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Pasteurella multocida is a Gram-negative bacterial pathogen that is the causative agent of a wide range of diseases in many ani-

mal species, including humans. A widely used method for differentiation of P. multocida strains involves the Heddleston sero-

typing scheme. This scheme was developed in the early 1970s and classifies P. multocida strains into 16 somatic or lipopolysac-

charide (LPS) serovars using an agar gel diffusion precipitin test. However, this gel diffusion assay is problematic, with

difficulties reported in accuracy, reproducibility, and the sourcing of quality serovar-specific antisera. Using our knowledge of

the genetics of LPS biosynthesis in P. multocida, we have developed a multiplex PCR (mPCR) that is able to differentiate strains

based on the genetic organization of the LPS outer core biosynthesis loci. The accuracy of the LPS-mPCR was compared with

classical Heddleston serotyping using LPS compositional data as the “gold standard.” The LPS-mPCR correctly typed 57 of 58

isolates; Heddleston serotyping was able to correctly and unambiguously type only 20 of the 58 isolates. We conclude that our

LPS-mPCR is a highly accurate LPS genotyping method that should replace the Heddleston serotyping scheme for the classifica-

tion of P. multocida strains.

P
asteurella multocida is the primary causative agent of a wide
range of economically important diseases, including hemor-

rhagic septicemia in ungulates, atrophic rhinitis in pigs, fowl chol-
era in birds, snuffles in rabbits, and enzootic pneumonia and ship-
ping fever in cattle, sheep, and pigs (1). P. multocida also causes
opportunistic infections in humans, often following cat or dog
bites, and plays a contributory role, together with other patho-
gens, in a range of lower respiratory tract infections and sporadic
septicemias in ungulates (1).

P. multocida strains have classically been differentiated using
serological techniques. Strains can be classified into five capsular
serogroups (A, B, D, E, and F) using an indirect hemagglutination
test (2) and into 16 somatic or lipopolysaccharide (LPS) serovars
(serotypes) using the Heddleston gel diffusion precipitin test (3).
Both of these schemes have been widely used. Isolates are com-
monly assigned a combined designation, such as A:1 (capsular
serogroup A and LPS serovar 1) or B:2 (capsular serogroup B and
LPS serovar 2).

P. multocida LPS is an immunodominant antigen critical for
homologous protection stimulated by bacterin (killed-cell) vac-
cines (4). Furthermore, in the P. multocida strain VP161, a full-
length LPS molecule is essential for the ability to cause acute dis-
ease (5, 6). Heddleston serotyping is currently the only method
used to differentiate P. multocida strains on the basis of LPS type.
However, the accuracy of Heddleston serotyping has never been
objectively tested, as the precise LPS structures produced by dif-
ferent strains have not been known. Indeed, there have been many
informal as well as formal reports that the Heddleston system fails
to type many isolates and lacks accuracy and reproducibility (7, 8).
Furthermore, Heddleston serotyping is time-consuming and re-
quires access to good-quality, serovar-specific antisera.

We have recently carried out a comprehensive analysis of the

LPS structures expressed by the 16 Heddleston type strains and

identified the genes required for LPS assembly in each strain (9–

16). These combined analyses showed that the LPS produced by all

strains consisted of a highly conserved inner core and a variable

outer core and revealed that each of the 16 Heddleston type strains

expresses structurally distinct LPS. Importantly, these analyses

also showed that only eight unique LPS outer core biosynthesis

loci are found in the 16 Heddleston type strains (Fig. 1). We have

designated these genetic loci L1 through to L8. The type strains of

Heddleston serovars 1, 2, 3, 5, 6, 8, 9, 12, and 16 express full-length

or “parent” LPS structures, and the type strains of Heddleston

serovars 4, 7, 10, 11, 13, 14, and 15 express truncated LPS—the

result of mutations within the LPS outer core biosynthesis loci.

The partial differentiation of P. multocida strains on the basis

of LPS biosynthesis genes has been reported previously (17). Us-

ing PCR-restriction fragment length polymorphism (RFLP) anal-

ysis, P. multocida strains were grouped into 5 PCR-RFLP types.

However, only 11 of the 16 Heddleston serovars were included in
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the study. Here we report the development and testing of a mul-
tiplex PCR (mPCR) using the full set of Heddleston serovar type
strains, which can accurately differentiate P. multocida strains into
one of the eight distinct LPS genotypes. By comparing the results
of Heddleston serotyping and the LPS-mPCR to the LPS struc-
tures predicted from LPS compositional analysis by mass spec-
trometry (MS), we have determined the accuracy of this mPCR
and Heddleston serotyping for predicting LPS type. The LPS-
mPCR gave a result that was indicative of LPS genotype �98% of
the time, and we propose that the LPS-mPCR assay should be used
to differentiate strains into their appropriate LPS genotype and,
together with the cap mPCR, form a new molecularly based typing
system for accurate strain differentiation of P. multocida.

MATERIALS AND METHODS

Strains used. All P. multocida strains were grown at 37°C in heart infusion
(HI) (Oxoid, Basingstoke, United Kingdom) liquid broth with shaking or
on solid HI medium containing 1.5% agar. The P. multocida strains used

in the study are described in Table 1. All field isolates were confirmed as P.

multocida by use of one of two P. multocida-specific PCR assays (18, 19).

Serotyping. Each isolate of P. multocida was serotyped via the Hed-

dleston method as described previously (3).

Molecular biology techniques. Genomic DNA was purified from 1 ml

of P. multocida overnight culture using the RBC genomic DNA purifica-

tion kit (RBC, Taiwan). Each of the final LPS-mPCRs (50-�l final volume)

was performed in 1� Taq polymerase buffer (10 mM Tris-HCl, 1.5 mM

MgCl2, 50 mM KCl [Roche Diagnostic GmbH, Mannheim, Germany])

containing 0.4 �M each primer (Table 2), 0.2 mM deoxynucleoside

triphosphates (dNTPs), and 1.7 U Taq polymerase (Roche Diagnostic

GmbH, Mannheim, Germany). For each colony PCR, material from 2 to

3 well-isolated P. multocida colonies (obtained from overnight growth of

each isolate at 37°C on an HI–1.5% agar plate) was collected using a sterile

tip on a 20-�l micropipette (volume set at 20 �l) inserted into the middle

of each colony. The collected material was then added to a 50-�l PCR

mixture and mixed thoroughly by pipetting. For PCR using genomic

DNA, approximately 50 ng of column-purified DNA was added to each

PCR mixture. All reaction mixtures were mixed briefly then centrifuged

Serovar 14

Serovar 1 L1

Serovars 2/5 L2

Serovar 4

Serovar 3
L3

Serovar 6

Serovar 7
L4

Serovar 9 L5

Serovar 15

Serovar 11

Serovar 12

Serovar 10

L6

Serovar 8 L7

Serovar 13

Serovar 16
L8
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pcgD
pcgA

pcgB
pcgC

1307bp

gatL latB gatK natD natE

550bp
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1175bp
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FIG 1 LPS outer core structure produced by each of the Heddleston serovar type strains and the genes responsible for LPS outer core biosynthesis in each strain.
(Left) Schematic representation of the outer core LPS structures produced by each of the Heddleston serovar type strains. The last residue (glucose) of the
conserved LPS inner core is shown on the far left as a reference point. Specific linkages between each of the residues are not shown. (Right) LPS genotype and
genetic organization of each LPS outer core biosynthesis locus. The relative position and size of each genotype-specific PCR amplicon are shown above each LPS
outer core biosynthesis locus. Each gene is color coded according to its known/predicted role in LPS biosynthesis; gctD and gatB (yellow and blue striped) in locus
L6 differ by only a single nucleotide and are involved in the addition of glucose or galactose, respectively, to the outer core heptose. The rpL31_2 gene, encoding
ribosomal protein L31, is not involved in LPS biosynthesis and is colored brown.
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(10 s, 13,000 � g). All PCRs were performed in an Eppendorf Mastercy-
cler. For colony PCR, the cycling conditions were 96°C for 10 min, fol-
lowed by 30 cycles of 96°C for 30 s, 52°C for 30 s, and 72°C for 2.5 min,
with a final extension at 72°C for 5 min. For PCR using genomic DNA as
the template, the cycling conditions were identical to those in the colony
PCR, except that the initial denaturation step at 96°C was reduced to 5
min.

The PCR products generated from the LPS-mPCR were analyzed by
gel electrophoresis using 2% agarose–Tris-acetate-EDTA (TAE) gel in 1�

TAE buffer for 90 min at constant voltage (70 V).
For the initial LPS-mPCR (LPS-mPCR version 1 [LPS-mPCRv1]), all

primers were used at a concentration of 0.3 �M, except for the L6 primers,
which were used at 0.5 �M. The cycling conditions for the LPS-mPCRv1
using bacterial colony material as the template were 95°C for 10 min,
followed by 30 cycles of 95°C for 30 s, 54°C for 30 s, and 72°C for 2.5 min,
with a final extension at 72°C for 2 min.

Nucleotide sequences were determined by direct sequencing from
genomic DNA and/or by sequencing of amplified PCR fragments as de-
scribed previously (10). Sequencing reactions were analyzed using the
Applied Biosystems 3730S genetic analyzer, and sequencing chromato-
grams were analyzed and the LPS loci assembled using Vector NTI Ad-
vance 11 (Invitrogen). Bioinformatic analyses, including amino acid se-
quence alignments, were conducted using BLAST and ClustalW2.

LPS sugar compositional analyses. For compositional analysis of LPS
produced by the Australian field isolates, small quantities of LPS were
isolated from plate-grown cells as described previously (20). O-deacylated
LPS (LPS-OH), core oligosaccharide (OS), and completely deacylated
LPS were all isolated and purified from LPS as described previously (21).
The sugar composition of the LPS from selected strains was determined by
mass spectrometry as previously described (22). The predicted LPS struc-
tures produced by the P. multocida isolates were determined using MS
compositional analysis and comparison with the known compositions
and structures of the 16 Heddleston serovar type strains (9–16).

RESULTS

Design of a first-generation mPCR capable of differentiating P.

multocida strains based on the genetics of LPS biosynthesis. We
have shown previously that the 16 unique LPS outer core struc-
tures produced by the P. multocida Heddleston type strains are

TABLE 1 Characteristics of the strains used in this studya

Strain

no.

Heddleston serovar

designation(s)b

Isolation

date Host species

X73 H1 type strain Prior to 1943 Chicken

M1404 H2 type strain Prior to 1943 Bison

P1059 H3 type strain Prior to 1943 Turkey

P1662 H4 type strain 1968 Turkey

P1702 H5 type strain 1971 Turkey

P2192 H6 type strain 1971 Chicken

P1997 H7 type strain 1971–1973 Herring gull

P1581 H8 type strain 1971–1973 Pine siskin

P2095 H9 type strain 1971–1973 Turkey

P2100 H10 type strain 1971–1973 Turkey

P903 H11 type strain 1971–1973 Pig

P1573 H12 type strain 1971–1973 Human

P1591 H13 type strain 1971–1973 Human

P2225 H14 type strain 1971–1973 Cattle

P2237 H15 type strain 1971–1973 Turkey

P2723 H16 type strain 1974 Turkey

PM1 H3 (H3, H4) 1993 Turkey

PM3 H15 (H4, H10, H15) 1993 Turkey

PM8 H10 (H10) 1993 Turkey

PM18 NT (H3) 1986 Chicken

PM19 H13 (H3) 1986 Chicken

PM36 H14 (H14) 1985 Unknown

PM37 H3 (H3) 1988 Chicken

PM45 NT (H3, H4) 1986 Chicken

PM46 H6 (H6) 1992 Chicken

PM48 H3 (H3, H4) 1983 Chicken

PM49 NT (H1, H15) 1984 Chicken

PM51 H9 (H4, H12) 1984 Chicken

PM64 NT (H3) 1979 Chicken

PM67 H3 (H3, H12) 1969 Turkey

PM72 NT (H3, H14) 1977 Chicken

PM120 H12 (H12) 1993 Chicken

PM135 H8, H13 (H13) Unknown Turkey

PM140 NT (H13, H14, H15) 1994 Chicken

PM147 H7 (H7) 1993 Chicken

PM878 H1, H4 2001 Chicken

PM993 H8 2002 Duck

PM995 H3 2002 Chicken

PM1075 H16 2004 Chicken

PM1098 H15 2004 Unknown

PM1099 H10 2004 Unknown

PM1103 H10 2004 Unknown

PM1113 NT 2004 Avian

PM1120 NT 2005 Chicken

PM1124 H1, H4, H12 2005 Unknown

PM1128 H10 2005 Bovine

PM1132 H1, H3, H4, H10, H14 2005 Pig

PM1153 H1, H3, H7 2005 Avian

PM1165 H1 2006 Duck

PM1193 H3 2006 Duck

PM1205 H1 2007 Emu

PM1258 NT 2010 Chicken

PM1268 NT 2010 Chicken

PM1300 H4 2009 Turkey

PM1304 H1 2009 Chicken

PM1315 H1 2009 Chicken

PM1316 H4 2009 Unknown

PM1317 H3 2009 Unknown

PM1320 H10, H13, H14 2010 Chicken

PM1369 H1 2010 Chicken

PM1396 H1, H3 2010 Unknown

TABLE 1 (Continued)

Strain

no.

Heddleston serovar

designation(s)b

Isolation

date Host species

PM1398 H1 2010 Chicken

PM1405 NT 2010 Chicken

PM1417 H4 2010 Chicken

PM1434 NT 2010 Chicken

PM1435 NT 2010 Chicken

PM1439 NT 2010 Chicken

PM1441 H2 2010 Turkey

PM1455 H1 2011 Chicken

PM1456 H14 2011 Chicken

PM1457 NT 2011 Chicken

PM1458 H14 2011 Chicken

PM1470 H1 2011 Turkey

PM1474 H12 2011 Duck
a Included are the Heddleston serovar type strains and details on the Australian P.

multocida field isolates, including Heddleston serotyping results, isolation date, and

host species.
b The format in which multiple numbers are separated by a comma indicates that a

precipitin line was observed with more than one type of serum. The presence of results

in parentheses indicates that two distinct and separate serotyping assays were

performed: the result in the parentheses is the first result with this isolate. NT,

nontypeable by Heddleston serotyping.
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generated from only eight distinct genetic loci, which we have
named L1 to L8 (Fig. 1) (9–15, 20). We have therefore designated
the following Heddleston serovar type strains as the LPS genotype
type strains: X73 (L1), P1702 (L2), P1059 (L3), P2192 (L4), P2095
(L5), P1573 (L6), P1581 (L7), and P2723 (L8). Within each LPS
genotype, strains displaying variation and/or truncation of the
LPS structure can arise from random point mutations or dele-
tions, in almost all cases, within the LPS outer core biosynthesis
genes. These mutations can result in a change of function (sugar or
donor specificity) or a total loss of function resulting in early ter-
mination of LPS assembly (10, 11). Given the random nature of
LPS mutations, it was concluded that designing a PCR specific for
each precise LPS structure identified was not possible. Thus, an
mPCR assay was designed that was capable of differentiating the
eight different LPS genotypes.

In all of the P. multocida strains so far examined, the genes
required for synthesis of the LPS outer core are located between
the conserved non-LPS genes priA and fpg (23). Each LPS outer
core biosynthesis locus contains between 5 and 13 genes, includ-
ing the highly conserved rpL31_2 gene, encoding ribosomal pro-
tein L31, which is not involved in LPS assembly (Fig. 1). To design
an mPCR specific for the LPS outer core biosynthesis loci, a bioin-
formatic comparison was first performed using all the predicted
protein sequences from each of the eight LPS outer core biosyn-
thesis loci. One unique (or least similar) protein sequence was
selected, and the corresponding nucleotide sequence was com-
pared with the entire nucleotide sequence of each of the eight LPS
loci. Where some similarity was observed in the selected region
with the nucleotide sequence from another locus, nucleotide
alignments were generated and the alignments visually inspected
to identify the most divergent DNA sections. This information

was used to design a set of eight primer pairs specific for each of the
eight LPS biosynthetic loci (Table 2). Each primer pair was also
designed to generate a distinct amplicon size for optimal electro-
phoretic separation on 2% agarose gels.

Testing of the LPS-mPCRv1. All primer sets were initially
tested in separate PCRs using either genomic DNA or colony-
derived cells from each of the Heddleston type strains as the tem-
plate. All PCRs amplified a product of the correct size when the
appropriate type strains were used as the template (e.g., when
the L1 primers were used against the L1 strains X73 and P2225).
The different primer pairs were then combined and used in a
single mPCR using either genomic DNA or colony-derived cells
from each of the Heddleston type strains as the template. Follow-
ing PCR optimization, a reproducible mPCR (LPS-mPCR version
1 [LPS-mPCRv1]) was developed that generated a single product
of the expected size for all strains (Fig. 2A).

Testing of the LPS-mPCRv1 against Australian P. multocida

field isolates. To test the reproducibility and accuracy of LPS-
mPCRv1, 58 P. multocida field isolates were typed using both LPS-
mPCRv1 and classical Heddleston serotyping. The 58 field isolates
included strains obtained from a range of Australian poultry farms
and other sources between 1977 and 2011. In total, 33 of the
strains were recorded as being isolated from chickens, 8 from tur-
keys, 4 from ducks, and 1 from an emu. The host species was not
recorded for 10 of the isolates. One bovine isolate and one porcine
isolate were also included (Table 1).

Historical strains were serologically typed using the Hed-
dleston serotyping system when they were first received at the
Australian reference laboratory (Agri-Science Queensland), and
the typing was then repeated again for this study. For some strains,
the serovar determined when the Heddleston serotyping was re-

TABLE 2 DNA sequence and genetic location of the primers used in the LPS-mPCR

Locus Primer Sequence Location

Product

size (bp)

Oligonucleotides used in final

LPS-mPCR typing assay

L1
BAP6119 ACATTCCAGATAATACACCCG Forward primer in pcgD

1,307
BAP6120 ATTGGAGCACCTAGTAACCC Reverse primer in pcgB

L2
BAP6121 CTTAAAGTAACACTCGCTATTGC Forward primer in nctA

810
BAP6122 TTTGATTTCCCTTGGGATAGC Reverse primer in nctA

L3
BAP7213 TGCAGGCGAGAGTTGATAAACCATC Forward primer in gatF

474
BAP7214 CAAAGATTGGTTCCAAATCTGAATGGA Reverse primer in gatF

L4
BAP6125 TTTCCATAGATTAGCAATGCCG Reverse primer in latB

550
BAP6126 CTTTATTTGGTCTTTATATATACC Forward primer in latB

L5
BAP6129 AGATTGCATGGCGAAATGGC Forward primer in rmlA

1,175
BAP6130 CAATCCTCGTAAGACCCCC Reverse primer in rmlC

L6
BAP7292 TCTTTATAATTATACTCTCCCAAGG Forward primer in nctB

668
BAP7293 AATGAAGGTTTAAAAGAGATAGCTGGAG Reverse primer in nctB

L7
BAP6127 CCTATATTTATATCTCCTCCCC Forward primer in ppgB

931
BAP6128 CTAATATATAAACCATCCAACGC Reverse primer in ppgB

L8
BAP6133 GAGAGTTACAAAAATGATCGGC Forward primer in natG

255
BAP6134 TCCTGGTTCATATATAGGTAGG Reverse primer in natG

Oligonucleotides used only in

LPS-mPCRv1a

L3
BAP6123 TCCTTATCTGACATTGAAATCG Forward primer in gatG

415
BAP6124 CTAGACATCTGGTGGTTGCG Reverse primer in gatG

L6
BAP7039 AATATCTTTATAATTATACTCTCCC Forward primer in nctB

668
BAP6132 AATGAAGGTTTAAAAGAGATAGC Reverse primer in nctB

a These L3 and L6 primer sets were used in the initial LPS-mPCRv1 but were replaced in the final LPS-mPCR.
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peated was not in agreement with the initial serovar typing result
(Table 1). Of the 58 strains, 32 gave an unambiguous Heddleston
serovar result (55%) (Table 1), 17 gave an ambiguous result of two
or more possible serovars, and 9 were nontypeable (no precipitin
line observed). The most common serovars identified unambigu-
ously were serovars 1 and 3.

All strains were then LPS genotyped using the LPS-mPCRv1.
An example of an LPS-mPCRv1 result is shown in Fig. 2B. Of the
58 strains tested, the LPS-mPCRv1 gave an unambiguous LPS
genotype for 48 of the strains (Table 3), but no PCR product could
be generated for 10 strains (nontypeable). A comparison of the
LPS-mPCRv1 genotype and Heddleston serovar designations of
each strain (Table 3) revealed that there was complete agreement
between the typing methods for only 16 of the 58 strains. Partial
agreement was obtained for a further 11 strains (where serotyping
gave an ambiguous result and the LPS-mPCRv1 result was in
agreement with one of the serotyping results). For 15 strains, the
LPS-mPCRv1 gave a locus designation that was incompatible with
the serovar designation (Table 3). These data indicate that there
were clear discrepancies between Heddleston serotyping and LPS
genotype, as determined by the LPS-mPCRv1. Importantly, the
LPS-mPCRv1 consistently assigned strains to a single genotype,
whereas serotyping frequently assigned strains to multiple Hed-
dleston serovars.

In order to determine whether Heddleston serotyping or the
LPS-mPCRv1 gave a more accurate representation of the LPS pro-
duced by each strain, the LPS composition from a set of selected
strains was analyzed by mass spectrometry. The strains examined
included five strains from the agreement group, all strains from
the nonagreement group, 9 of the 11 strains from the partial agree-
ment group (where Heddleston serotyping gave ambiguous re-
sults), and all strains that remained nontypeable in one or both
typing systems. As we have reported previously, these analyses
identified a number of strains belonging to the L3 genotype, which
expressed multiple LPS glycoforms (10). When interpreting the
typing results, the LPS glycoform that contained the largest num-
ber of sugars/residues was deemed to be representative of the most
extended LPS structure produced by the strain, and any additional
glycoforms observed that contained fewer sugars (but common to
the largest glycoform) were considered truncated variants.

As expected, the five strains analyzed within the agreement
group (Table 3) gave LPS-mPCRv1 designations that were in
agreement with both LPS composition and with serotyping. The
LPS composition of the nine strains examined within the partial
agreement group correlated always with the genotype designation
but correlated with one of the multiple Heddleston serovar desig-
nations in only 6 of the 9 strains (Table 3). The LPS composition of
two strains in the agreement group (PM120 and PM1193) and two

FIG 2 Gel electrophoresis separation of LPS-mPCRv1 products amplified using template of lysed colonies from each of the Heddleston type strains (H1 to H16)
(A) or template derived from lysed colonies from selected P. multocida field isolates (B). A 100-bp ladder marker was loaded in lane 1 of each gel. Pooled
amplicons, generated from separate PCRs using each of the LPS genotype type strains as the template, are shown on either side of each gel for comparison. Each
LPS genotype amplicon is shown on the right, and the products are labeled L1 to L8.
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TABLE 3 Comparison of strain typing of 58 Australian field isolates by Heddleston serotyping and LPS-mPCR

Parameter and strain no. Serotypinga,b

LPS-

mPCRv1

Final LPS-mPCR (Heddleston

serovars within each genotype)c LPS compositiond

LPS-mPCR and serotyping

in agreement

PM36 H14 (H14) L1 L1 (H1, H14) No LPS analysis

PM37 H3 (H3) L3 L3 (H3, H4) No LPS analysis

PM45 NT (H3, H4) L3 L3 (H3, H4) No LPS analysis

PM46 H6 (H6) L4 L4 (H6, H7) 3HexNAc, 2Hex (H6)

PM120 H12 (H12) L6 L6 (H10, H11, H12, H15) 2Hex, 1Hep

PM1165 H1 L1 L1 (H1, H14) No LPS analysis

PM1193 H3 L3 L3 (H3, H4) 4Hex, Hep

PM1300 H4 L3 L3 (H3, H4) No LPS analysis

PM1304 H1 L1 L1 (H1, H14) No LPS analysis

PM1315 H1 L1 L1 (H1, H14) No LPS analysis

PM1316 H4 L3 L3 (H3, H4) No LPS analysis

PM1317 H3 L3 L3 (H3, H4) No LPS analysis

PM1398 H1 L1 L1 (H1, H14) 2PCho, 2Hex, Hep (H1)

PM1417 H4 L3 L3 (H3, H4) No LPS analysis

PM1455 H1 L1 L1 (H1, H14) 2PCho, 2Hex, Hep (H1)

PM1458 H14 L1 L1 (H1, H14) No LPS analysis

LPS-mPCR and serotyping

in partial agreement

PM3 H15 (H4, H10, H15) L3 L3 (H3, H4) 1Hex, Hep/2Hex, Hep

PM19 H13 (H3) L3 L3 (H3, H4) No LPS analysis

PM49 NT (H1, H15) L1 L1 (H1, H14) 2PCho, 2Hex, Hep (H1)

PM51 H9 (H4, H12) L6 L6 (H10, H11, H12, H15) 2Hex, Hep

PM67 H3 (H3, H12) L6 L6 (H10, H11, H12, H15) 1HexNAc, 3Hex, Hep (H12)

PM72 NT (H3, H14) L3 L3 (H3, H4) 3Hex, Hep (H4)/4Hex, Hep/1HexNAc, 4Hex, Hep (H3)/

2HexNAc, 4Hex, Hep

PM140 NT (H13, H14, H15) L1 L1 (H1, H14) 1 Hex, Hep (H14)

PM878 H1, H4 L1 L1 (H1, H14) No LPS analysis

PM1124 H1, H4, H12 L1 L1 (H1, H14) 2PCho, 2Hex, Hep (H1)

PM1132 H1, H3, H4, H10, H14 L6 L6 (H10, H11, H12, H15) 3Hex, Hep/HexNAc, 3Hex, Hep (H12)

PM1396 H1, H3 L1 L1 (H1, H14) 2PCho, 2Hex, Hep (H1)

LPS-mPCR and serotyping

not in agreement

PM8 H10 L3 L3 (H3, H4) 2Hex, Hep/Hex, Hep/Hep

PM64 NT (H3) L6 L6 (H10, H11, H12, H15) 1HexNAc, 3Hex, Hep (H12)

PM147 H7 (H7) L3 L3 (H3, H4) 2Hex, Hep

PM993 H8 L6 L6 (H10, H11, H12, H15) No outer core (H10)

PM995 H3 L6 L6 (H10, H11, H12, H15) 1HexNAc, 3Hex, Hep (H12)

PM1098 H15 L3 L3 (H3, H4) 3Hex, Hep (H4)

PM1099 H10 L3 L3 (H3, H4) 3Hex, Hep (H4)/4Hex, Hep/1HexNAc, 4Hex, Hep (H3)

PM1103 H10 L3 L3 (H3, H4) 4Hex, Hep/1HexNAc, 4Hex, Hep (H3)

PM1128 H10 L3 L3 (H3, H4) 1HexNAc, 4Hex, Hep (H3)

PM1205 H1 L3 L3 (H3, H4) 3Hex, Hep (H4)

PM1320 H10, H13, H14 L3 L3 (H3, H4) Hex, Hep/2Hex, Hep (H4)

PM1441 H2 L3 L3 (H3, H4) 3Hex, Hep (H4)/4Hex, Hep/1HexNAc, 4Hex, Hep (H3)

PM1456 H14 L4 L4 (H6, H7) 1Hex (H7)

PM1470 H1 L3 L3 (H3, H4) 1HexNAc, 4Hex, Hep (H3)/2HexNAc, 4Hex, Hep

PM1474 H12 L3 L3 (H3, H4) 3Hex, Hep (H4), 4Hex, Hep

Nontypeable using

Heddleston

serotyping

PM1113 NT L4 L4 (H6, H7) 1Hex (H7)

PM1268 NT L3 L3 (H3, H4) 2Hex, Hep, 3Hex, Hep (H4)

PM1405 NT L1 L1 (H1, H14) 2PCho, 2Hex, Hep (H1)

PM1435 NT L1 L1 (H1, H14) 2PCho, 2Hex, Hep (H1)

PM1439 NT L3 L3 (H3, H4) 3Hex, Hep (H4)

PM1457 NT L4 L4 (H6, H7) 3HexNAc, 1Hex/3HexNAc, 2Hex (H6)

(Continued on following page)
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in the partial agreement group (PM3 and PM51) did not correlate
precisely with the serovar-specific LPS structures within the as-
signed LPS genotype. However, in each case the LPS composition
did correlate with a truncated version of the LPS structure specific
to the assigned LPS genotype (10, 11).

For the strains where serotyping and PCR were in nonagree-
ment, the LPS compositional analysis was always compatible with
the LPS genotype assigned using the LPS-mPCRv1. In contrast,
the Heddleston serotyping designation did not correlate with the
predicted LPS composition for any strain in this group, clearly
showing that Heddleston serotyping is unreliable for prediction of
LPS composition. Importantly, the LPS-mPCRv1 gave unambig-
uous LPS genotyping results (producing only a single amplicon)
that always correlated with LPS composition (Table 3).

Redesign of the LPS-mPCR to increase coverage. The LPS-
mPCRv1 gave an unambiguous LPS genotype for 48 of 58 field
strains (Table 3) but failed to amplify a product from 10 isolates.
PCR and nucleotide sequence analyses of the LPS outer core bio-
synthesis locus in each strain revealed that nine of the untypeable
strains contained an L3 LPS locus but with significant nucleotide
differences within gatG, where the L3 primers were located. The
tenth strain, PM135, contained an L7 LPS locus but with a major
deletion of 2,210 nucleotides (14) that included ppgB, where the
L7 primers for the LPS-mPCRv1 were located.

To improve the strain coverage of the LPS-mPCRv1, the nu-
cleotide sequence of the L3 type strain (P1059) was used to design
new primers in a region within gatF that shared 100% identity
with the nine L3 strains that were nontypeable using the LPS-
mPCRv1 (Fig. 1). Substitution of the gatF L3 primers in the mul-
tiplex PCR resulted in amplification of all locus-specific products
from the appropriate templates, except for locus 6, where only
weak amplification of the product was observed for some strains

(data not shown). To improve the L6 amplicon yield, the L6 prim-
ers were slightly modified. This final typing PCR was designated
the LPS-mPCR. The full set of the final LPS-mPCR primers and
amplicon sizes is shown in Table 2.

The final LPS-mPCR was used to genotype the 16 Heddleston
type strains and was able to accurately differentiate all of these
strains into the eight LPS genotypes (Fig. 3). The LPS-mPCR was
then used to genotype the 58 field isolates. This final LPS-mPCR
gave a single reproducible amplification product for 57 of 58
strains (strain PM135 was nontypeable), including the nine L3
strains that were nontypeable using the LPS-mPCRv1 (data not
shown). All positive LPS-mPCR results were compatible with the
LPS compositions that were determined (Table 3).

DISCUSSION

In this study, a multiplex PCR was designed to differentiate P.
multocida strains on the basis of the LPS genotype. The final LPS-
mPCR was able to unambiguously type the 16 Heddleston type
strains and 57 of the 58 field isolates. However, strain PM135
remained untypeable, due to a large deletion in the region where
the L7 LPS-mPCR primers were located (14). The failure of the
LPS-mPCR due to large deletions within the LPS loci where prim-
ers are located cannot be avoided. However, our previous analyses
of the Heddleston type strains and field isolates containing LPS
gene mutations indicate that such large deletions are rare; most
mutations within the P. multocida LPS outer core biosynthesis loci
involve single point mutations (9–11) and would be unlikely to
compromise PCR amplification.

During the testing of the LPS-mPCR for differentiation of P.
multocida isolates, mass spectrometry analysis was used as the
“gold standard” to assess the composition of the LPS produced by
individual strains. This method of LPS analysis identifies sugar

TABLE 3 (Continued)

Parameter and strain no. Serotypinga,b

LPS-

mPCRv1

Final LPS-mPCR (Heddleston

serovars within each genotype)c LPS compositiond

Nontypeable using initial

LPS-mPCRv1e

PM1 H3 (H3, H4) NT L3 (H3, H4) 3Hex, Hep (H4)/4Hex, Hep/1HexNAc, 4Hex, Hep (H3)

PM18 NT (H3) NT L3 (H3, H4) 2Hex, Hep

PM48 H3 (H3, H4) NT L3 (H3, H4) 3Hex, Hep (H4)/4Hex, Hep/1HexNAc, 4Hex, Hep (H3)

PM135 H8, H13 (H13) NT NT, L7 sequencef 1HexNAc, 2Hex, Hep (H13)

PM1075 H16 NT L3 (H3, H4) No outer core

PM1120 NT NT L3 (H3, H4) No outer core

PM1153 H1, H3, H7 NT L3 (H3, H4) 3Hex, Hep (H4)/4Hex, Hep/1HexNAc, 4Hex, Hep (H3)/

2HexNAc, 4Hex, Hep

PM1258 NT NT L3 (H3, H4) No outer core

PM1369 H1 NT L3 (H3, H4) 3Hex, Hep (H4)/4Hex, Hep

PM1434 NT NT L3 (H3, H4) 1HexNAc, 4Hex, Hep (H3)
a The format in which multiple numbers are separated by a comma indicates that a precipitin line was observed with more than one type serum. Results in parentheses indicate that

two distinct and separate serotyping assays were performed: the result in parentheses is the first result with this isolate. NT, not able to be typed by this method (i.e., no precipitin

line was observed using serotyping, or no amplicon was produced by mPCR).
b A Heddleston serovar shown in boldface correlates with both LPS composition and LPS genotype.
c An LPS genotype shown in boldface correlates with LPS composition.
d Outer core LPS sugar composition as predicted by MS/MS compositional analysis. The Heddleston serovar within the designated genotype that matches the LPS outer core

composition is shown in boldface and in parentheses. Those compositions without a Heddleston serovar designation shown in parentheses do not precisely match any of the

Heddleston type strain LPS structures. Multiple LPS glycoforms when detected have been separated by “/.” Hex, hexose (glucose or galactose); HexNAc, N-acetyl hexosamine [N-

acetylglucosamine, N-acetyl galactosamine, or (1S)-2-acetamido-2-deoxy-D-galactose]; Hep, heptose; PCho, phosphocholine. Nonstoichiometric phosphoethanolamine additions

to the outer core have not been determined.
e Sequencing of the LPS outer core biosynthesis locus revealed significant nucleotide differences where the LPS-mPCRv1 primers were located.
f Sequencing of the PM135 LPS outer core biosynthesis locus revealed a large deletion in the region where the L7 LPS-mPCR primers were located.
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type and overall sugar content, which are then compared to the
LPS compositions of the fully elucidated Heddleston LPS struc-
tures to predict the LPS glycoforms expressed by any particular
strain.

Our previous analyses of the LPS genetics and structure in P.
multocida showed that strains with the same serological designa-
tion can produce structurally distinct LPS (9–16). These analyses
also showed that the LPS structures produced by many P. multo-
cida strains are truncated variants of the full-length or “parent”
LPS structure and that there is significantly more LPS diversity in
the field than is represented by the current 16 type strains (9–12,
14). Interestingly, many P. multocida field isolates belonging to the
L3, L4, and L6 genotypes produce a wide range of LPS glycoforms,
including some which have a significantly truncated LPS outer
core or no outer core at all. Many of these strains were isolated
from poultry exhibiting clear signs of fowl cholera (data not
shown), indicating that strains belonging to these genotypes do
not require a full-length LPS molecule to cause disease. Our stud-
ies on the L1/serovar 1 strain VP161 have shown that any short-
ening of the LPS outer core structure in this strain results in atten-
uation of virulence in chickens (24), but it is possible that isolates
expressing truncated LPS may be able to persist in some host
niches but are not as virulent as parent strains expressing full-
length LPS. Indeed, infection of chickens with a VP161 hptE LPS
mutant (which produces a highly truncated outer core) showed
that this mutant could persist at the site of muscle injection but
could not be recovered from the blood, thus supporting this hy-
pothesis (20). Importantly, many of the structures expressed by L3
and L6 genotype strains mimic host glycosphingolipids, and this
may allow the bacteria to avoid recognition by the components of
the innate immune system (10, 11).

Our comparison of LPS composition, Heddleston serotyping,
and LPS-mPCR typing showed clearly that the Heddleston serovar
designation frequently failed to correlate with the composition of
the LPS produced by each strain. In contrast, the LPS-mPCR as-
say, specific for the identification of the LPS outer core biosynthe-
sis loci, always correlated with LPS composition. Knowledge of the
LPS genotype allows for the identification of the LPS type and
possible range of LPS structures that strains can produce. How-

ever, the LPS-mPCR cannot predict the precise LPS structures
produced by individual strains as random mutations within the
LPS locus often lead to changes in LPS structure. We propose that
the high diversity in numbers and types of LPS molecules pro-
duced by P. multocida strains indicates that a typing system exactly
predictive of LPS structure is not feasible. If knowledge of the
precise LPS structure is important for diagnosis and the control of
outbreaks, then following mPCR analysis, further experiments
would need to be conducted, such as carbohydrate-specific silver
staining of cell lysates to assess the relative size of the LPS pro-
duced. Alternatively, for more detailed analysis, nucleotide se-
quencing of the LPS biosynthesis locus to identify the specific LPS
gene mutations combined with carbohydrate mass spectrometry
could be employed. However, these detailed analyses are beyond
the scope of diagnostic laboratories.

The LPS-mPCR developed here is a highly reproducible typ-
ing system for differentiating P. multocida strains. We have also
shown that many field isolates produce multiple LPS glycoforms
simultaneously; these naturally occurring “multivalent” strains
could be excellent candidates for killed-cell vaccines as they may
show broader protective efficacy than strains expressing single
LPS molecules. We are currently assessing this possibility.
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