12

1

t2
E w~« !d«

p11t22i~Dv1« !

. ~11!

To obtain an analytical solution for the FID signal shape,
we now make the distribution w(e) more concrete. From a
physical point of view, the choice of a static contour shape is
determined by the spatial packing of nuclei surrounding an
ion. It is known that the dipole-dipole interaction with the
nuclei yields a Gaussian inhomogeneous contour when the
packing is regular, and a Lorentzian contour if it is random
@17#. So, the Gaussian contour is more suitable as w(e) in
the case of impurity-ion crystals. But it is difficult to get a
simple analytical expression for the FID signal for a Gauss-
ian contour. However, we know that the shape of distribution
w(e) is not important for the case of the fast modulation;
only the second moment of the distribution. The analysis
shows that the situation is the same in the limit of slow
noncorrelated exchange of frequency. In this case, we have
to know just the rate of the spectral exchange. We consider
the limits of fast and slow modulation for values of the spec-

tral exchange parameters far from the threshold «2t0
2
51.

The final result depends on the shape of the distribution
w(e) only around the range of the parameters where

«2t0
2'1. Looking ahead, we have a case of slow frequency

exchange and, in principle, we are free to choose the static
equilibrium distribution.

So we consider the model of the Lorentzian contour
which allows development of an analytical solution. Using a
Lorentzian for the equilibrium distribution w(e) in general
expressions ~7! and ~1!, we obtain for the FID signal shape

R~p ,t !5

pF0n0x

2pF
expH 2

t

T2
J H R0exp@2~a1F !t#

2AexpF2S 1

t2

1k D tG J , ~12!

where a is the width of the Lorentzian distribution,

R05

~p1t2!a

k
2F1p1

1

T2

1A ,

A5

aFp1

1

T2

1

~p1t2!~a1F !

k G S 12

k

p1t2
D

1/t21k2a2F
,

k2
5~p1t2!2

1x2
p1t2

p1t1

,

F2
5Fp1

1

T2

1

~p1t2!a

k GFp1

1

T2

1

ak

p1t2

1

x2

p11/T1
G ,

t1,25
1

T1,2

1

1

t1,2

.

Equation ~12! is exact and determines the FID signal
shape after saturation by a strong-field impulse assuming
noncorrelated frequency modulation. The expression is valid
for the arbitrary strength of the saturating field and for the
arbitrary transition frequency modulation rate. In the limit

Rs~ t !5 lim
p→0

pR~p ,t !, ~13!

we obtain an expression for the FID signal shape in the case
of steady-state saturation @9#. Naturally it is possible to com-
pare this result to the one we obtained within the range of
T@T1 and, thus, observe the approach to steady-state satu-
ration.

The approximate solution ~3!, neglecting correlation of
the system motion before and after switch off of the field,
can be represented as

s12~p ,p1 ,Dv !5K~p1!s12~p ,Dv !, ~14!

where according to Eq. ~11!

K~p1!5E d« w~« !K~« ,p1!5

1

p111/T21a2iDv
,

~15!

and s12(p ,Dv) is determined by Eq. ~10! after the averaging
by « .

In this case, we finally find for the FID signal

Rd~p ,t !5

pF0n0x

2pF
S p1

1

T2

1

~p1t2!a

k
2F D

3expH 2S 1

T2

1a1F D tJ . ~16!

The same result can be readily obtained from Eq. ~12! in the
limit A50. It is evident that the appearance of the terms
proportional to A in the exact solution ~12! is related to the
correlation of the TLS frequency fluctuations before and af-
ter switching off the field @9#.

IV. DISCUSSION

A. Weak-external-field limit

The final expression for the FID signal shape contains two
independent parameters a and tc . To determine these values
for a theoretical explanation of experiments on the field de-
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pendence of the FID rate, the experimental data on the pho-
ton echo are usually employed. For the noncorrelated fre-
quency modulation model, it is shown that the echo decay is
exponential both for the fast @Eq. ~5!# and slow spectral ex-
change (atc@1) @14#. In these cases, the echo decay rate is
equal to ge51/T21a ~fast exchange! and ge51/T211/t2

~slow exchange!. Thus, if the echo decay is exponential, we
can determine either a assuming a fast spectral exchange, or
t2 for a slow spectral exchange.

The expression for the FID signal after the steady-state
excitation in the limit x→0 is obtained in Ref. @18# ~in the
framework of different spectral exchange models! for the fast
and slow spectral exchange. In this regard, analysis of the
FID signal shape for an arbitrary value of the spectral ex-
change rate will be of interest within the framework of our
model.

Using Eq. ~12!, we obtain for the FID signal ~for fre-
quency modulation by a Markovian noncorrelated process!
in the third-order contribution in x

R~p ,t !52x3
n0pF0

4
exp$2~p12/T2!t%F~p ,t !, ~17!

where

F~p ,t !5

1

p~p1a11/T2! H F
a

~p1t1!~1/t22a !

1

1

p11/T1
Gexp~22at !

2

a~p1a11/T2!

~p1t1!~p1t2!~1/t22a !
expS 2

2t

t2
D J .

Thus the FID signal shape is given by

R~T ,t !5H 2x3
n0pF0

4
exp$22t/T2% f ~T2t !, T.t>0

0, T,t .

where

f ~T2t !5

1

2pi
E

b2i`

b1`

exp$p~T2t !%F~p ,t !dp .

Taking into account the form F(p ,t), we can write the
expression for the FID signal at x→0 under T.t>0 as

R~T ,t !52x3
n0pF0

4
expH 2

2t

T2
J (

j51

j55

B j~ t !exp$p j~T2t !%,

~18!

where p j and B j(t) are defined by

p150,

B1~ t !5

exp~22at !

a11/T2
F a

t1~1/t22a !
1T1G2

aexpS 2

2t

t2
D

t1t2~1/t22a !
;

p252a2

1

T2

,

B2~ t !52

exp~22at !

a11/T2 F a

S t12a2

1

T2
D ~1/t22a !

1

1

1

T1

2a2

1

T2

G ;

p352t1 ,

B3~ t !5

a

t1~1/t22a !F exp~22at !

t12a2

1

T2

1

expS 2

2t

t2
D

t22t1 G ;

p452t2 ,

B4~ t !52

aexpS 2

2t

t2
D

t2~1/t22a !~ t22t1!
;

p552

1

T1

,

B5~ t !5

T1exp~22at !

1

T1

2a2

1

T2

.

Figure 1 shows FID signal shapes @Eq. ~18!# in the weak-
external-field limit for different coherent pulse durations. In
general, the FID signal after steady-state excitation or after
excitation by a pulse of finite duration is biexponential. The
FID signal is mainly determined by exp$22at% for the fast
modulation and exp$22t/t2% for the slow modulation of the
frequency. The FID signal behavior at long times is the same
as that for the standard Bloch equations with a finite pulse

FIG. 1. The FID signals vs time for noncorrelated frequency

modulation ~plane-wave excitation! at x→0.

t25t1 ,atc520,T154200 msec, ge
21

515 msec. ~1! T52 msec, ~2!

T520 msec, ~3! T5200 msec, ~4! steady-state regime.
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duration @11#. It is seen that the FID signal suddenly disap-
pears after a time equal to the pulse duration. This type of
behavior has been discussed theoretically @19,20# and ob-
served experimentally @21#. Qualitatively, the effect is re-
lated to the fact that a pulse of duration T excites a frequency
band of 'p/T . The dipoles then dephase completely in a
time T which is the Fourier transform of the bandwidth.

It should be noted that for x→0, the theorem on coherent
transients @20# for the Bloch model is also valid both for the
noncorrelated frequency modulation and anticorrelated fre-
quency modulation models @11#.

B. The FID signal after saturation

To analyze the FID signal shape after saturation by a fi-
nite duration impulse, we employed an algorithm for the
Laplace numerical inverse transformation @22#. The correct-
ness of performing the numerical transformation of R(p ,t)
was tested by comparing the results in the case of T>T1,
where the exact analytical solution for the FID signal is

known @9#. Our study showed that when the saturating im-
pulse duration increases, i.e., with T→T1, the FID signal
shape approaches the steady-state saturation shape. We note
that this result is true both for the case of a fast and slow
exchange. Moreover, we have shown that the condition

T@ge
21 , with T1.T is far from sufficient to employ the

expression for the FID signal shape under steady-state satu-
ration.

Figure 2 shows the FID signal shape calculated for differ-
ent values of the Rabi frequency. It demonstrates the influ-
ence of the field strength on the FID kinetics. As the Rabi
frequency increases, the decay rate of the induced polariza-
tion is accelerated. The increase of the FID rate with increas-
ing Rabi frequency is related to the power broadening of the
hole burned into the inhomogeneous profile during the
preparation pulse. A stronger field burns a wider hole and the
FID rate increases after the field is switched off.

In general, the kinetics of the FID signal is described by
two exponents at a noncorrelated exchange. For fast modu-
lation, the main term is the first one in the expression for
F(p ,t) while the second term is dominant for slow ex-
change. The correction ~second! term in the equation for
F(p ,t) accounts for the correlation of the frequency fluctua-
tions before and after turn off of the field. The calculated FID
signal, using the approximate expression ~16!, is also shown
in the Fig. 2. It is emphasized that we have to take into
consideration the correlation of the system motion before
and after switch off of the field.

We used a plane-wave model and infinitely wide inhomo-
geneous line in the discussion of the FID signal above. To
allow comparison of the theory with experimental data, we
have to account for the Gaussian shape of the laser beam
used in the experiments @2,3#. As is easily shown, the beam
shape can be included in the theory as follows:

S~T ,t !5constE
0

x

dx8R~x8,T ,t !, ~19!

where R(x8,T ,t) is determined by Eq. ~12!.

FIG. 2. The FID signals vs time for noncorrelated frequency

modulation ~plane wave excitation!. t25t1 ,atc520,T154200

msec, ge
21

515 msec, T5200 msec. ~1! x/2p50.5 kHz, ~2!

x/2p55 kHz, ~3! x/2p520 kHz, ~4! x/2p550 kHz, ~5! the ap-

proximate solution at x/2p55 kHz @Eq. ~16!#.

FIG. 3. Field dependence of the FID rate for a Gaussian shaped

beam. ~1! Bloch theory, ~2! exact theory for noncorrelated spectral

exchange at atc5100,t252tc ,tc57.5 msec, T5200 msec, h , ex-

perimental data ~Ref. @2#!, the point designated by 3 at zero Rabi

frequency is obtained from photon-echo data.

FIG. 4. Field dependence of the FID rate for a Gaussian shaped

beam. ~1! Bloch theory, ~2! exact theory for noncorrelated spectral

exchange at atc5100,t252tc ,tc57.5 msec, T550 msec, h , ex-

perimental data ~Ref. @3#!, the point designated by 3 at zero Rabi

frequency is obtained from photon-echo data.
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Experimental studies @2,3# showed that the shape of the
FID signal is nearly exponential. However, as has been dis-
cussed earlier @11#, FID decay is not an exponential function
of the time in the telegraph noise model. To explain the
experimental results @2,3# of the FID rate dependence on the
field strength in ruby, we used a noncorrelated frequency
modulation model. Figures 3 and 4 compare theory and ex-
periment for t252tc ,tc57.5 msec and atc5100. The good
agreement supports our conclusion is that the spectral ex-
change in ruby is slow and the noncorrelated frequency
modulation model is more suitable than the telegraph noise
model for this system.

V. CONCLUSION

The exact solution of the FID signal shape after saturation
by a radiation pulse of finite duration under noncorrelated
spectral exchange has been obtained. Analysis of the FID
signal for an arbitrary spectral exchange rate and Rabi fre-
quency showed that the correlation of the fluctuations before

and after the turn off of the field must be taken into consid-
eration.

The exact analytic expressions of the FID signal were
derived in the weak-external-field limit. These expressions
are valid for an arbitrary frequency modulation rate. It was
shown that a decrease of the saturation pulse duration leads
to nonexponential decay of induced polarization for the lim-
its atc!1 and atc@1, while the FID signal after steady-
state saturation is exponential. It was demonstrated that the
field dependence of the FID rate found by Szabo and co-
authors @2,3# have a self-consistent explanation in the limit
of the slow noncorrelated spectral diffusion.
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