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The development of the advanced cryogenic
radiometer facility at NRC

A Gamouras, A D W Todd, E Cé6té, and N T Rowell
National Research Council Canada, 1200 Montreal Road, Ottawa, Ontario, Canada

E-mail: angela.gamouras@nrc-cnrc.ge.ca

Abstract. The National Research Council (NRC) of Canada has established a next generation
facility for the primary realization of optical radiant power. The main feature of this facility
is a new cryogenic electrical substitution radiometer with a closed-cycle helium cryocooler.
A monochromator-based approach allows for detector calibrations at any desired wavelength.
A custom-designed motion apparatus includes two transfer standard radiometer mounting
ports which has increased our measurement capability by allowing the calibration of two
photodetectors in one measurement cycle. Measurement uncertainties have been improved
through several upgrades, including newly designed and constructed transimpedance amplifiers
for the transfer standard radiometers, and a higher power broadband light source. The
most significant improvements in uncertainty arise from the enhanced characteristics of the
new cryogenic radiometer including its higher cavity absorptance and reduced non-equivalence
effects.

1. Introduction

Throughout the last few decades, the National Research Council (NRC) has continued to
improve its primary scales in optical radiant power and spectral responsivity. Continuing with
a detector-based realization, NRC transitioned from room-temperature electrical substitution
absolute radiometers to a cryogenic absolute radiometer for most of the wavelength range in
1994 [1]. Now, two decades later, this cryogenic radiometer is at the end of its service life
and is being replaced with an advanced radiometry facility equipped with a new, state-of-
the-art cryogenic radiometer, broadband light sources and customized apparatus for increased
measurement capability. Details of the new apparatus and the impact on the scale realization
uncertainties from 300 nm to 1000 nm are presented.

2. Cryogenic radiometer apparatus

The configuration of NRC’s new advanced radiometry facility is shown in Figure 1. The cryogenic
radiometer (CryoRad III Radiometer: L-1 Standards and Technology, Inc.) is designed to accept
optical radiation from the output of a monochromator illuminated with a broad-band light
source. In this new facility, a laser-driven light source (LDLS) (EQ-99X: Energetiq Technology,
Inc.) and a tungsten lamp were implemented to cover the spectral range of 250 nm to 2700 nm.
These broad-band light sources were mounted on a linear translation stage at the monochromator
entrance allowing for rapid and repeatable alignment to the monochromator entrance slit. Two
concave spherical mirrors focused light from the output of a double-subtractive monochromator,
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through a wavelength order sorting filter wheel to a tilted optical window mounted on a flexible
vacuum bellows assembly. This large vacuum assembly was mounted on a linear stage with a
pin and pivot system to rotate the cryogenic radiometer and transfer standard detectors for
alignment to the common optical path (30° motion). The NRC transfer standard radiometers
were designed and constructed with an integrated front window (1] which provided a vacuum
seal when the radiometers were mounted to the evacuated vacuum bellows assembly. Isolation
valves between the bellows vacuum chamber and the transfer radiometer mounting ports allowed
the detectors to be changed during system operation. Fine adjustment of the transfer detector
alignment was achieved using individual translation stages. To minimize the effect of any light
source instabilities, transfer radiometer measurements were bracketed by cryogenic radiometer
measurements. The radiant flux was also monitored using a separate detector that measures
the reflection from the optical window.

To minimize any difference in the optical power incident to the cryogenic radiometer cavity
and the transfer standard detectors, a circular aperture was mounted at the monochromator
output resulting in a focused beam spot diameter of 5 mm. This spot diameter under-filled the
cryogenic radiometer cavity input (7 mm diameter) as well as the input to the NRC transfer
standard radiometers (6 mm diameter). The optical radiant power at the position of the
cryogenic radiometer cavity varied with the selection of the light source and optical components
in the system. In this case, two 600 groove/mm ruled diffraction gratings blazed at 500 nm
were installed in the monochromator system. The LDLS yielded an optical radiant power at the
cryogenic radiometer of 2.3 W at 300 nm and 5.3 uW at 400 nm. When the tungsten lamp
was aligned to the monochromator input, the optical radiant power at the cryogenic radiometer
was 1.2 pW at 450 nm and 2.9 4W at 1000 nm.
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Figure 1. Schematic diagram of the optical power and spectral responsivity measurement
apparatus. A motion platform aligns the output light from the monochromator with (a) the
cryogenic radiometer or (b) a transfer standard detector. Helium and mercury light sources are
used for monochromator wavelength calibration only.

In terms of functionality, this new facility has two main advantages over the previous
measurement apparatus: the new cryogenic radiometer and the customized transfer standard
mounting platform. The closed-cycle helium cryocooler incorporated into the cryogenic



NEWRAD 10P Publishing
10P Conf. Series: Journal of Physics: Conf. Series 972 (2018) 012014 doi:10.1088/1742-6596/972/1/012014

radiometer design gives a greatly increased, uninterrupted run time when compared to traditional
liquid helium cooled systems which require refilling of cryogens. The new apparatus has the
option of mounting two transfer standard radiometers instead of one, with potential doubling
of measurement capability per calibration cycle with the benefit of increased measurement
redundancy.

3. Sources of uncertainty due to monochromator system

Primary optical power and spectral responsivity scales can be realized with different sources
of optical radiation such as the use of multiple single line lasers and tunable laser sources [2—
5]. Several combinations of monochromators and broadband light sources, including Argon
arc plasma sources [6], Xe discharge lamps [7], and quartz-tungsten-halogen lamps [1, 8] have
been implemented to span a wide spectral range in cryogenic radiometer measurements. When
compared to laser-based primary realizations of optical radiant power, a monochromator-based
approach offers the versatility of wavelength selection at the expense of laser line wavelength
accuracy. As discussed below, soine of the systematic differences between these methods arise
due to the impact within our method of monochromator wavelength calibration, bandwidth
effects, and stray light.

3.1. Wavelength calibration

For the present work, two 600 groove/mm ruled diffraction gratings blazed at 500 nm were
installed in the double-subtractive monochromator system. Various spectral lines of helium and
mercury lamps were used to calibrate the wavelength readout of each monochromator separately.
The spectral lineshapes were fitted to a monochromator slit function, which for our case of a
slit input and a round output is given by [9]:

- == —X)?]%  sin~! = =
g = —B[EEchl_NTN-Bd Do gl -1 g

where A is the monochromator bandwidth. Polynomial fits to the difference between published
spectral line wavelengths and measured wavelengths were used to determine the wavelength
correction curves for each of the two diffraction gratings. After the wavelength correction curves
were applied to each monochromator, the residual wavelength uncertainty was found to be
£0.05 nm. The magnitude of the corresponding uncertainties in responsivity were determined
using the derivatives of the spectral responsivity curves for the transfer standard radiometers.
Absolute rotary encoders mounted on the shaft of each motor are used to repeatably position
the gratings (40.006 nm).

3.2. Monochromator bandwidth effects
The monochromator slit width was set to 1.0 mum, giving a bandpass of 4.4 nm. The effects of a
finite bandwidth in this monochromator-based photodetector calibration system were cvaluated
and incorporated into the uncertainty budget using a similar approach to that described in Ref.
[9]. In the case of a spectrally neutral reference detector, such as the cryogenic radiometer,
bandwidth errors can be calculated using the measured spectral responsivity of a detector under
test: "

_ Jiaea SY I P(A)dA

Jooo R I P(A)dA

Sra(Xo) (2)

where S* and Sf, are the true and measured spectral responsivity of the detector under test,
P(A) is the spectral distribution of the monochromator output, and I{})) is the monochromator
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slit function given in Equation 1. The relative bandwidth error is given by:

St (Ao) — SH(A

E()\g) =

The unlmown quantity S* is required to solve Equations 2 and 3. A cubic spline interpolation of
the measured spectral responsivity data was used in place of St, and the corresponding calculated
uncertainties due to bandwidth effects from 300 nm to 1000 nm are shown in Table 1.

3.8. Monochromator stray light

Out of band stray light can be caused by scattering, diffraction, or multiple reflections from inside
the monochromator. Although stray light levels are usually considered negligible for double
monochromators, we decided to test this assumption for the new apparatus. The photocurrent
of a single-element silicon transfer standard radiometer was measured from 250 nm to 700 nm
with and without an RG665 long pass filter in the beam (Fig. 2). The stray light component
of the signal was found to be relatively insignificant: <0.01 % for the LDLS above 300 nm and
<0.01 % for the tungsten lamp above 400 nm. The tungsten lamp was only used for spectral
responsivity measurements above 400 nm. As the cryogenic radiometer cavity and transfer
standard radiometers are coplanar and have similar sized input aperture diameters, the effect
of stray light was considered to be negligible.
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Figure 2. Measured stray light levels in the double monochromator system with (a) the LDLS
and (b) the tungsten lamp. A 280 nm long pass filter was mounted to the LDLS output for all
measurements to minimize exposure of optical components to UV radiation.

4. Measurement uncertainties

NRC'’s new absolute radiometry facility has demonstrated significant improvements to its
realization of the optical power scale. A complete uncertainty budget for calibrations of single-
element silicon transfer standard radiometers using a monochromator and broad-band light
source includes wavelength calibration, bandwidth, and temperature effects. These spectrally-
dependent uncertainties for spectral responsivity calibrations are listed in Table 1. The
repeatability component was estimated by taking the standard deviation of eight measurement
cycles. The non-uniformity of the transfer standard detectors has been previously characterized
[1] and is accounted for indirectly by the measurement repeatability. The transfer radiometer
photocurrent measurement uncertainty component was estimated from the specifications for
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the digital multimeter (Agilent Technologies 3458A Multimeter) and from the characterization
of the NRC-built transimpedance amplifiers used to convert the transfer standard detector
photocurrent to a voltage signal.

Table 1. Uncertainty budget for monochromator-based calibrations of single—el.ement silicon
transfer standard radiometers (%).

SOUTCC_OE c : Transfer Mono. M Transfer Overall
Uncertainty Raii?}igtlgr Radiometer =~ Measurement  Wavelength Ba.m;}:\l!?rith Radiometer Unc::tfa‘?int
Wavelength Effects Photocurrent  Repeatability — Calibration Effects Temperature %) g

(nm) Measurement; (£ 0.05 nm) (£ 05°C)

300 0.011 0.004 0.019 - 0.013 0.0094 0.008 0.028
320 0.011 0.004 0.008 0.011 0.0096 0.003 0.021
340 0.011 0.004 0.007 0.002 0.0249 0.001 0.029
360 _0.011 0.004 0.004 0.003 © 0.0354 0.016 0.041
380 0.011 0.004 0.006 0.020 0.0180 0.015 0.034
400 0.011 0.004 0.004 0.019 0.0093 0.014 0.028
450 0.011 0.004 0.004 0.009 0.0002 0.009 0.018
500 0.011 0.004 0.004 0.007 0.0006 0.006 0.016
550 0.011 0.004 0.005 0.006 0.0001 0.004 0.015
600 0.011 0.004 0.007 0.005 0.0001 0.004 0.015
650 0.011 0.004 0.007 0.005 0.0000 0.004 0.015
700 0.011 0.004 0.006 0.004 0.0000 0.003 0.014
750 0.011 0.004 0.011 0.004 0.0000 0.004 0.017
800 0.011 0.004 0.014 0.004 0.0000 0.002 0.019
850 0.011 0.004 0.018 0.003 0.0002 0.001 0.022
900 0.011 0.004 0.008 0.004 0.0005 0.002 0.015
950 0.011 0.004 0.010 0.001 0.0027 0.009 0.018
1000 0.011 0.004 0.010 0.006 0.0061 0.128 0.129

Table 2 summarizes the changes in the uncertainty budget between NRC'’s previous and new
absolute cryogenic radiometers. Contributions due to cavity absorptance and non-equivalence
effects have had the most significant impact.

Table 2. Uncertainties due to cryogenic radiometer (k=1).

Source of Uncertainty Magnitude-Old [10] (%) Magnitude-New (%) [11]
Cryogenic radiometer cavity absorptance 0.01 0.001
Cryogenic radiometer electrical-power measurement, 0.01 0.011
Cryogenic radiometer nonequivalence effects 0.01 0.002

Overall Cryogenic Radiometer Effects 0.017 0.011
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5. Conclusions

NRC has a new state-of-the-art facility for the primary realization of optical radiant power.
A new absolute cryogenic radiometer provides for significant improvements in uncertainty for
the realization of the optical power scale, significantly reducing the overall cryogenic radiometer
uncertainty contribution from the 0.017 % to 0.011 %. A wavelength dependent uncertainty
budget from 300 nm to 1000 nm for silicon detector calibrations was presented. Future work
will include the extension of calibration capabilities into the ultraviolet and infrared wavelength

ranges with appropriate monochromator diffraction gratings and optical window for the vacuum
bellows system.
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