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Pose Error Compensation for Performance-Oriented View Planning
William R. Scottf

t Computational Video Group,
National Research Council of Canada, Ottawa, Canada, K1A OR6
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Abstract

Automated 3D object reconstruction or inspection us-
g a range camera requires a positioning system to
configure sensor-object relative geometry in a sequence
of poses defined by a computed view plan. Discrep-
ancies between commanded and actual poses can re-
sult in scanning deficiencies. This paper presents a
statistically-based method to mitigate pose error effects
on a view plan for a common type of range sensor and
a generic positioning system. The technique is gener-
alizable to other sensor and positioning system types.

1 Introduction

Active laser scanning range cameras [1] are widely
used for high quality 3D object reconstruction and
inspection. These processes involve planning views,
physically altering the sensor-object pose, taking
scans, registering the geometric data in a common
reference frame and integrating range images into a
non-redundant model. Automating the view planning
task remains an open problem. An in-depth discus-
sion of the view planning problem, related issues and
a literature survey can be found at [7].

The objective of any view planning technique is to
produce a view plan or next-best-view (NBV) list.
When the NBV list is sent to a positioning system
whose accuracy is inferior to that of the sensor, the
coverage of individual viewpoints and of the view plan
as a whole is compromised. Individual viewpoint po-
sitions and orientations are corrupted. Image cover-
age (frustum occupancy), visibility, measurement pre-
cision and sampling density are effected.

We can recover refined pose estimates post-facto
with suitable registration techniques and subsequently
re-estimate measurement quality within acquired im-
ages. However, the acquired data remains different
from that planned. As pose error deteriorates, the
computationally intensive view planning phase is pro-
gressively compromised - ultimately to be rendered fu-
tile. Consequently, there is a need to make the view
planning process robust with respect to pose error.

Pose error effects on a view plan have been analyzed
in-depth at [5] and summarized at [6]. This paper

builds on the previous analysis to present a method of
pose error compensation based on a statistical analysis
of pose error effects on a common type of range camera
and a generic positioning system.

The paper is organized as follows. Section 2 de-
scribes the performance-oriented approach to view
planning and defines the system models. Section 3
summarizes the analysis of pose error effects reported
in earlier work. Section 4 introduces our approach to
pose error compensation while deferring details to Ap-
pendix A. Experimental results are reported in Sec-
tion 5. Section 6 concludes the paper.

2 Imaging Environment Models

Performance-oriented view planning [4] begins with
a model specification containing explicit, quanti-
fied quality objectives for the task - for example,
measurement precision and sampling density. This
specification-based approach to view planning requires
good system models: a sensor model describing cam-
era and frustum geometry and characterizing measure-
ment performance within the calibrated region, plus
a positioning system model describing the degrees of
freedom, range of motion and positioning performance
within the calibrated movement envelope.

Our technique for performance-oriented view plan-
ning is presented at [4]. Estimated measurability
is computed for viewpoint and target surface point
combinations and recorded in a measurability matrix.
Each measurability matrix element is a binary esti-
mate of frustum occupancy, bi-static visibility and
specification compliance based on approximate knowl-
edge of the imaging environment. Measurability terms
and performance measures are defined at [4].

2.1 Sensor Performance Model

We use a comprehensive sensor model in which scan-
ning mechanisms and frustum shapes are defined and
parameterized. The camera is modeled as a bi-static
sensor with a specified optical baseline. Image size and
other parameters are optionally reconfigurable. The
model incorporates effects related to bi-static visibil-
ity, standoff distance, scanning and grazing angles.
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Figure 1: Line-scan Range Camera Geometry

Range Camera Geometry We have modeled several
generic range camera designs. The analysis and ex-
perimental results presented in this paper are given
for a common a common configuration, the line-scan
camera, whose imaging geometry is shown at Figure
1. By convention, the camera axis defines the negative
z-axis. The negative sign is dropped when referring
to range. The frustum for a line-scan camera is de-
fined by ®, (x-z plane angular field of view), L, (y-z
plane linear scan length) and Ry.;, and R, (mini-
mum and maximum scanning ranges). The transmit-
ter (laser) and receiver (detector) are separated by the
optical baseline b along the y-axis. Scanning occurs
optically in the x-z plane, where ¢,. is the instan-
taneous laser scan angle. In the y-z plane, scanning
occurs by mechanical movement of the camera along
the y-axis. The foregoing sensor model captures the
most important first order sensing mechanisms.

Measurement Precision Based on calibration data
[3], we estimate residual random geometric noise
statistics as 6, = Cy2,6, = Cyz,6, = C,z?. In
the foregoing, 6,,6y,0. are standard deviation esti-
mated geometric noise components, noise coefficients
(Cy,Cy, C,) are derived from calibration data and z
is range along the camera boresight. As noise along
the sensor boresight predominates, we use &, as a sur-
rogate for measurement precision. Estimated sensor
noise is further modified by an experimentally-based
grazing angle model. Incidence angle effects are most
noticeable in the plane of triangulation, the yz-plane,
where they generally follow an inverse cosine relation-
ship up to a cut-off angle t,. due to distortion of the
shape of the envelope of received energy on the camera
detector. There is no noticeable inclination effect in

the scanning plane up to a cut-off angle t,. at which
point the received energy drops below threshold. Typ-
ical thresholds! are t,, = 60° and t,, = 70°. Thus,
we model estimated precision as follows, where U;(6)
is the inverse unit step function, i.e. U;(f) = 1-U(6):

5 = C.2>2 (1)
: Cosayz Ui(|9y2| - tyZ) Ui(|9m| - tm).

Sampling Density We use a conservative chord-based
sampling density estimate p,, where dz and dy are
sampling intervals in the sensor x- and y-axes. Then,

1
b= — 9
p oz’ + 6y2 @
d, 1
h = —_—
where dz = R, N, 1cosfo (3)
L 1
déoy=—4— ) 4
and oy Ny —1cosf,. (4)

In Equation 3, R,, = z/cos ¢, is the slant range,
®,/(N, — 1) is the angular sampling interval and
1/ cosf,, is the inclination effect in the x-z plane. In
Equation 4, L, /(N, — 1) is the linear sampling inter-
val and 1/ cos@,, is the inclination effect in the y-z
plane. Image size is IN,-by-N, samples. Adopting
abbreviated notation C'@ = cos#f, etc., the estimated
sampling density is

B (N, — 1)*(N, — 1)2C?6,..C*6,.
" R,.°®,%(N, —1)2C?0,. + L,*(N, — 1)2C?0,..
(5)

p-

2.2 Positioning System Error Model

A variety of positioning systems are in common us-
age, covering a wide range of accuracy. These include
co-ordinate measuring machines (CMMs), translation
stages, turntables and robot arms. At the top end,
CMNMs offer accuracy superior to the best range cam-
era. At the other extreme, robot arms provide good
repeatability but poor accuracy relative to high qual-
ity range cameras.

It is difficult to characterize accuracy of positioning
systems with multiple degrees of freedom [2, 8, 9]. We
therefore adopt a simplified pose error model [6]. As
with the sensor, we assume calibration removes sys-
temic errors, leaving only residual stochastic errors.

lFor view planning, we model grazing angle thresholds as
hard limits, whereas in practice transitions are more gradual.



Errors in sensor position, boresight axis and rotation
about the boresight (twist) are considered to be in-
dependent random processes. Position error is mod-
eled as a 3D vector uniformly distributed in direction,
whose magnitude is a zero-mean Gaussian process
with standard deviation o,. Axis error is modeled by
a unit vector uniformly distributed on a cone centered
on the camera boresight where the cone half-angle is a
zero-mean Gaussian process with standard deviation
0,. Twist error is modeled as a zero-mean Gaussian
process with standard deviation o;. Currently, our
algorithm assumes constant pose error statistics over
the movement envelope. However, non-uniform pose
error performance can be readily accommodated.

This generic error model is suitable for analyzing
pose error effects and corresponding pose error com-
pensation. We have assumed independent position,
boresight axis and boresight twist error mechanisms
in order to examine the separate effects of these er-
ror components. In practical application, it will be
necessary to apply a specific error model tailored to
the type, configuration and movement envelope of the
unique positioning system in actual use.

3 Pose Error Effects

Our analytical and experimental examination of pose
error effects on range sensing [5, 6] has shown the phe-
nomena to be highly complex. Effects of pose position
error on a single view are minor while pose orienta-
tion errors can seriously degrade the acquired image.
Axis orientation error is particularly troublesome as
the effects are amplified by standoff range. Twist ori-
entation error effects are amplified by the length of the
sensor baseline but their impact is minor at the levels
of pose error under consideration.

Due to view plan redundancy, partial-to-complete
masking of pose error effects is found at low error levels
[6]. Further pose error deterioration leads to a rapid
decrease in average measurability and increase in mea-
surability variance. As the penalty for coverage fail-
ure is typically high for reconstruction and inspection
tasks, such unpredictability may be unacceptable.

4 Pose Error Compensation

The problem of pose error effects and their compensa-
tion has received scant attention. Tarabanis et al [10]
use a synthesis approach for generalized viewpoints
which seeks to centralize viewpoints in the admissi-
ble domain. Tarbox [11] uses morphological erosion of
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Figure 2: Frustum Erosion with Pose Uncertainty

viewpoints on the periphery of viewpoint sets to re-
duce vulnerability to pose error. While useful, neither
approach is based on objective performance criteria
nor analysis of the actual error mechanisms.

Pose error affects all three measurability tests: es-
timation of frustum occupancy, visibility and specifi-
cation compliance (measurement precision and sam-
pling density). At pose error levels to be reasonably
expected, the impact on specification compliance esti-
mation is subtle. The impact on visibility estimation
is also subtle and is determined by object shape and
imaging geometry. The greatest impact is on frustum
occupancy (Figure 2).

Two mechanisms can mitigate pose error effects -
(1) view plan redundancy and (2) conservative adjust-
ments to the estimation processes for frustum occu-
pancy, specification compliance and visibility.

View plan redundancy has a major mitigating effect.
Complex object shapes are less vulnerable to pose er-
ror effects because shape complexity drives view plan
redundancy. Conversely, simple object shapes are
more vulnerable to pose error as they can be scanned
by shorter, more efficient view plans with lower levels
of viewpoint correlation.

Based on a statistical analysis of pose error effects
[6], our pose error compensation scheme (details at
Appendix A) makes allowances for the impact of pose
error on estimation of frustum occupancy and speci-
fication compliance. We do not presently compensate
for the impact on visibility estimation, but this could
be easily added. The compensation process applies a
reduced frustum volume and more stringent specifica-
tion compliance tests. We adjust these parameters by
user-selected percentage compensation factors applied
to the computed impact on the average and standard



Specification || Sensor 1 || Sensor 2
XZ-plane FOV (®,) 27° 24°
Optical baseline (b) 180mm 100mm
Min Range (Rmin) 142mm 205mm
Max Range (Rmaz) 407mm 265mm
YZ-plane max scan length(Ly) || 300mm 200mm
Max image size (rangels) 256x256 1024x1024
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Figure 3: Experimental Process - Measurability Veri-
fication

deviation values of frustum and measurability param-
eters. As the experimental results in the next section
illustrate, this approach to pose error compensation
can reduce average pose error effects over many trials,
but variability remains between individual trials.

5 Experimental Results

5.1 Experimental Process

Our approach to examining the view planning problem
has been to use a high fidelity closed loop simulation
(Figure 3) which begins with a model specification,
an imaging environment specification (range camera
and positioning system) and a detailed object model
acquired by a high performance range camera. To
simulate rough model acquisition, the fine model is
decimated and sampling noise is optionally added. A
view plan is computed by the modified measurability
matrix (3M) algorithm [4] and corrupted with pose
error. The loop is subsequently closed by executing
the noisy view plan against the original fine model.
Finally, performance measures are computed.

For these experiments, two range cameras were
modeled (Table 1). Both are line-scan configurations
but use different range measurement technology. Sen-
sor 1 is an early generation commercial implementa-
tion of the Biris scanning principal and is character-
ized by a larger optical baseline and depth of field.
In comparison, sensor 2, an early generation autosyn-
chronized scanner, exhibits a shorter optical baseline,
narrower depth of field and larger range image size.

Table 1: Range Sensor Specifications

Figure 4: Tsimshian Stone Mask

A description of these technologies can be found at
www.vit.iit.nrc.ca/VIT .html.

5.2 Mask Object

Featuring several smaller cavities and ridges within
the main steep-walled cavity, the rear segment of the
Tsimshian stone mask? (Figure 4) presented a difficult
view planning challenge for sensor 1, a long baseline
range camera. Measurement precision of 50 um and
sampling density of 2 s/mm? were specified. Surface
sampling noise was not added in the trials reported
here but pose error was introduced for a second set of
experiments. Viewpoints were generated following the
“variable” algorithm [4].

In the absence of sampling or pose errors, the view
plan of size nys = 7 computed by the variable algo-
rithm with greedy search set covering resulted in veri-
fied measurability of m, = 0.9807 with respect to the

2The Tsimshian stone mask is regarded as a masterpieces of
northwest coast art in the collection of the Canadian Museum
of Civilization (VII-C-329). It was collected at the Tsimshian
village of Kitkatla in 1879 by I.W. Powell.




View plan || Comp. || Measur. Measur.
(average) (std dev)

NBest =9 0% my, = 0.9523 || om, = 0.0120

ngs =7 0% My = 0.9664 || 0m, = 0.0123

Table 2: Verified Measurability - Mask with Pose Er-
ror, no Compensation

MEASURABILITY IMPACT OF POSE ERROR COMPENSATION
1 T T T T

0.98 | % s % } S =S
z
= 097 4
5
g 5
o 096 R measurability with no pose error -- q
E measurability with pose error compensation ---
2
E 0.95 Target: Mask rear segment —

VP_Algorithm = VARIABLE

Spec = 50 microns, 2 s/mm~2
Sigma_surface_sampling_error = nil

0.94 - Sigma_position error = 3% r_min = 4.26mm
Sigma_axis_error = 3 degrees
Sigma_twist_error = 3 degrees

Constant view plan size =7

| | | |
0 0.1 0.2 0.3 0.4 0.5
Fractional Pose Error Compensation

Figure 5: Pose Error Compensation for Mask, View
Plan Size 7

specified measurement, goals. All surface points are
measured within specification excepting a few spots
on the steep side walls of the main cavity which are
beyond the reach of this long baseline sensor. The
shortest view plan found by other set covering meth-
ods (size npest = 5) produced a verified measurability
of m, = 0.9663. The efficiency of these plans is, re-
spectively, e, = 5/7 =0.714 and e, = 5/5 = 1.0.

Next, the computed view plan was corrupted by
pose error (pose position error 3% Rmin = 4.26mm,
pose axis error 3° and pose twist error 3°) using the
generic pose error model described in Section 2.2. Ta-
ble 2 shows average and standard deviation verified
measurability in the presence of pose error without
pose error compensation.

Pose error compensation was then introduced. Fig-
ures 5 and 6 show verified measurability as a function
of pose error compensation at a constant view plan
length of nys = 7 and npest = 5, respectively. In
both cases, the data shows average measurability plus
or minus one standard deviation for 20 trials at each
compensation level.

Figure 7 illustrates how view plan efficiency de-

MEASURABILITY IMPACT OF POSE ERROR COMPENSATION
1 T T T T

0.99 measurability with no pose error ---x--- -
measurability with pose error compensation ------

2 o I [ ]
g |
2 e e
£ 096 [ [
3 095F ]
>

0.94 Target: Mask rear segment |

VP_Algorithm = VARIABLE

Spec = 50 microns, 2 s/mm~2
Sigma_surface_sampling_error = nil
0.93 |- Sigma_position error = 3% r_min = 4.26mm 4
Sigma_axis_error = 3 degrees
Sigma_twist_error = 3 degrees
Constant ‘view plan size =5 )

0 0.1 0.2 0.3 0.4 0.5
Fractional Pose Error Compensation

Figure 6: Pose Error Compensation for Mask, View
Plan Size 5

VIEWPLAN EFFICIENCY IMPACT OF POSE ERROR COMPENSATION
1 t T T T

0.8 B

0.6 | viewplan efficiency with pose error compensation —+— B

Target: Mask rear segment
VP_Algorithm = VARIABLE
Spec = 50 microns, 2 s/mmA2
0.4 | Sigma_surface_sampling_error = nil q
Sigma_position error = 3% r_min = 4.26mm
Sigma_axis_error = 3 degrees
Sigma_twist_error = 3 degrees

Viewplan Efficiency

0.2 B

1 1 1
0 0.2 0.4 0.6 0.8 1
Fractional Pose Error Compensation

Figure 7: View Plan Efficiency Impact of Pose Error
Compensation

View plan || Comp. || Measur. Measur.
(average) (std dev)

NBest = 9 35% my, = 0.9642 || opm, = 0.0114

Ngs =7 35% my, = 0.9795 || om, = 0.0066

Table 3: Verified Measurability - Mask with Pose Er-
ror Compensation



Figure 8: Bunny

creases with pose error compensation, motivating se-
lection of a modest compensation level. Table 3 shows
the impact of a 35% level of pose error compensation
for the same level of positioning system error. Com-
pensation allows us to recover, on average, almost the
same level of measurement performance as in the ab-
sence of pose error. Measurement variability remains
between trials, however.

5.3 Bunny Object

The second test object, the well known bunny (Fig-
ure 8), also represents an interesting view planning
problem. The most obvious challenge arises from dif-
ficult self-occlusion problems in the vicinity of closely-
spaced, large protuberances (the ears). Less obvious,
but just as difficult, are subtle shadowing problems
around a variety of folds and creases in the bunny’s
fur as well as small crevices around the legs, feet,
chin, ears and tail. The sensor’s shallow depth of field
presents an additional view planning challenge. The
model specification called for measurement precision
of 40 pm and sampling density of 10 s/mm?. Segmen-
tation was not used and view plans were computed
for the object as a whole. Viewpoints were generated
following the “decoupled” algorithm [4].

In a baseline experiment without sampling or pose
errors, the greedy search view plan of size ngs = 18
computed by the decoupled algorithm resulted in ver-
ified measurability of m, = 1.0 with respect to the
specified measurement goals. The shortest view plan
found by other set covering methods (size ngest = 16)
also produced a verified measurability of m, = 1.0.
Respectively, the efficiency of these plans is e, = 0.889

MEASURABILITY IMPACT OF POSE ERROR COMPENSATION
1 T T

—
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T
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Verified Measurability

0.995

T

Target: Bunny —
VP_Algorithm = DECOUPLED

Spec = 40 microns, 10 s/mm~2
Sigma_surface_sampling_error = 0.3% r_min = 0.615mm
Sigma_position error = 3% r_min = 6.15mm
Sigma_axis_error = 3 degrees

Sigma_twist_error = 3 degrees

Constant view plan size = 16

0.994

T

0.993 -

0.992 Lt I I I I I
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Figure 9: Pose Error Compensation for Bunny, View
Plan Size 16

View plan || Comp. || Measur. Measur.
(average) (std dev)

NBest = 16 0% m, = 0.9978 || om, = 0.0029

NBest = 16 40% my, = 0.9992 || o, = 0.0011

Table 4: Verified Measurability - Bunny with Pose
Error Compensation

and e, = 1.0.

Next, surface sampling noise was added at a level
of 0.3%Rmin = 0.615mm. Pose error was not added
at this stage. The decoupled algorithm produced view
plans of ngs = 20 with m, = 1.0, e, = 0.8 and size
NBest = 16 with m, = 0.9993, e, = 1.0. While less
efficient, it can be seen that the level of redundancy
inherent with a greedy search set covering protects
against modest levels of rough model sampling error.

Maintaining the rough model sampling error, we
next added pose error at the level of position error
3%Rmin = 6.15mm, pose axis error 3° and pose twist
error 3°. Figure 9 shows verified measurability as a
function of pose error compensation at a constant view
plan length of ng.ss = 5. For these experiments, 40
trials were conducted at each compensation level.

Table 4 shows verified measurability statistics for
the most efficient view plan at the specified level of
sampling error and pose error, with and without pose
error compensation. Again, pose error compensation
recovers average measurability performance to almost
the pose error free case, but variability remains.




6 Summary and Conclusions

Pose error corrupts the output of the computation-
ally expensive view planning phase of object recon-
struction or inspection. View plan redundancy and
conservative adjustments to the estimation processes
for frustum occupancy, specification compliance and
visibility can mitigate pose error effects. Perversely,
improvements to view plan efficiency result in greater
vulnerability to pose error due to the lower level of
viewpoint correlation. Pose error vulnerability is also
inversely related to object shape complexity.

Our pose error compensation scheme begins with
mathematical models of sensor and positioning system
performance derived from system design and calibra-
tion data. In this paper we have modeled a common
type of range sensor and a generic positioning sys-
tem. The technique is generalizable to other sensor
and positioning system types. Given these models, we
derive objective compensation measures from a sta-
tistical analysis of pose error effects on the modeled
system. We compensate for pose error by applying a
reduced frustum volume and more stringent specifica-
tion compliance tests. We adjust these parameters by
user-selected percentage compensation factors applied
to the computed impact on the average and standard
deviation values of frustum and measurability param-
eters. Generally, a low compensation level is selected,
typically 20% - 40%, because we also seek to main-
tain view plan efficiency. Too high a compensation
value unnecessarily drives up view plan length. The
current approach balances the beneficial effects of in-
herent view plan redundancy with statistically-based
measurability parameter adjustment.

For geometrically complex shapes, most immunity
to pose error arises from view plan redundancy. While
the benefits of pose error compensation are small, they
are never-the-less beneficial, particularly for repetitive
execution of a view plan, such as for inspection appli-
cations. This approach to pose error compensation
can reduce average pose error effects over many tri-
als, but variability remains between individual trials.
Appropriate system design should first specify posi-
tioning system performance compatible with the tar-
get measurement precision and sampling density goals.
Pose error compensation can then be applied to fur-
ther mitigate pose error effects.

A Compensation Analysis
This appendix extends the analysis of pose error ef-

fects at [5] to derive measures directly applicable to
pose error compensation. Pose error adversely impacts

the ability to make reliable estimates of frustum occu-
pancy, measurement specification compliance and fea-
ture visibility. Our present implementation uses this
analysis to partially compensate for the first two of
these effects. Compensation for the impact on visibil-
ity estimation could be easily implemented, but the
benefit would be minor.

A.1 Frustum Occupancy

The camera frustum is specified by its field-of-view
(FOV) and depth-of-field (DOF). The FOV of a line-
scan camera is determined by ®, and L, while the
DOF is determined by R,,:n and Ry,.. (Section 2.1).
We begin by determining the impact of pose error on
these frustum parameters. Unless otherwise stated,
calculations are for one-sided frustum erosion.

Pose error in sensor position, axis and twist angle
(0p, 04, 0¢) erodes the frustum by € = (e,, ey, e.). The
one-sided x-axis frustum erosion is e, = (s, €z, , €z,)
due to the various pose error components. Frustum
erosion for the y- and z-axes is similarly defined.

A.1.1 Pose Position Error

From [5], page 11, pose position error p’ = (pa, py, P-)
erodes frustum coverage as follows, where T®, =
tan (®,./2):

(eacpaeypa ezp) = (|pz| + 2T ®2|p.|, Py, IP2)- (6)

Using the analysis of [5], we can then readily com-
pute the statistics of these error components:

/2
,uemp = (]. + 2Tq>2)0p g,

2
Hey, = Op 3
pe., = o5 @
and
ve,,” = (”3;2 0,2 (1 + 4T ®,),
vy = T 0
v, = T ®



A.1.2 Pose Axis Error

From [5], pages 12 and 15, pose axis error erodes frus-
tum coverage in the vicinity of the boresight as follows:

(ezaaeya,eza) = (de0|SCMCB|, de0|SCMSﬂ|, (Ca—l)deO)-
9)
From [5], the statistics of these error components
are:

2fdl'zo 2
te,, = . Oa g
2fqR, 2
Hey, = p Oa =
2
o
Neza = - ; de07 (10)
and
w3 —16
O'ema2 = fd2R020-a2(7)7
73— 16
ge,.” = fd2R02Ua2(W)>
4
Oqa
ve,” = fd2R02T- (11)

A.1.3 Pose Twist Error

As seen from Figure 10, twist error has no impact
on DOF coverage, while the impact on x-axis and y-
axis coverage is non-uniform. We can approximate the
average one-sided width reduction by A; /L = §W and
the average one-sided length reduction by Ay/W =
0L. To compute the areas of these triangles, we have
the relationships

dy a
— =Ta= - 12
T =Ta=%, (12
w/2
17— Ca. 1
a+W/2 Ca (13)
Making the further abbreviation S = Sa, etc.,
W (1-0C)
= — 14
5 (14)
and
a W(QA-0)
= = = — 1
b T 2 S (15)
Then,

Figure 10: Field-of-View Erosion with Twist Error

L
d, = §_b
_ L w(-0)
2 2 8
1
= ﬁ(LS—W+WC’)
and
d, = Td,
1
%(LS—W+WC’).
So, the area of triangle A, is
A = L(LS—WJrWC)?
LT 8sC
1
_ 1252 2 22
8SC( ST+ W=+ Ww=C

—2LWS + 2LWCS — 2W?C)

and the area of triangle A, is

_ 1 2

Ay = gem(WS—L+LO)
1 2q2 2 22

= — L*+1L
(WS +1* + L*C

—2LW S +2LWCS —2L*C).

Then,

(16)



A

W= =
1
— LQ 2 2 2,2
—SSCL( S+ W? + W?C
—2LWS +2LWCS — 2W?2C) (20)
and
Ay
oL = =
W
_ 1 2Q2 2 212
= 8SCW(WS +L?+ L*C

—2LW S +2LWCS —2L*C). (21)

For small a, C' = Ca =~ 1, so

oW =~ L—S, (22)
8
and
0L ~ WTS (23)

Then, pose twist error erodes frustum coverage ap-
proximately as follows:

(emaeyuezi) = (|6W|7|6L|70)
Lis| W8]
(Fh =0 (29)

Using the analysis of [5], we can then readily com-
pute the statistics of these error components:

L 2
be,, = go't .
w 2
Hey, = gat L
te,, = 0, (25)
and
L? T™—2
vent = Dppli?),
w2 =2
ot = Woali=2),
ve,,> = 0. (26)

The statistics at Equations 25 and 26 can normally
be evaluated for the frustum width at the optimum
stand-off range W = 2f;R,T®> and the optimized
scan length L = f;R,®,.

f4R
deO (1)2 %20 - 8W82
8WCZ
> 8WSZ
By
+— \W,—

Figure 11: Field-of-View Erosion Geometry

A.1.4 Composite Pose Error

As our pose error model considers errors in sensor po-
sition, boresight axis and rotation about the boresight
to be independent random processes, the statistics of
the composite one-sided frustum erosion are

Hey, = Hey, 1 Hey, T Heg,s

Hey, = Hey, T ey, T ey,

ke, = pe,, t e, +He,,; (27)
Uem2 = Uezp2+Ueza2+UeIt2;

2

2 _ 2 2
Te," = Oey,” T 0ey," T 0e,”

0'62

. = Jezp2+Jeza2+Uezt2. (28)

A.1.5 Frustum Occupancy Compensation

We can then apply compensation (¢;, ¢y, c.) along the
frustum x,y,z-axes by fractional amounts f, and f,.
The range of f, is [0,1]. In principle, the upper limit
on the range of f, could be greater than 1. However,
our experiments have shown it appropriate to set both
factors to a low value, typically in the range [0.2,0.4].

Ce = fu,uez + faUez;
Cy = fu,uey + faUey,
c: = fubte, + fo0e,. (29)

To compute the effect of x-axis frustum erosion on
the sensor field of view &, refer to Figure 11, where
dw = ¢;. Then, 0P, is



Cyp Cq>2

0®, = arctan | ——5——"—
—'é,dg; — cz5<1>2

(30)

Finally, we compensate for pose error effects by
shrinking the frustum through the following changes:

b, « &,-260,,
L, < Ly—2c,
Ruyin < Rpin +c2,
Riyue < Rpazr —co. (31)

where x,y,z-axes frustum erosion compensation values
(cz,cy,c,) are given at Equation 29.

A.2 Specification Compliance

A.2.1 Measurement Precision Estimation Er-

ror

In our earlier analysis of the relative effect of pose
error [5],[6], it was convenient to define relative esti-
mated measurement precision P,.; as the ratio of esti-
mated precision in the case of pose error to estimated
precision in the error-free case. Then,

621 2"2

P B cos .
rel — - 2 0[ .
z? cos 'y,

— 32
- (3)
where z’ and €', are the range and y-z incidence angle
as perturbed by pose error. Temporarily dropping the
“z” subscript for simplicity, we let P..; = ¢'/6. We
are interested in the error es; in the estimated mea-

surement precision

(33)

Consequently, the statistics of measurement preci-
sion estimation error due to pose error is simply

5 =6 —6=06(Per —1).

,Ue&
= = (up,, D) (34)
2
ge~
g _ 2
&2 = UPrel . (35)

Taking all pose error components into account, the
combined impact on measurement precision estima-
tion is

He
a-g = (uPrelp - 1) + (l'll-Prel(Z o 1) + (uPrelt - 1)
1 2 3 2
= 2 % - Ta ’ (36)
3.fd Ro 4
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ge
a _ 2 2 2
6-2 - JPrelp + U-PTel(Z + U-Prelt
4 0,2
= 5 —0=. (37)
3.fd Ro

A.2.2 Measurement Precision Compensation
We can apply compensation ¢4 to the estimated mea-
surement precision by amounts f,, and f,.

Cs = fu Hes + fo Oes (38)

We can compensate estimated precision for each
measurability matrix element by the adjustment

o 5’+Ca.,

. e Oe

c(1+ fu=%+ fo—=%).
a ag

G (39)

To be compliant, the precision estimate must pass
the test & < o4, where o, is the specified measure-
ment precision. In the presence of pose error, the test
becomes 6’ < o, or

R He - Oex
a1+ f, &U + f5 &U) < 0. (40)

Consequently, compensation can be alternately
achieved by a single adjustment to the specified mea-
surement precision oy.

He A ge
Os < US/(1+fuTo- + fs 5’0-)'

(41)

A.2.3 Sampling Density Estimation Error

Similarly, in our earlier analysis of the relative effect
of pose error [5],[6], it was convenient to define rel-
ative estimated sampling density D,¢; as the ratio of
estimated sampling density in the pose error case to es-
timated sampling density in the error-free case. Then,
ﬁz’

Dyo =

(42)

z

WK

Again temporarily dropping the “z” subscript for sim-
plicity, we let D, = p'/p. We are interested in the
error e; in the estimated sampling density

ep=p —p=pDra —1). (43)

The statistics of sampling density estimation error
due to pose error is therefore



Pe

2~ (up  —1), (44)
p
2
ge ~
=D ()

Taking all pose error components into account, the
combined impact on sampling density estimation is

ke

P _
ﬁ - (’uDrelp - 1) + (’uDrela - 1) + (’u'Dreli a 1)
1 0,2 04>
= o 2 P2 - 4 ) (46)
3fd Ro
O'eA2
ﬁg = U-Drelpz + U-Drelaz + U-Drelt ’
S (a7)
3fd Ro

A.2.4 Sampling Density Compensation

We can apply compensation c 5 to the estimated sam-

pling density by amounts f,, and f,.

Cﬁ:fu N€ﬁ+fcr Oe, (48)

p

We can compensate estimated sampling density for
each measurability matrix element by the adjustment

p — p—c
He 4 Oe A

po— pa-f—=L-1=L) (49
p p

To be compliant, the sampling density estimate
must pass the test p > pg, where p, is the speci-
fied measurement sampling density. In the presence
of pose error, the test becomes p’' > p;s or

He Oe »

ﬁ(l_fu ﬁl) _fa pf)) > Ps-

Consequently, compensation can be alternately
achieved by a single adjustment to the specified sam-
pling density ps.

(50)

He 4 Oe A

p p

Ps Ps ]-_f ~ _fa ~ .
“ ps/(L= fu F p)

When computing a sampling density estimate for
the pose-error-compensated frustum, the effective ra-
dial or linear sampling rate should be left unchanged.

(51)
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Let ®,° be the compensated x-z plane angular field of
view, L, be y-z plane linear scan length and n, and
n, the number of samples in these planes. For specifi-
cation compliance testing only, these values should be
modified as follows:

e | T(PQCJ
Ng Ny T®,
L C
ny <« lny7—]. (52)
Ly
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Pose Error || X-axis Frustum Erosion || Y-axis Frustum Erosion || Z-axis Frustum Erosion
Positi —(1+9T® 2 _ 2 _ 2
osition peg, = (1+2T®2)0p4 [ 5~ Bey, =0p\| 3 pez, = 0p\[ 5
s (=) (r—2) . (r—2)
Oeq, 2= 3 op (14 4T ®,) oey, ? 3. 0P oe., ? 3 oy’
. 2f4R, 2 2f4R, 2 0d”
Axis pey, = fd—aa\/j pey, = fd—Ua - pe., = ———faRo
™ ™ ™ ™ 2
2 25 2 2773—16 2 2,2 2,m —16 2 2 zUa4
Oegz, :fd Ro Oa ( 273 ) U'eya :fd Ro (o) ( o3 ) ge,, _fd Ro 2
. L 2 w 2
N e = o2 by =0
L? ,(m—2) W? ,(mr—2)
2 2 2 2 2
oeg, 64Ut - Oey, 6_40t - oe,, =0
Table 5: One-sided Frustum Erosion due to Pose Error

Pose Error || Measurement Precision || Sampling Density
Estimate Error Estimate Error
Position Beg _ 1 007 B _ 1 oy
o 3fd2 Ro2 ﬁ - 3fd2 Ro2
ge s’ o2 oe? . 2
a 4 P p _ _2 Op
6’ 3fa® Ro® F3 3fa® Ro®
Axis Hf& = —304“2 —BM?A = —022
g P
oe~? Oe QAZ
6'2 ﬁz
. es pep
Twist H—A‘l =0 —L =9
g P
oe .2 Oe A2
7 =0 £ =0
o

Table 6: Measurement Estimation Errors due to Pose Error

Frustum erosion for twist pose error in Table 5 can normally be evaluated for the frustum width at the optimum
stand-off range W = 2f;R,T®, and the optimized scan length L = f;R,®,.
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