
Publisher’s version / Version de l'éditeur:

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez
pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the
first page of the publication for their contact information.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

The 17th Annual International Conference on Computer Science and Software
Engineering (CASCON 2007) [Proceedings], 2007

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

NRC Publications Archive Record / Notice des Archives des publications du CNRC :
https://nrc-publications.canada.ca/eng/view/object/?id=f7f651c0-f803-4020-b1b2-345b3504afd8

https://publications-cnrc.canada.ca/fra/voir/objet/?id=f7f651c0-f803-4020-b1b2-345b3504afd8

NRC Publications Archive
Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. /
La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version
acceptée du manuscrit ou la version de l’éditeur.

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Eucalyptus: a web service-enabled e-infrastructure
Liu, Sandy; Liang, Y.; Brooks, Martin

National Research

Council Canada

Institute for

Information Technology

Conseil national

de recherches Canada

Institut de technologie

de l'information

Eucalyptus: Provisioning Resources on e-

Infrastructure *

Liu, S., Liang, Y., Brooks, M.
October 2007

* published at The 17th Annual International Conference on
Computer Science and Software Engineering (CASCON 2007). October
22-25, 2007. Toronto Ontario, Canada. NRC 49847.

Copyright 2007 by
National Research Council of Canada

Permission is granted to quote short excerpts and to reproduce figures and tables
from this report, provided that the source of such material is fully acknowledged.

 1

Eucalyptus: A Web Service-Enabled E-Infrastructure

Sandy Liu, Yong Liang, Martin Brooks

email: {Firstname.Lastname}@nrc.gc.ca

Institute for Information Technology, National Research Council Canada

Abstract

With the support of user configurable high speed

networks, the emerging e-Infrastructure allows

seamless sharing of expensive scientific resources.

These resources are often running on a variety of

platforms, have different bandwidth and QoS re-

quirements, require specific configuration by

technical experts, and in most cases cannot be

accessed through a single point of entry. To ad-

dress these issues, we propose an extensible, reli-

able, and simple software architecture to share the

applications and resources over hybrid networks,

and hide the tools' logistical and provisioning

complexities.

This paper explores the design and imple-

mentation of Eucalyptus, and describes how it

leverages the benefits of a Service-oriented Archi-

tecture (SoA) to provide a highly adaptable,

modular, and loosely coupled solution to config-

ure and manage resources needed by users col-

laborating over the net. We present our

methodology to wrap functions of resources into

Web services, and integrate the new Web services

into the Eucalyptus platform in a generic way.

The streams of the events from these resources are

captured. This information is used for monitoring

resources' activities and diagnosing any error that

may arise. We provide a workflow management

service allowing users to orchestrate services

based on the description of the resources, their

dependencies and the captured streams to perform

certain tasks. We also propose a combination of

Copyright © 2007 National Research Council Canada.

Permission to copy is hereby granted provided the

original copyright notice is reproduced in copies made.

Web services and peer to peer technologies to

support users in different communities and differ-

ent network layers, and to decentralize resource

management. Eucalyptus was demonstrated to be

effective in assisting architects across multiple

sites to effectively participate in a shared design

session.

1 Introduction

E-Infrastructure is emerging with advances in

sharing expensive and data intensive resources

over high speed networks. These resources are

often running on a variety of platforms, have dif-

ferent bandwidth and QoS requirements, require

specific configuration by technical experts, and in

most cases cannot be accessed through a single

point of entry. To address these issues, we pro-

pose an extensible and simple Web Service based

middleware to allow on-demand provisioning of

software applications, device, tools, and its under-

lying networks (collectively called resources),

thus hiding the tools' logistical and provisioning

complexities.

Eucalyptus takes a simple but general ap-

proach to computer-supported collaboration.

Some collaboration systems expect users to learn

new tools and adapt themselves to a specific regi-

men that induces sound collaborative practices.

Eucalyptus, on the other hand, provides an infra-

structure that allows the user's to share with each

other the resources that they are already familiar

with. These resources include applications, data

and services.

A Eucalyptus session is a set of resources and

people making use of those resources at the same

time. For instance, one session might include a

videoconference system that joins two rooms with

2

one person in each room, and a third person in a

different location without video equipment;

meanwhile all are contributing to a shared digital

whiteboard. Another example session includes

users in different locations accessing a common

chat room, while one of the users is sharing his

desktop with the other users via a desktop sharing

application that allows the other users to view his

desktop from their computers. For a third example,

a pair of users are sharing a desktop and collabo-

rating on a digital description of a three-

dimensional scene; a rendering computer is avail-

able in the background that converts the scene to a

true-to-life images and sends the files to all of the

participants. During the course of the collabora-

tion, the scene is repeatedly rendered, viewed and

adjusted until the participants are satisfied. Thus

we can see that sessions can make use of a variety

of resources, including various applications, de-

vices, and files.

By simultaneously delivering any combina-

tion of these resources, Eucalyptus sessions add

value to many of the groupware applications that

are found on the internet: online chat, videocon-

ferences, data sharing, and application sharing.

Eucalyptus adds more value by providing two

other features. First it provides users with the abil-

ity to build workflows to script the basic steps in

provisioning these resources. Second it allows

users to schedule the provisioning of these re-

sources so that a meeting can be set up ahead of

time and delivered with a single click.

Eucalyptus is integrated with optical network

provisioning through user controlled lightpaths

[7]. Once a user selects the resource and its corre-

sponding participants, Eucalyptus can compose a

workflow that includes the adaptation of the logi-

cal network topology. This combination means

that an entirely new type of videoconference is

available to the end user: on-demand uncom-

pressed high-definition two-way videoconferenc-

ing. Uncompressed high definition

videoconferencing gives an unsurpassed experi-

ence. Because the data is transmitted over high-

capacity lightpaths, it does not need to be com-

pressed, so there is almost no latency in sound or

picture. Furthermore because the signal is trans-

mitted over a dedicated, direct connection, the

bandwidth is constant. It can support multiple

gigabits per second of transmission, which means

that the end user is offered a high definition, jitter-

free, delay-free experience. Moreover the high

bandwidth network does not need to be dedicated

to the resources outside of the time that the re-

sources are using them. The network is in fact one

of the resources that can be made available for

just the time it is needed, using the UCLP soft-

ware interface.

In the subsequent section, we briefly intro-

duce the concepts of hybrid networks and the no-

tion of user controlled lightpaths. We then provide

an overview of the system design, our current

implementation, demonstration experiments and

follow this by the related work and conclusion.

2 Background

2.1 Web Services-based Service-

oriented Architecture (SoA)

Service-oriented Architecture (SoA) is the latest

software architecture style to build flexible and

extensible applications. OASIS describes SoA as

“a paradigm for organizing and utilizing distrib-

uted capabilities that may be under the control of

different ownership domains” [18]. It provides a

uniform means to offer, discover, interact with

and use capabilities to produce desired effects

consistent with measurable preconditions and

expectations. Web Services represents a set of de

facto SoA implementation technologies, involving

the usage of W3C standards such as WSDL [5]

and SOAP [4] for service description and messag-

ing transport respectively. Web Service's compo-

nent-based, web-oriented, standard-based,

language, platform, and domain independent na-

ture makes it an appropriate solution for many

system and data integration projects. We adopt

this approach for provisioning resources spanning

from networks to devices.

2.2 Hybrid Network and Articu-

lated Private Network

With the exponential growth of the Internet and

the increased cost of routing, the layer 3 (IP net-

work) sometimes cannot provide the required

bandwidth and stability required by certain appli-

cations. Many e-science projects involve the us-

age of remote sensors and instruments generating

very large volumes of data that need to be deliv-

ered and processed in far away facilities. Similar

situation for architects and industrial designers,

who need to share high quality multimedia files in

3

real-time. This calls for high transport capacity

networks.

A hybrid network provides a practical solu-

tion. It consists of both the traditional routed IP

access (layer 3) to the Internet and circuit

switched point-to-point connections (layer 2).

These connections are often referred to as light-

paths. More specifically, a lightpath is an abstrac-

tion of a connection between two or more

switches in an optical network, and typically con-

nects two points on the network at speeds up to 10

gigabits per second. These lightpath connections

offer a guaranteed Quality of Service (QoS) re-

garding bandwidth and latency.

To fulfill the demand for network bandwidth

and QoS, advanced network organizations such as

CANARIE1 have been investigating ways to pro-

vide application-oriented and user-controlled net-

works services. A resulting product is called the

User-Controlled Lightpath Provisioning (UCLP)

[7] tool. UCLP is a Web Services based solution

for provisioning lightpaths. UCLP can be thought

of as a configuration and partition manager that

exposes each lightpath in a physical network and

each network element associated with a lightpath

as an “object” or “service” that can be put under

the control of different network users to create

their own logical IP network topologies [14]. The

network users can then reconfigure and partition

the lightpaths. This privately articulated end-to-

end network is therefore called Articulated Private

Network (APN). Within each APN, a number of

network scenarios (i.e. logical topologies) can be

specified to support different applications and

usage scenarios. The APN Web Service can then

be generated as a BPEL (Business Process Execu-

tion Language) workflow linking together various

network elements across multi-domain networks.

When an APN BPEL workflow is deployed and

published, the applications can set up the suitable

network topology by invoking the APN Web Ser-

vice.

However, these high-speed connections are

not pervasive, often only a limited end-points are

connected through lightpaths. To leverage the

benefit of a hybrid network, we configure gate-

way computers that have access to both routed IP

networks and the switched lightpath networks.

We then deploy the set of management Web Ser-

1 A non-profit organization who provides a na-

tional optical Internet research and education network

in Canada. http://www.canarie.ca/canet4/index.html.

vices on these gateway computers. As all avail-

able resources are published and maintained

through these management services, consequently

users of Eucalyptus can conveniently look up re-

sources via a layer 2 or layer 3 connection, and

provision the resources (including the underlying

networks) effectively through corresponding Web

Services.

3 Overall System Design

Most functions in Eucalyptus are provided by

Web Services, either as a single service or a com-

bination of services. We divide the services into

three groups: primitive resource-oriented services,

management services, and utility services as

shown in Figure 1. Eucalyptus can be seem as a

control panel for a set of network accessible re-

sources, being locally or remotely available. This

control panel is represented as a light-weight

dashboard application sitting on the desktop of a

user's computer. Through this control panel, one

can define what resource is needed, when, where,

and by whom, therefore providing a description of

a user-defined session. The system can then gen-

erate a session described as a Web Service work-

flow involving services to reconfigure the

network if necessary and to launch the corre-

sponding resources with the proper set of parame-

ter values at the time specified.

New York

ChicagoSeattle

Edmonton

Calgary
Regina

Saskatoon

Winnipeg

Toronto

Ottawa

Montreal

Fredericton

HalifaxNew York

ChicagoSeattle

Edmonton

Calgary
Regina

Saskatoon

Winnipeg

Toronto

Ottawa

Montreal

Fredericton

Halifax

Figure 1: Eucalyptus System Overview

4

Eucalyptus has a large community of users

and needs to provision different resources hosted

by Web services running on different platforms.

Management of Web services and resources is a

crucial part of Eucalyptus. To monitor and man-

age the resources, the management service should

know the following information [10]:

1. The identity of all resources, which includes

the resources properties, such as name, cate-

gory, permission, etc.

2. Resources host, which includes the Web ser-

vice platform, version number, etc.

3. Whether the Web service is working well and

the resource is functioning, and the status of

the resources

4. The average request and response time of in-

voking a given resource

5. The average message size when invoking a

given resource

6. The workload of a given resource in terms of

calls per hour

Thus we created an Event Monitor aiming to cap-

ture some of this information and broadcast these

events to the related management services. In

Eucalyptus, we use a set of central Web services

to conduct the management tasks as shown in

Figure 1. One important factor for a central man-

agement service is that Eucalyptus sits on differ-

ent network layers. A Web service from a layer 2

network typically can not communicate directly

with a layer 3 Web Service. We use a central

management service as a mediator to direct the

user's requests to the destination resource-oriented

Web service regardless of which network the user

is signing in from, being layer 2 or layer 3. The

central management services make it easy to cap-

ture all information for measuring the perform-

ance of Eucalyptus, and reduce the cost of

bringing all events together. Beside the dashboard

GUI, we plan to provide a management console to

help the admin users to manage Eucalyptus.

The rest of this section outlines how each in-

dividual component works and the interactions

among these components.

3.1 Resource Management

Every resource is governed by a Resource Man-

ager in Eucalyptus and each resource should pro-

vide a Web Service interface for the resource

manager to provision it. The basic provisioning

tasks for an individual resource include launching,

shutting down, or checking the status of resources.

Note that we are only concerned about provision-

ing of the resource, not the actual data communi-

cation among resources. For example, to launch a

multi-point video-conference application, Euca-

lyptus starts the conference application with the

proper parameters and configures the underlying

network to make sure it can support the band-

width requirement. The actual communication

among different conference machines is handled

by the native application.

Figure 2: Resource Schema

To allow new resources to be easily inte-

grated into Eucalyptus, we provide a generic ap-

proach for wrapping up a resource and making it

accessible through Web Service. We define each

non-network resource with an XML description

file. Each resource is assigned a Resource ID and

is described by a set of non-functional descrip-

tions, including name, category (e.g. communica-

tion tools, visualization tools, etc.), physical

location, URL, port, the admin user, the access

restrictions (which user group has access to this

resource), what platform is this resource running

on (i.e. Windows, Linux), the login information

for accessing the machine, which router or switch

it is connected to, the bandwidth requirement, and

any resources it depends upon. In addition, the

XML file also specifies the operations supported

by this resource; each operation is described by a

command and the corresponding parameters. Fig-

ure 2 shows the schema for defining resources.

5

Figure 3: Semantic Description of Resource in

OWL

All the descriptions are stored in the Re-

source Description Database. We also provide a

Resource Classifier, With the increased number of

resources being added to Eucalyptus, users may

want the system to choose a resource that is most

appropriate at a given time for a given task; or

when a resource breaks down, the system can

provide a list of alternative resources with similar

capabilities. To support this, we group resources

into different categories, represented as a class

hierarchy. Each class is distinguished by a set of

properties that differentiate its capabilities. The

knowledge about classes and properties can be

represented conveniently by description logic.

Figure 3 shows a snippet of the description in

OWL [3] (using concrete abstract syntax [11]), a

Web Ontology Language based on description

logic. The first axiom states that the set of re-

sources includes tools for communication, visu-

alization, management and other resources. It

also states that a resource may require another

resource (the dependency relationship). The final

axiom states that all the UCLP video-conference

tools require an underlying UCLP network. This

semantic description is stored in the Resource

Classifier as a knowledge base. The resource clas-

sifier runs a rule engine, where one can query

about the properties of a resource, and the type of

resources that falls under the same class (i.e. same

category). This is particularly helpful when a re-

quested resource becomes unavailable, the system

can make a query to the resource classifier to

identify if an alternative resource is available.

Equipped with the resource description and

the semantic information for categorization, Euca-

lyptus can use the resource wrapping utility to

quickly generate the corresponding Web Service.

For adding a new instance of an existing type of

resource, we can simplify deploy the Web Service

of the same type to the machine that hosts that

resource-oriented Web Service. For instance, if a

system already have a DCV (Deep Computing

Visulization) Web service for visualization in

Eucalyptus, and a user wants to share his/her new

DCV resource, Eucalyptus can generate a new

DCV Web service from the existing template and

deploy it to the Web service platform provided by

the user. Eucalyptus can then take in the WSDL

description of the new resources and automati-

cally generates the client codes for invoking the

Web service. The Resource Management WS will

call the generated codes dynamically at runtime to

invoke the newly integrated resource through its

own Web Service. The approach is also applicable

when a user wants to add a resource that has al-

ready been wrapped as a Web Service.

The resources in each category have similar

functions, which means every resource in the

same category has similar operations to be ex-

posed to the user. For example, in communication

tools, all resources should have the following

functions: startResource(), stopResource(), get-

Status(). Different resources have different input

and output parameters in their functions. To make

the generic Web Service interface extensible to all

of the more specific resource types, we declare all

the input parameters and the return type as String.

We will use parameter information described in

the XML resource description file to parse the

input and output strings properly.

3.2 User Management

All users of Eucalyptus are managed by the User

Manager, who keeps the detailed users' informa-

tion, and assigns the users into different groups.

Class(pds:Resource partial

 unionOf(

 pds:CommunicationTool

pds:VisualizationTools

 pds:ManagementTools

pds:OtherResources

)

 restriction(

 pds:requires allValues-

From(pds:Resource)

)

)

ObjectProperty(pds:requires)

Class(pds:VideoConference complete

 pds:Isabel pds:UCLPVideoConference)

)

Class(pds:HighSpeedNetwork partial

 unionOf(pds:UCLPNetwork)

)

Class(pds:InstantMessenger complete

 pds:EucalyptusIM

)

Class(pds:UCLPVideoConference partial

 restriction(pds:requires

 someValuesFrom(pds:UCLPNetwork)

)

)

6

It is also responsible for checking the users' cre-

dential for authentication and authorization. Each

Eucalyptus user will need to be identified upon

login to the system. The user manager keeps track

of a user's profile including user name, login ID,

password, contact information, associated organi-

zation, preference, current login location, usage

history, and the user group s/he belongs to, which

ultimately determines his/her access restriction for

the resources. The User Manager works with the

Session Manager to determine if the user has the

access rights to a certain resource.

3.3 Session Management

We try to hide the dependencies among the re-

sources and combine the session semi-

automatically. A Eucalyptus session, defines a

task involving certain resources and the sequence

of activities related to the resources. Although

most of the resources are wrapped as Web ser-

vices, a session is more than a Web service com-

position. For example, a user could define a

videoconference session for a large group of peo-

ple that 1) involves four Web services; 2) lasts for

2 hours; 3) involves different resources in the

middle of the session for sub-groups discussions;

4) checks the status of the resources, records the

status, and reflects this information back to the

user. Such sessions are described in XML. The

XML input can be translated automatically into

two BPEL processes as shown in Figure 5. Figure

6 shows the basic process for every session, the

Session Management Web Service (SMWS, also

known as Session Manager) calls the User Man-

agement Web Service(UMWS, also known as

User Manager), and Resource Management Web

Service (RMWS, also known as Resource Man-

ager) to check the authority of the users and the

availability of the resources. In Figure 6, a Web

service is started for monitoring. It checks the

status of the running resources, and times the

process. A pick activity blocks the thread of exe-

cution until a message event or alarm event occurs.

Some basic events are listed as follows:

Figure 4: A Session Description

<session>

 <description>

 A broadband videoconference session

 </description>

 <sequnce>

 <session>

 <description>

 start an Isabel connection and a Pleora connection

 </description>

 <and>

 <resource>

 <id>Isabel003</id>

 <category>communication tool</category>

 <name>Isabel</name>

 <location>nrc-ottawa</location>

 <connectto>Isabel003</connectto>

 <starttime>1100</starttime>

 <endtime>1115</endtime>

 </resource>

 <resource>

 <id>Isabel0034</id>

 <category>communication tool</category>

 <name>Isabel</name>

 <location>nrc-nb</location>

 <connectto>Isabel004</connectto>

 <starttime>1100</starttime>

 <endtime>1115</endtime>

 </resource>

 </and>

 <and>

 <resource>

 <id>Pleora003</id>

 <category>communication tool</category>

 <name>Pleor</name>

 <location>nrc-ottawa</location>

 <sendto>Pleora004</sendto>

 <receivefrom>Pleora004</receivefrom>

 <starttime>1100</starttime>

 <endtime>1115</endtime>

 </resource>

 <resource>

 <id>Pleora004</id>

 <category>communication tool</category>

 <name>Pleor</name>

 <location>nrc-nb</location>

 <sendto>Pleora003</sendto>

 <receivefrom>Pleora003</receivefrom>

 <starttime>1100</starttime>

 <endtime>1115</endtime>

 </resource>

 </and>

 </session>

 <wait>PT300S</wait>

 <session>

 <description>

 start a Pleora session

 </description>

 <and>

 <resource>

 <id>Pleora003</id>

 <category>communication tool</category>

 <name>Pleor</name>

 <location>nrc-ottawa</location>

 <sendto>Pleora004</sendto>

 <receivefrom>Pleora004</receivefrom>

 <starttime>1120</starttime>

 <endtime>1145</endtime>

 </resource>

 <resource>

 <id>Pleora004</id>

 <category>communication tool</category>

 <name>Pleor</name>

 <location>nrc-nb</location>

 <sendto>Pleora003</sendto>

 <receivefrom>Pleora003</receivefrom>

 <starttime>1120</starttime>

 <endtime>1145</endtime>

 </resource>

 </and>

 </session>

 </sequnce>

</session>

7

A time out alarm An activity will be executed to

call a daemon program. The daemon call-

backs the client to ask whether the conference

is finished or not and waits for the user's re-

sponse, which causes a stop message event to

occur.

A stop message An activity will be executed to

invoke the corresponding Web service to stop

the resources.

A resource fails message An activity will be exe-

cuted to check whether there are other re-

sources available. If not, the process

terminates with a fault; otherwise, we con-

sider the process completed.

3.4 Workflow Management
As illustrated above, a session definition defines

the workflow of how different resources and users

interact and the sequence of execution. This in-

formation can be saved as a workflow in the

workflow repository for future retrieval. These

workflows are managed by the workflow manager,

who is responsible for the insertion, deletion, and

modification, and execution of workflows. When-

ever the session manager receives any interruption

events from the Event Monitor, it passes through

to the Workflow Manager to withdraw the execu-

tion of the workflow and execute some compensa-

tion activities. The session manager will

communicate with the user for future actions. In

some cases, it may re-compose a new workflow

as the alternative. For example, when a high speed

broadband connection becomes unavailable, the

high-definition videoconference session will be

interrupted, however, the session manager may

suggest the session host to resume the session

with a standard definition videoconference re-

source such as a Pleora SD session or an Isabel

session, both can run without a broadband con-

nection.

Session Mgmt

<receive>

<reply>

<invoke>

<invoke>

Resource Mgmt

User MgmtportType

portType

portType

Figure 5: Session Management Web Service

receive the initial quest from SMWS

invoke WS to start Isabel invoke WS to start Pleora
invoke WS for monitoring

wait wait

invoke WS to stop Isabel invoke WS to stop Pleora

wait

invoke WS to start Pleora

wait

invoke WS to stop Pleora

invoke WS for monitoring

Finished

Faulted

CompletedWithFault

Pick

OnAlarm

OnMessage

Pick

OnAlarm

OnMessage

Initial

Figure 6: Basic Process of A Session

3.5 Dashboard: The Control

Panel
In order to provide a convenient single entry point

for users to access all the available resources in

Eucalyptus, we provide a simple dashboard as a

control panel for users to define and schedule

sessions with the desired properties. This graphi-

cal user interface acts as an integrated Web Ser-

vices client that hides the complexities of

configuring the resources required, providing ac-

cess to those resources through a few clicks of

buttons. The dashboard is developed as a desktop

application as opposed to a web application for

several reasons: 1) Web applications have limited

functionality on the client computer. There is no

easy way to access the local file systems. 2) The

implementations of the HTML, CSS, DOM and

some other tools are browser specific and they

often act inconsistently in different browsers. 3) It

is less convenient to maintain an accurate reflec-

tion of status of all the resources with a web ap-

plication since it does not have its own thread.

To maintain a desktop application over many

computers is normally not an easy task. However,

8

with the help of Java Web Start [16], the deploy-

ment and maintenance of Java desktop applica-

tions becomes easier. The advantages of Java

Web Start include automatic application update,

desktop integration, platform independence, Java

runtime environment management, and security.

The dashboard interface is carefully designed

to be unobtrusive and user-friendly. Inspired by

DragThing [21], it is implemented as a floating

dock, similar to the Mac OS X system dock. The

dashboard (sometimes also referred to as the

FloatingDock) only appears at the bottom of the

desktop, and it can be anchored to any other edge

of the desktop.

Eucalyptus Dashboard

Figure 7: The Eucalyptus Dashboard

Each resource has its own button on the

dashboard as shown in Figure 7. The user can also

define his/her own often-used resources on the

dashboard and can add them as new buttons. In

addition, an existing executable application can be

dragged and snapped into the dashboard, as a

shortcut to launch that application.

3.6 Peer-to-Peer (P2P) Eucalyp-

tus

Figure 1 shows how Eucalyptus works in one

management domain, i.e. all the resources are

being managed by one set of management ser-

vices. This can post two main corners. First, the

reliability and availability of the management

service. Since most of the management-related

Web Services can be essentially hosted by one

physical node on a network. If this node breaks

down, the user will not be able to get any access

to the resources registered with the Resource

Manager. Second, there are situations where an

organization may not want to expose all the re-

sources and users to another organization, who

runs the management services. To resolve the

above mentioned problems, we propose a hybrid

Peer-to-Peer(P2P) Eucalyptus management archi-

tecture where each Eucalyptus Peer has its own

set of management services, user groups, and re-

sources. One of these peers is designated as the

default host that keeps track of a list of registered

peers. This list is shared by the peers as well as

the dashboard. Each peer maintains a cache of the

list and it connects to the default host for updates

at a set frequency (e.g. every hour). Each peer

maintains a list of available peer by sending a

ping to each listed peer. In case the default host

becomes unavailable, the next peer appearing on

the list will become the default host. The new list

will be propagated to other peers. Figure 8 illus-

trates a system with 5 active peers.

Mgmt. Server

IP: 134.1.90.1

Registered Peers:

EP1: 198.164.41.3
EP2: 168.10.161.1

EP3: 142.92.71.29
…

EPn: 134.1.90.1
Mgmt. Server

IP: 142.92.71.29

Registered Peers:

EP1: 198.164.41.3

EP2: 168.10.161.1
EP3: 142.92.71.29

…
EPn: 134.1.90.1

Mgmt. Server

IP: 198.164.41.3

Registered Peers:

EP1: 198.164.41.3

EP2: 168.10.161.1
EP3: 142.92.71.29

…

EPn: 134.1.90.1

Mgmt. Server

IP: 64.233.87.104.

Registered Peers:

EP1: 198.164.41.3

EP2: 168.10.161.1
EP3: 142.92.71.29

…
EPn: 134.1.90.1

Mgmt. Server

IP: 168.10.161.1

Registered Peers:

EP1: 198.164.41.3

EP2: 168.10.161.1
EP3: 142.92.71.29

…
EPn: 134.1.90.1

Default Host

ResourceResource

ResourceResource

ResourceResource

ResourceResource

ResourceResource

Figure 8: P2P Eucalyptus Architecture

4 Current Implementation

and Experiments

The current Implementation of Eucalyptus is be-

ing used for geographically distributed architects

and industrial designers to use in their participa-

tory design sessions. Thus most resources are

selected to support architectural design activities.

This includes some high-end devices that are not

easily available in most labs, for example, the

IBM Deep Computing Visualization cluster, ren-

9

dering farms, high-definition videoconferencing

devices, etc.

We have conducted serveral live demos to

showcase the concept of Eucalyptus and to test

the capability of the system. One of the demo

shows Eucalyptus running on the mixed layer 3

and 4Gb lightpath environment connecting Carle-

ton Immersive Media Studio (CIMS), the Society

for Arts and Technology (SAT) in Montreal, and

the Communication Research Centre Canada

(CRC) in Ottawa. We deployed the management

Web Services on a server (called Service Manager)

at CRC, which is configured to be on both layer 2

and layer 3 networks. The first demo scenario

shows the architects located at CIMS and SAT

use the Eucalyptus interface to control visual

communication and 3D modeling tools in their

participatory design session. They use the IBM's

Deep Visualization Computing (DCV) [1] cluster

technology to provide hands-on direct collabora-

tion using Maya. With DCV, high-end graphical

images can be created in a visualization mode that

distributes graphical images to remote (collabora-

tive) clients. With Eucalyptus, the architects do

not need to know each single configuration pa-

rameters and deal with the Linux server (that

DCV is running on) or the system administrator

before using this kind of tools.

While working on the design by sharing the

desktop, the designers may want to see and hear

each other for more discussions. Eucalyptus pro-

vides the access to some videoconference tools

and they can be configured and launched auto-

matically by Eucalyptus according to user's pref-

erence. For instance, one can choose the

uncompressed Standard Definition (SD) video

(480i) - DVD-quality streaming at 300Mb using

Pleora technology. When graphically precise

work details at a designer's desk need to be shared,

Pleora HDV (720p) close-up view gives startling

clarity. When larger-scale views must be shared at

full resolution, for example when viewing street-

level activity, UltraGrid [20] uncompressed HD

(1080i) provides the highest resolution video.

Eucalyptus not only do provide easy access to

these conference tools, but also provide the corre-

sponding network setup as a workflow for the

underlying network connections.

Now the school of architecture in Pennsyl-

vania State University, and the Carleton Univer-

sity (Canada) are using Eucalyptus in their

collaborative project. This involves about 30 stu-

dents from both schools forming teams of four in

co-designing an aviation museum.

A highly interactive and novel break-dance

session was held between Carleton and Society

for Arts and Technology (SAT) in Montreal on 8

March 2007. Using uncompressed high-def and

standard-def two-way video on a 2 Gb/s lightpath,

break dancers at each site challenged each other to

successively more difficult moves and routines.

The dancers from separate locations were able to

interact and stay synchronized. We have also ex-

perienced a real-time dance performance of the

Korean Nulhui Dance Company, simultaneously

transported from Seoul, Korea and Ottawa, Can-

ada and to Barcelona, Spain [17]. For our applica-

tions, the "uncontested bandwidth" feature is the

biggest advantage of lightpaths. The ability to

bond multiple one-gigabit lightpaths into a single

multiple-gigabit lightpath is also an advantage.

5 Related Work

Contract-first development is a new approach for

developing Web services, the idea of which is to

define the contract, such as data, operations and

messages first, and then generate the appropriate

code. In Eucalyptus, we apply this method in

many places. For example, when a new Web ser-

vice comes in, we generate the WSDL from the

XML schema [2], and then generate the client

code for invoking this Web service; based on the

user's requirement and contract WSDL, we gener-

ate the workflow represented as a BPEL file.

However, most parts in Eucalyptus are developed

using a traditional code first method. We found

that it is difficult to define the formal contract at

the beginning. Initially Eucalyptus is designed for

the architects, and the user's requirements are not

well defined, so we use a spiral approach: develop,

testing, deploy for authentic use, and revise. In

addition, at this point there is no single, unified

development environment for contract-first devel-

opment, and most of the available tools are devel-

oped separately [12]. We will continue to develop

Eucalyptus in this hybrid approach. For the re-

source-oriented Web Services where many devel-

opers need to implement and deploy their new

Web services, we use the contract-first develop-

ment to improve the interoperability, while for the

management and utility Web Services, we use the

code-first technique.

There are some other message-based Web

Services integration, selection, and management

10

techniques that adopt the concept of Enterprise

Service Bus for developing, deploying and moni-

toring integration projects across the enterprise

[19]. The Web Service Management Layer [13]

also provides a central management layer for dy-

namically integration, selection and composition

by putting all Web services related client code

into the management layer. WSIF [6] is a WSDL

based API for invoking WSDL based Web ser-

vices no matter how the Web services are imple-

mented. It provides a generic client framework

which unaware of the service update, migration

and the change of protocols. Although current

implementation of Eucalyptus wraps all resources

in Web services based on SOAP API under

Apache AXIS, we consider employing the WSIF's

API in future implementations to better incorpo-

rate Eucalyptus with other legacy applications

such as EJB, JMS applications.

6 Conclusion and Future

Work

In conclusion, Web Service's component-based,

web-oriented, standard-based, language, platform,

and domain independent nature makes it an ap-

propriate solution for many system and data inte-

gration projects. We consider a Service-oriented

Architecture (SoA) implemented by Web Services

to be a desireable approach for provisioning re-

sources spanning from networks to devices.

This approach allows Eucalyptus to quickly

build a toolbox that consists of tools developed by

different vendors with different execution envi-

ronments with a uniform interface. It is flexible

and extensible: new resources can be simply

added by creating and publishing new services or

they can be removed by removing them from the

resource registry.

Although Web Services can be used in both

data integration and provisioning, there are a few

differences. Provisioning Web Services mostly

interact with the control flow of the applications,

while Web Services for data integration mostly

interact with the data flow, where data is wrapped

in XML. Wrapping application data in XML is

not appropriate in the broadband context, where

the data streams are typically in the 1-1000 Mb

range. In addition, the overhead of marking up

data into XML-based SOAP message often hin-

ders the number of Web Services in a service

composition. On the other hand, provisioning

parameters normally are very light-weight com-

paring to application data. Thus a provisioning

Web Service workflow can comprise a number of

nesting Web Services without affecting the effi-

ciency of the system. Monitoring the status of

applications and their underlying network is im-

portant to provide intelligent provisioning ser-

vices such as comparing actual and desired states

of an application, while this is not as critical in the

data integration.

The Eucalyptus prototype is useful in assist-

ing architects to do collaborative design in dis-

tributed labs [8] [9]. Although the current

prototype is applied for architectural design, using

Web Services in provisioning is indeed applicable

to many industries. The value of Eucalyptus is

also being recognized by users, tool vendors, sys-

tem integrators and venture capitalists. CANARIE

has already acted to establish Canadian leadership

in the new application space of which Eucalyptus

is the first example. St. Arnaud [15] believes that

the agile infrastructure we created will have real

potential and significant impact in many other

fields and disciplines. As a result of our demon-

strations, the Department of Public Safety in the

Province of New Brunswick (Canada) is inter-

ested in having us apply our approach for re-

sponding to critical events; a few big companies

are also interested in adopting the Eucalyptus

platform for their industrial environments. In

summary, this service-oriented approach can

serve as a basic building block for an agile low-

cost enterprise system without investing in expen-

sive enterprise solutions. The service-oriented

approach adopted by Eucalyptus makes provision-

ing, running, and monitoring heterogeneous net-

works and network-enabled resources relatively

easy and intuitive.

Acknowledgements

This project is funded by CANARIE's Intelligent

Infrastructure Program. Our partners include the

Carleton Immersive Media Studio (CIMS) at

Carleton University, Communication Research

Centre Canada (CRC), IBM, Pleora Technologies

Inc., and AutoDesk. This work is also contributed

by Bo Xu and Libo Zhang, who are the previous

development team members.

11

References

[1] Ibm deep computing visulization networking.

http://www03.ibm.com/servers/deepcomputin

g/visualization/

[2] Arjen Poutsma, Rick Evans. Why Contract

First? http://static.springframework.org/

spring-ws/site/reference/html/why-contract-

first.html, May 2007.

[3] Deborah McGuinness, Frank Harmelen.

OWL Web Ontology Language Overview.

http://www.w3.org/TR/owlfeatures/, Febru-

ary 2004.

[4] Don Box, David Ehnebuske, GopalKakivaya,

Andrew Layman, Noah Mendelsohn, Henrik

Frystyk Nielsen, Satish Thatte, Dave Winer.

Simple Object Access Protocol (SOAP) 1.1.

http://www.w3.org/TR/2000/NOTE-SOAP-

20000508/, May 2000.

[5] Erik Christensen, Francisco Curbera, Greg

Meredith, Sanjiva Weerawarana. Web Ser-

vices Description Language 1.1.

http://www.w3.org/TR/wsdl, March 2001.

[6] The Apache Software Foundation. Web ser-

vice invocation framework.

http://ws.apache.org/wsif/, May 2007.

[7] J. Wu et al. User-managed End-to-end Light-

path Provisioning over CA*Net4. In Proceed-

ing of the National Fiber Optic Engineers

Conference (NFOEC), Orlando, FL, USA,

pages 275-282, September 2003.

[8] Michael Jemtrud, Martin Brooks, Bobby Ho,

Sandy Liu, Philam Nguyen, John Spence, and

Bruce Spencer. Eucalyptus: User controlled

lightpath enabled participatory design studio.

In ACADIA(The Association for Computer-

Aided Design in Architecture)International

Conference 2006, 10 2006.

[9] Michael Jemtrud, Philam Nguyen, Bruce

Spencer, Martin Brooks, Sandy Liu, Yong

Liang, Bo Xu, and Libo Zhang. Eucalyptus:

Intelligent Infrastructure Enabled Participa-

tory Design Studio. In WSC'06: Proceedings

of the 37th conference on Winter simulation,

pages 2047-2054. Winter Simulation Confer-

ence, 2006.

[10] Justin Murray. Learn the Eight Principles of

Web Services Management.

http://www.devx.com/enterprise/Article/1066

3/1954?pf=true, May 2007.

[11] Sean Bechhofer, Peter F. Patel-Schneider,

Daniele Turi. OWL Web Ontology Language

Concrete Abstract Syntax.

http://owl.man.ac.uk/2003/concrete/latest/,

2003.

[12] Aaron Skonnard. Service station.

http://msdn.microsoft.com/msdnmag/issues/0

5/05/ServiceStation/#S5, May 2007.

[13] SSEL. Web services management layer

(wsml). http://ssel.vub.ac.be/wsml/, May

2007.

[14] Bill St.Arnaud. CA*net4 research program

update - UCLP roadmap: Web Services

workflow for connecting research instru-

ments and sensors to networks.

http://www.canarie.ca, December 2004.

[15] Bill St.Arnaud. Cyber-infrastructure and

grids for Architecture Collaborative Design.

http://lists.canarie.ca/pipermail/news/2006/00

0362.html, December 2006.

[16] Sun MicroSystems, Inc. Java Web Start

Overview. http://java.sun.com/developer/

technicalArticles/WebServices/JWS_2/

JWS_White_Paper.pdf, May 2005.

[17] The CANARIE Inc. Live television - like

never before! The CANARIE Times, De-

cember 2006. http://www.canarie.ca/times/

Dec06/15.html.

[18] The OASIS Service Oriented Architecture

TC. OASIS Reference Model for Service

Oriented Architecture (Committee Draft)1.0.

http://www.oasis-open.org/committees/

download.php/16587/wd-soa-rm-cd1ED.pdf,

February 2007.

[19] The TIBCO Inc. Service mediation.

http://www.tibco.com/resources/solutions/soa

/esb_for_soa.pdf, May 2007.

[20] The UltraGrid Project team. UltraGrid: A

High Definition Collaboratory.

http://ltragrid.east.isi.edu/.

[21] James Thomson. DragThing.

http://www.dragthing.com.

