NRC Publications Archive Archives des publications du CNRC

Lower-cost, ligther and greener polypropylene-based biocomposites for construction applications

Mihai, Mihaela

For the publisher's version, please access the DOI link below./ Pour consulter la version de l'éditeur, utilisez le lien DOI ci-dessous.

https://doi.org/10.4224/23000619

NRC Publications Archive Record / Notice des Archives des publications du CNRC : https://nrc-publications.canada.ca/eng/view/object/?id=fe866955-1873-47be-b7f9-dc6633f9dab7 https://publications-cnrc.canada.ca/fra/voir/objet/?id=fe866955-1873-47be-b7f9-dc6633f9dab7

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at https://nrc-publications.canada.ca/eng/copyright

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

L'accès à ce site Web et l'utilisation de son contenu sont assujettis aux conditions présentées dans le site https://publications-cnrc.canada.ca/fra/droits

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D'UTILISER CE SITE WEB.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n'arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

MC CMC

LOWER-COST, LIGTHER AND GREENER POLYPROPYLENE-BASED BIOCOMPOUNDS FOR **CONSTRUCTION APPLICATIONS**

Mihaela Mihai, PhD, Research Officer

Polymer Bioproducts Team Industrial Biomaterials - Automotive & Surface Transportation National Research Council Canada

National Research Council Canada Conseil national de recherches C

de recherches Canada

OUTLINE

- About National Research Council Canada
- > Polypropylene in industrial applications
- NRC green vision
- > Materials, processes and characterization
- > Bio-based PP compounds:
 - Low-cost biocomposites
 - Lighter biocomposites
 - Greener bioblends and biocomposites
- > Summary of the achievements

- > 4 divisions: Emerging Technologies, Engineering, Life Sciences, Industrial Research Assistance Program (IRAP)
- > Wide variety of disciplines, broad array of services and support to industry

NAC-CNAC

National Research Council Canada: A Research & Technology Organization

- Mission-oriented providers of innovation services to firms and governments (R&D services, technical services, consortiums, **Industrial Research Assistance Program**)
- > Bridges gap between early stage R&D and technology deployment
- > Builds economic competitiveness and improving quality of life

NRC: Market Driven Programs

NRC-CNRC

NRC: Industrial Biomaterials Value Proposition

Stronger, tougher thermoplastic / biofiber materials for light-weight, lower-cost and eco-friendly applications:

- Forestry and agricultural cellulosic fibers;
- · Sustainable biomaterials;
- Cellulosic biofiber contents up to 50%;
- Weight reduction up to 25%
- Reduction in material costs, energy cost = <u>Cost savings</u>
- Custom made formulations to meet industry requirements

NRC CNRC

NRC: background on bio-based compounds

Experience in biomass utilization in thermoplastics

NRC CNRC

PP in building applications

- > PP: the highest injection molded resin in 2013, with a demand estimated at 33 M tons;
- Growing demand for PP, at a CAGR 5% from 2014 to 2020, is expected to be a key driver for the market:

Examples of PP-based parts for construction industry

Window and door frames

Sidings

Trim and moldings

NRC green vision for PP

- Focus on replacement of PP, PP filled with minerals and PP-glass fiber composites with PP bio-compounds;
- The substitution of petroleum-based PP compounds and PP composites by biocomposites containing cellulosic fibers can <u>allow weight and cost reductions</u>;
- > The use of injection foaming process allows to further reduce the weight and the cost of the parts;
- > The substitution of a part of PP by a bioplastic is a <u>way to increase renewable content</u>.

NRC offers solutions for novel PP biocomposites and bioblends which:

- · Are cost competitive, greener and lighter;
- Have equivalent or higher performance compared to conventional materials.

NRC-CNRC

Materials

Polymers:

- PP: Pro-fax 6323 general purpose homopolymer for injection molding applications from Lyondell Basell.
- PLA: 8302D amorphous grade from Nature Works, was selected as the bio-sourced minor phase for the production of petro/bio hybrids;
- Coupling agents were used;
- · Industrial PP grades used as references were:
 - PP 20% talc Accutech 20L AND PP 40% talc Accutech 40L
 - PP 20% GF Polifil GFPP-20 AND PP 40% GF Polifil GFPP-40

Bio-reinforcements and reinforcements:

- · Cellulosic fibers contents: up to 40%wt;
- Short flax: was supplied by Schweitzer Mauduit Canada;
- Thermo-mechanical pulp (TMP): was supplied by SEC Papier Masson WB;
- · Wood fibers (WF) in the form of dices (WoodForce) were supplied by Sonae Industria;
- · Short glass fibers (GF), 3 cm in length, were a commercial grade;

Processing & Characterization

Compounding line:

Testing:

- Morphology: Scanning Electron Microscopy (SEM)
- Tensile properties (TS, TM, e%) ASTM D638
- Impact strength (IS_{Izod}) <u>ASTM D256</u>
- Heat Deflection Temperature (HDT) ASTM D648

NAC CINAC

Low-cost PP-based biocomposites Partial replacement of PP with cellulosics

Excellent interfacial adhesion

Morphology of PP/20%flax biocomposites without and with coupling agent

Low-cost PP-based biocomposites Partial replacement of PP with cellulosics

Excellent tensile properties equivalent with PP and PP/20% minerals

Approximate prices (\$/kg) on the market:

PP Medium price	Flax	ТМР	WF	PP 20% talc
2.8	0.7	0.5	1.5	3

Cost reduction

Cellulosic contents:	20%	40%
Cost (\$/kg) - PP/Flax.	2.4	2.0
Cost (\$/kg) - PP/TMP	2.6	2.3
Cost (\$/kg) - PP/WF	2.4	2.0

When replacing up to 40% of the matrix by cellulosic fibers:

- The mechanical properties are comparable with the references or higher;
- The cost is reduced by 10-30% due to lower price of the cellulosics comparing with the price of PP.

NRC CNRC

Low-cost PP-based biocomposites Water absorption – mechanical properties

The mechanical properties of PP biocomposites were preserved after 2 months of water immersion at ambient temperature

The samples absorbed 2.5 to a maximum of 4% of water after two months

Low-weight PP-based biocomposites Glass fiber replacement by cellulosic fibers

NRC CNRC

Low-weight PP-based biocomposites Processing means: Foaming in injection molding

Morphology of PP/20% cellulosic biocomposites: FOAMED

Low-weight PP-based biocomposites Processing means: Foaming in injection molding

Excellent properties of foamed PP biocomposites

Replacing up to 40% of PP by cellulosic fibers results is a $\underline{10-30\%}$ cost reduction .

When these biocomposites are further processed by foaming in injection molding the weight reduction could be up to 25 %wt. This translates in <u>up to 25% supplementary cost reduction</u>.

20 to 40% green content

NRC-CNRC

Greener PP/PLA: Bioblends and biocomposites

Properties of PP/PLA bioblends and PP/PLA biocomposites

- HDT increased from 80°C to 126°C for PP/PLA/20%WF, that is higher comparing with PP/20% talc (115°C)
- ε% decreased as expected for biocomposites
- All other mechanical properties are at least equivalent than for PP alone and PP/20% talc.

NRC demonstrators based on Polyolefins based biocomposites

Polyolefins / PLA / cellulosics: injected parts

NAC-CNAC

NRC demonstrators based on Polyolefins based biocomposites

Recycled Polyolefins / 10-50% cellulosics: thermoformed sheets for trim and molding applications

NRC demonstrators based on Polyolefins based biocomposites

- · Recycled Polyolefin / cellulosics: extruded foamed profiles.
- Up to 25% weight reduction comparing with the unfoamed profiles.
- · Applications: decking, door and window profiles, others...

NRC-CNRC

NRC demonstrators based on PO based biocomposites

Polyolefins / cellulosics biocomposites:
Sidings obtained in extrusion and extrusion foaming

NAC CINAC

Summary of the achievements

- NRC biocomposites based on PP and PP/PLA are:
 - Equivalent in terms of mechanical and thermal properties than those of conventional PP-based materials currently used in industry;
 - Lower-cost due to a content up to 50 wt.% of renewable resources;
 - Lower-weight due to:
 - Partial or complete replacement of glass fibers by cellulosic fibers;
 - Foaming in injection molding;
 - Greener when a bioplastic / biofibers replace a part of the PP matrix.
- We also developed:
 - PE and PE/PLA based biocomposites with cost and weight reductions;
 - PA6 and PA6/PLA based biocomposites with cost and weight reductions;
 - ABS and ABS/PLA based biocomposites with cost and weight reductions;
 - PP, ABS and PA6 based biocomposites with continuous cellulosic fibers by D-LFT process.
- NRC can help you formulate and process lower-cost, lighter and greener PP-based biocomposites according to the specifications of your products.

NRC-CNRC

