
READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez

pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the

first page of the publication for their contact information.

NRC Publications Archive

Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. /

La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version

acceptée du manuscrit ou la version de l’éditeur.

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Programming the Bi-CGSTAB matrix solver for HPC and benchmarking

IBM SP3 and alpha ES40
Liu, P.; Li, K.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

NRC Publications Record / Notice d'Archives des publications de CNRC:
https://nrc-publications.canada.ca/eng/view/object/?id=fc433c37-9a7a-44a2-b24c-913afdf3e9a3

https://publications-cnrc.canada.ca/fra/voir/objet/?id=fc433c37-9a7a-44a2-b24c-913afdf3e9a3

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1

Abstract—The panel method, or the boundary element method,

has been widely used for calculating lifting flows in which forces

on wing surfaces are primarily of interest. In panel method for a

wind generation system with a number of propfans or for an oil

platform motion control assembly with a number of

thrusters/propellers, calling time for a matrix solver is the key

factor for computing efficiency. This paper discusses the code

development of an iterative matrix solver in MPI via C and

benchmark analysis for a shared and a distributed memory UNIX

machine, respectively.

Index Terms— BiCGSTAB, Iterative matrix solver, HPC,

Parallel computing

I. INTRODUCTION

URFACE panel method, or the boundary element method for

lifting and non-lifting flows was initialized in the 1970s

(Hess 1972). It has been widely used in aerodynamics and

hydrodynamics computations. Simulation of single marine

propeller using panel method was led by Hess and Valarezo

(Hess and Valarezo 1985).

In a time-domain panel method with multi-body interactions

such as in the case of ducted propellers, propeller with nozzle

or rudder or both, or propeller with ice blockage, the influence

coefficient matrix needs to be created at each time step. For a

sudden accelerating propeller computation, at least three

revolutions are needed to obtain stable results that can be used

for design and performance evaluation. Each revolution

consists of about 40 time steps, so the minimum required total

time step for one run at one advance coefficient is nt=120. At

each time step, unsteady Kutta condition is applied at the

trailing edge of a lifting foil section. An approximate zero-

pressure difference at the trailing edge, resulted from the Kutta

condition, is to be obtained by an iterative procedure. If the

Manuscript received October 9, 2002. This work was supported by the

National Research Council Canada, Institute for Ocean Technology (formally

Institute for Marine Dynamics, IMD for short).

Pengfei Liu is with the National Research Council Canada, Institute for

Ocean Technology, 1 Kerwin Place and Arctic Avenue, St. John’s, NL

Canada A1B 3T5, Tel. 709-772-4575; Fax 709-772-2462; E-mail:

Pengfei.Liu@nrc-cnrc.gc.ca.

Kun Li is with the Computer Engineering Department, Memorial

University of Newfoundland, St. John’s, NL A1B 3X5; E-mail:

Kun@engr.mun.ca

Newton-Raphson iteration procedure is used, about ni=5

iterations are required to converge for each time step, which is

dependant of load conditions and time step size. Each Newton-

Raphson iteration requires creating a new Jacobian matrix of

an order of n×n, where n is a number of wake strips. For a 4-

bladed propeller, it has about 40 wake strips. To find each row

of the Jacobian matrix, the coefficient matrix needs to be

inverted once. Therefore, each computational run requires to

solve the linear system of equations for N=nt×ni×n=24,000

times. In the IMD in-house propeller code, it requires 3 square

matrices and they are doublet, source and normalized/Kutta

conditioned matrices. The size of these 3 matrices is small for

single propellers (about 1,000x1000 each). For a group of

propfans or the dynamic positioning (DP) system of a floating

production, storage and offloading (FPSO) platform consisting

of a group of 6 propellers with 4-6 blades each, the size of

these 3 matrices is about 10,000 by 10,000 and 15,000 by

15,000, respectively, and the number of strips increases up to

360. For far wake velocity prediction up to 20-diameter

downstream of a propeller, a total of 20 revolutions is needed

for a propeller with a pitch-diameter ratio of 1.0. In this case,

the number of calls to the matrix solver is about

40×20×5×360=1440,000 times. Increasing speed of the matrix

solver is essential for total computing efficiency of the code.

As the code was designed to allocate memory for arrays

dynamically, dynamic random access memory (DRAM)

requirement becomes an issue. For double precision arrays,

three matrices for a DP system require 15,000×15,000×3-

matrix×8-byte=5.4 GB of memory. The DRAM requirement at

double precision for the shed wake panels is 6-blade×(10×6)-

strip×120-step/rev×20-rev×15,000-body-panel×8-byte=96 GB.

This is the minimum requirement for the current panel method

to predict the velocities at 20-diameter downstream of a

propeller. For an NS solver for the same simulation, the

required dynamic access memory would be in a range of tera

to peta bytes, which is too high to be economically practical.

Velocity prediction is the goal for the performance of propfans

and for the momentum impact to risers by DP thrusters. This

prediction requires solving a repeatedly created 15,000 by

Programming the Bi-CGSTAB Matrix Solver

for HPC and Benchmarking IBM SP3 and

Alpha ES40

P. Liu and K. Li

S

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

15,000-element matrix for 1440,000 times and it is best to be

done in a parallel computing environment.

II. PARALLEL IMPLEMENTATION OF THE BI-CGSTAB MATRIX

SOLVER

In panel methods, the influence doublet and source

coefficient matrices are normally dense and non-symmetric.

Larger size matrix requires iteration procedure to gain the

speed of the solution. Among many available matrix solver

algorithms, the Bi-Conjugate Gradient Stabilized (Bi-

CGSTAB) is a suitable alternative. The Conjugate Gradient

method to invert a symmetric and positive definite matrix

appeared a long time ago (Jannings 1977). Bi-Conjugate

gradient method was improved to handle non-symmetric

matrix (Voevodin 1983 and Faber and Manteuffel 1984). The

Bi-CGSTAB method was developed to avoid the irregular

convergence patterns and to add some capability for ill-

conditioned matrix (Freund et al. 1991 and Van de Vorst

1992). Barret et al. described implementation of a number of

matrix solvers in a great extent and gave a pseudocode of the

Bi-CGSTAB (Barret et al. 1994).

In code development for a larger matrix size than the

amount of DRAM available, dynamic memory cannot be

allocated so the panel method code computation cannot be

performed. The solution was to store only one row of the

matrix in DRAM and other rows in hard disk. The Bi-

CGSTAB matrix solver was then rewritten in a row-by-row

reduction form (Liu and Bose 1997). Therefore, the DRAM

requirement for matrix size was reduced from n×n to n.

However, using row-by-row reduction scheme was about 100

times slower than using DRAM to store the whole matrix

elements; this is not computationally efficient for a group of

propellers.

For a single propeller with a small number of body and

wake panels, a modern PC can normally handle both the

memory and speed requirement. On a Dell 866Mhz (OptiPlex

GX200) machine it took about an hour for a 3-bladed bare

propeller computation but it took about 3 whole weeks for a 4-

bladed ducted propeller simulation. To simulate a group of

propellers/propfans which requires 50 GB of DRAM and the

solution to a 15,000×15,000 matrix 1440,000 times, HPC

hardware is essential for an efficient computing calculation.

There have been many studies on Bi-CGSTAB for parallel

computers. A package, ScaLAPACK is available online on the

Netlib site. This package was designed for heterogeneous

computing in Fortran 77. As the MPI 2.0 standard, which is

C++ compliant, was not available on the Alpha Tru64 OS, the

in-house panel method was written in C. Therefore, a concise

MPI C function for the Bi-CGSTAB, working under

homogenous environment was a preferred choice. This MPI C

function was not available. Some other codes had different

limitations such as only allowing 4 processors, etc. We then

decided to develop an in-house parallel Bi-CGSTAB function.

A guideline in the design of this parallelized Bi-CGSTAB C

function is as follows:

 To work under a homogeneous computing

environment on any platform using MPI,

 To be able to work in a distributed computing

environment such as IBM SP, Alpha and Intel

clusters as well as in a memory shared environment

such as Alpha Server ES40, SGI derivatives and Intel

multi-cpu machines, etc.,

 Easy to use with good scalability, and

 Executable can be run for any number of processors

at run time without re-compilation of the source code.

The C version of the row-by-row reduction function was

parallelized. Implementing the pseudocode by Barret et al.

(1994) with the MPI library functionalities (Gropp et al.

1999), the pseudocode of this parallelized Bi-CGSTAB

implementation is described as following:
)0()0()0(xguessinitialforAxbrCompute −=

)~,(~)0(rrexampleforrChoose =

...,2,1=ifor

)1(

1

~ −
− = iT

i
rrρ

)(0
1

messageabortMPIfailedmethodif
i

=−ρ

 1=iif

)1(

1

−
− = r

i
rp

 else

)/)(/(
11211 −−−−− =

iiiii
ωαρρβ

)()1(

1

1

1

1 −
−

−
−

− −+= i

i

i

i

i

i
vprp ωβ

endif

)(ˆ ippMsolve =

*,ˆ)(taskidbyprocesseachwiththisdopAv i =

)(ivbroadcastMPI

)1(

1

~/ −
−= iT

ii
vrpa

)()1(i

i

i vrs α−= −

stopandpxxsetenoughsmallifscheck
i

ii ˆ:;)1()(α+= −

ssMsolve =ˆ

sAt ˆ=

ttst TT

i
/=ω

spxx
i

i

i

ii ˆˆ)()1()(ωα +−= −

tsr
i

i ω−=)(

necessaryifcontinueeconvergenccheck ;

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

0!=
i

thatnecessaryisitoncontinuatifor ω

end

The total number of rows of the matrix was divided into nm

blocks,
p

pp

m
n

nnnn
n

%−+
= . Each block holds np rows,

where n is the number of rows of the square matrix; np is the

number of processors at run time. Each processor holds

1)1(++−=
npppr

taskidnin rows, where i=1…nm, and

taskidnp is processor ID starting with 0.

III. RESULTS AND DISCCUSSION

This section presents a comparison of computing efficiency

in terms of matrix solver algorithms, between the Bi-CGSTAB

and the Gauss Elimination methods, the scalability of the

parallelized Bi-CGSTAB solver on the IBM SP3 and Alpha

ES40 machines, and NAS Benchmark analysis on these two

machines.

A. Serial Benchmarks of the Bi-CGSTAB and the Gauss

Elimination methods

The C version of the Bi-CGSTAB and the C version of the

Gauss Elimination (Press et al. 1992) were run on a HP PC, a

Dell PIII Xeon PC (used only one CPU), the IBM SP3 at UNB

over the C3 grid, and the recently purchased Alpha ES40 at

IMD.

Table 1 shows the elapsed CPU time and machine

specifications and Figure 1 shows the comparison via plot.

In serial computation, Bi-CGSTAB gave about 50 times

better efficiency than the Gauss Elimination method. The

larger the matrix size, the higher the ratio of Bi-CGSTAB to

the Gauss Elimination. In this test, only a small matrix size of

4344x4344 was used because of the limitation of the amount

of the dynamic memory on the PCs.

 Table 2 and Figure 2 show the computing efficiency

comparison between the serial code Bi-CGSTAB and Gauss

Elimination methods for a matrix size of 9984x9984.

4344 X 4344 matrix

-200

300

800

1300

1800

PIII

650Mhz

PIII XEON

500Mhz

IBM SP3

375Mhz

Alpha

ES40

667Mhz

tim
e
 (

s
)

Bi-CGSTAB

Gauss Eli.

Fig. 1. Comparison of the computing efficiency between

the serial code Bi-CGSTAB and Gauss Elimination

methods for a matrix size of 4344.

TABLE I

COMPARISON OF THE COMPUTING EFFICIENCY BETWEEN THE SERIAL CODE BI-CGSTAB AND GAUSS ELIMINATION

METHODS FOR A MATRIX SIZE OF 4344.

CPU

(MHz)
DRAM Nodes OS Bi-CGSTAB Gauss Eli. Ratio

PIII 650 256 MB 1 Win 2000 26.02 sec. 1481.48 sec. 57

Dell XEON 2 * 500 1GB/CPU 1 NT 4.0 19.20 sec. 1063.90 sec. 55

IBM SP3 16 * 375 1GB/CPU 4 AIX 4.3.3 57.60 sec. 1748.50 sec. 30

Alpha ES40 4 * 667 4GB/CPU 1 Tru64 19.40 sec. 826.10 sec. 43

TABLE II

COMPUTING EFFICIENCY COMPARISON BETWEEN THE

SERIAL CODE BI-CGSTAB AND GAUSS ELIMINATION

METHODS FOR A MATRIX SIZE OF 9984×9984.

 Bi-CGSTAB (s) Gauss Eli. (s) Time Ratio

Dell

XEON
121.5 12310.7 101

Alpha

ES40
98.7 1498.4 15

9984x9984 matrix

-2000

3000

8000

13000

XEON 500MHz Alpha ES40

667MHz

tim
e

 (
s
)

Bi-CGSTAB

Gauss Elimination

Fig. 2. Computing efficiency comparison between the

serial code Bi-CGSTAB and Gauss Elimination

methods on a Dell XEON PC and Alpha ES40

Server, for a matrix of 9984 by 9984.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

In table II, on a PC with Windows operation system the

computing efficiency of the Bi-CGSTAB is much higher than

on the Alpha server.

B. Parallel Benchmark using the Bi-CGSTAB

Both the serial and the parallelized Bi-CGSTAB MPI C

function were used to run on the IBM SP3 and Alpha ES40

Server. The matrix size was 4344×4344. A comparison is

shown in figure 3. A larger matrix size cannot be used because

the disk space to hold the matrix elements was limited on the

IBM SP3 at UNB.

From figure 3 it can be seen that the serial code computing

efficiency is roughly proportional to the CPU clock speed

among Intel PIII, IBM and Alpha processors, regardless CISC

or RISC processor architecture.

For the parallel Bi-CGSTAB code, the 4-node IBM SP3

machine performed poorly. The communication speed across

the 4-nodes was not the best (300 MBps bi-directional, 1.2

µsec latency). The 1-node Alpha Server, however, gave a

relatively good scalability in this case (1:4 processors vs 20:6

seconds). The new crossbar memory architecture of the Alpha

ES40 had a peak throughput of 5.2 GBps so that it had much

less communication drag. In terms of computing efficiency

using the serial Bi-CGSTAB code, the IBM SP3 gave about

the same computing efficiency as that of an inexpensive Intel

desktop with a PIII processor.

For heavy matrix inversion computing using the current Bi-

CSGTAB code, high network/channel throughput over

clustered computers (distributed memory) or high memory

bandwidth over a multi-processor machine (shared memory) is

essential for a computing efficiency. PC clusters equipped with

fast Ethernet card (100 MBps) are deemed not suitable for

such above-mentioned computation.

C. NAS Benchmarking the IBM SP3 and Compaq Alpha

ES40

The computing power of a parallel system to execute parallel

application programs may be measured by NAS parallel

benchmarks. A similar test was performed for a 24-node Alpha

powered PC cluster (Syms 2001). A detailed procedure that

describes the installation, compile and the run the NAS

benchmark programs for IBM SP3 and the Compaq Alpha

ES40 machine was written recently (Li 2001).

NAS application benchmarks include LU, SP and BT (Bailey

et al. 1995). Benchmark LU requires 2
i
 processors, with i=1,

2, …Npt, where Npt+1 is the number of available points on a

curve. Benchmarks SP and BT require i
2
 processors, with i=1,

2, …Npt. Running the serial code, which usually takes shorter

time than running the parallel code with one processor, creates

an extra point. The serial results were obtained with a flag of 0

processor. Figures 4, 5 and 6 show the execution time and

Mflop/s of the class A version of the benchmarks on IBM SP3

and Alpha ES40 machines.

 From figure 4, it can be seen that the scalability of SP3 was

good, with 4:16 processors vs 427:107 seconds. The Alpha

Server also had a better scalability indication with 1:4

processors vs 512:77 seconds. In one processor case, the

communication overhead and multi-user access might be the

reason for an extra long computing time of 512 seconds.

 The BT version could not be executed in serial mode with

one processor on the IBM SP3 machine, because the memory

was not enough (1.2GB minimum for each execution). The

scalability of the SP3 shows a ratio of 4:16 processors with

555:86 seconds.

Bi-CGSTAB: Serial vs Parallel

0

20

40

60

80

PIII 650MHz IBM SP3

375MHz

Alpha ES40

667MHz

tim
e
 (

s
)

Serial

Parallel 4p

Parallel 16p

Fig. 3. Comparison of the serial and parallel Bi-

CGSTAB solver on three machines.

Fig. 4. Performance of LU benchmark.

Fig. 5. Performance of BT benchmark.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

 Linear scalability was also obtained for the SP benchmark

on SP3 with 4:16 processors vs 219:44 seconds. From the

above three graphs, it can be seen that with the increase of the

number of processors, the execution time decrease and the

total Mflop/s increase. The same observation as Syms (2001)

was examined, of which one processor in parallel mode takes

more time to run than the serial mode (communication

overhead). The computing efficiency of the IBM SP3 and

Alpha ES40 in terms of Mflop/s/process rating is shown in

Figure 7.

The Alpha server outperformed SP3 substantially within its

range of number of processors. The computing efficiency for

both machines showed a relatively smooth, straight curve.

IV. CONCLUSIONS

Parallel programming with the Bi-CGSTAB was done. The

serial versions of the solver code were tested on a Windows

PC and the two multi-node UNIX machines. The parallel

version of the solver was then executed on both the SP3 and

the ES40. On the Windows PC with the serial code, for a

matrix size of 10,000×10,000 the CPU time taken for the

Gauss elimination solver was about 50 times for the Bi-

CGSTAB solver. The serial version of the Bi-Conjugate

Gradient Stabilized matrix inverter took substantially less time

than Gauss Elimination, regardless CISC or RISC CPUs and

Windows or UNIX platforms, which means that proper

algorithms are essential for computing efficiency and in cases

they may save more execution time than a powerful HPC

hardware system.

Scalability was also obtained from IBM SP3 and Alpha

ES40 by using both the NAS software and the parallelized

matrix solver. A parallel benchmark application program by

NASA (Advanced Supercomputing Division) was used to

obtain some benchmarks on these two machines, i.e., a 16-

processor IBM SP3 at UNB and a 4-CPU Alpha ES40 that

was acquired recently at IMD. The Alpha ES40 showed a

rough trend because it has only 4 nodes; at least a 16-processor

configuration is required for a reasonable analysis. For a small

matrix with a size of 4344×4344, the scalability of the Bi-

CGSTAB matrix solver code was not as good as that of the

NAS Parallel Benchmarks on the IBM SP3 machine.

However, the scalability of the matrix solver was much higher

on the Alpha ES40 machine because of its high-speed crossbar

memory architecture. Higher performance and scalability

analysis also require a parallel computing system to have at

least 16 processors. For intensive matrix inversion using

current Bi-CGSTAB code, fast I/O is essential for the

integrated computing performance of a parallel system.

ACKNOWLEDGEMENT

The authors thank to the National Research Council Canada

for its support. They are grateful to Dr. Eric Aubanel of the

Advanced Computational Research Laboratory (ACRL) at

UNB and Mr. Gilbert Wong at IMD for their assistance. They

are also thankful to the C3 and the ACRL for their availing the

computing resources.

REFERENCES

[1] J.L. Hess, “Calculation of potential flow about arbitrary three-

dimensional lifting bodies”, Report of Douglas Aircraft

Company, McDonnell Douglas Corporation, 3855 Lakewood

Blvd., Long Beach, California, MDC J5679/01, 90846, pp. 1-

160, 1972.

Fig. 6. Performance of SP benchmark.

Fig. 7. Efficiency of NAS benchmarks.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

6

[2] J.L. Hess and W.O. Valarezo, “Calculation of steady flow about

propellers by means of surface panel method”, Proceedings,

Research and Technology Douglas Aircraft Company, Long

Beach, CA, 1985, pp. 1-8.

[3] A. Jennings, Matrix computation for engineers and scientists,

John Wiley & Sons, 1977

[4] V. Voevodin, “The problem of non-self-adjoint generalization of

the conjugate gradient method is closed,” U.S.S.R. Comput.

Maths. and Math. Phys., vol. 23, pp. 143-144, 1983.

[5] V. Faber and T. Manteuffel, “Necessary and sufficient conditions

for the existence of a conjugate gradient method,” SIAM J.

Numer. Anal., vol. 21, pp. 315-339, 1984.

[6] R. Freund, G. Golub and N. Nachtigal, “Iterative solution of

linear systems,” Acta Numerica, 1991, pp. 50-100.

[7] H. van der vorst, “Bi-CGSTAB: A fast and smoothly converging

variant of Bi-CG for the solution of nonsymmetrical linear

systems”, SIAM J. Sci. Statist. Comput., vol. 13, pp. 631-644,

1992.

[8] R. Barret, M. Berry, T. Chan, J. Demmel, J. Donato, J. Dongarra,

V. Eijkhout, R. Pozo, C. Romine and H. van der Verst, (1995,

November 20). Templates for the solution of linear systems:

Building blocks for iterative methods (2nd ed.), [electronic file in

html and postscript format]. Available:

http://www.netlib.org/linalg/html_templates/Templates.html

[9] P. Liu and N. Bose, Propulsive performance from oscillating

propulsors with spanwise flexibility, Proc. R. Soc. Lond. Vol.

453(1963), pp. 1763-1770, 1997.

[10] W. Gropp, E. Lusk and A. Skjellum A., Using MPI, Portable

Parallel Programming with the Message-Passing Interface, 2nd

ed, MIT Press, 1999.

[11] W. Press, S. Teukolsky, W. Vetterling and B. Flannery,

Numerical recipes in C, 2nd ed., Cambridge University Press,

1992.

[12] G. Syms, Parallel Performance of Aerodynamic CFD Codes,

Canadian Aeronautics and Space Journal, vol. 1(March), pp.

25-31, 2001.

[13] K. Li, “Parallel programming/computing with IBM SP3 and

Compaq Alpha ES40”, National Research Council Canada,

Institute for Marine Dynamics, Laboratory Memorandum, LM

2001-09, 2001

[14] D. Bailey, T. Harris, W. Saphir, R. van der Wijngaart, A. Woo

and M. Yarrow, “The NAS Parallel Benchmarks 2.0”, Report

NAS-95-020, 1995.

Pengfei Liu was born in Rongcheng city of Shandong province, China, on

April 18, 1955. He obtained a bachelor degree in naval architecture and ocean

engineering at Wuhan University of Technology in 1982, a master's and PhD

degree in 1991 and 1996, respectively in naval architecture and ocean

engineering at Memorial University of Newfoundland (MUN), Canada.

After high school in 1972, he worked in a shipyard for a few months then

served for the Chinese Army for three years as a MORSE CODE OPERATOR. In

1976 he returned to the shipyard and completed one-year training as a SHIP

DESIGN TECHNOLOGIST. After graduated from Wuhan University of

Technology (formally Wuhan Institute for Water Transportation Engineering),

he worked as a NAVAL ARCHITECT and then SENIOR OFFICER at Chinese

Central State Government for 6 years. Pengfei entered Canada in 1988. After

his master’s degree in 1991, he taught at a college as an instructor for 8 years.

He joined the National Research Council Canada, Institute for Ocean

Technology as a Research Officer in 1999. Three of his and coauthored recent

publications are:

[1] P. Liu, “Propulsive performance of a twin-rectangular-foil propulsor in a

counter-phase oscillation”, Journal of Ship Research, to be published.

[2] P. Liu, “Design and Implementation for 3D unsteady CFD Data

Visualization Using Object-Oriented MFC with OpenGL”,

International CFD Journal of Japan, vol. 11, no. 3, p335-345, October

2002.

[3] P. Liu and K. Li, “Performance Analysis of a BiCGSTAB Solver for

Multiple Marine Propeller Simulation with Several MPI Libraries and

Platforms,” in High Performance Scientific and Engineering

Computing, Hardware/Software Support, L. Yang and Y. Pan, Ed.,

Boston/Dordrecht/London: Kluwer Academic Publishers, 2004, pp. 63-

77.

His research interests cover CFD, numerical and experimental hydrodynamics

and marine propulsion, computer graphics and visualization and high

performance computing algorithms and application to engineering.

Dr. Liu is also a professional engineer, a member of the Society of Naval

Architects and Marine Engineers (SNAME), a member of the board of

directors of CFD Society of Canada and, a member and secretary of the 24th

ITTC Azimuth Podded Propulsion Technical Committee.

