
Publisher’s version / Version de l'éditeur:

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez

la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous
n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the
first page of the publication for their contact information.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

Proceedings of the 16th International Information Resources Management
Association Conference (IRMA 2005), 2005

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

NRC Publications Archive Record / Notice des Archives des publications du CNRC :
https://nrc-publications.canada.ca/eng/view/object/?id=d8519dbe-e516-4d55-ba1b-94028ebfa673

https://publications-cnrc.canada.ca/fra/voir/objet/?id=d8519dbe-e516-4d55-ba1b-94028ebfa673

NRC Publications Archive
Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version.
/ La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version
acceptée du manuscrit ou la version de l’éditeur.

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Supporting Context Driven Change in a User Interface
Crease, Murray

National Research

Council Canada

Institute for

Information Technology

Conseil national

de recherches Canada

Institut de technologie

de l'information

Supporting Context Driven Change in a User

Interface *

Crease, M.
May 2005

* published at the 16

th
 International Information Resources Management Association

Conference (IRMA). San Diego, California, USA. May 15, 2005. NRC 47452.

Copyright 2005 by

National Research Council of Canada

Permission is granted to quote short excerpts and to reproduce figures and tables from this report,

provided that the source of such material is fully acknowledged.

1

Supporting Context Driven Change in a User Interface

Murray Crease

NRC-IIT e-Business,

46 Dineen Drive,

Fredericton,

NB, Canada, E3B 9W4

Email: murray.crease@nrc-cnrc.gc.ca

Tel: +1 (506) 444-0496

Fax : +1 (506) 444-6114

ABSTRACT
This paper discusses the design of a toolkit of user interface components (widgets) that change their interaction method based

on the context. The types of change supported range from relatively simple "look & feel" transformations through radical

alteration of interaction modality. These changes are made dynamically and are based on resource availability (e.g., display

area), global demands on the resource (e.g., the set of all current feedback requests) and context of use (e.g., ambient noise).

The importance of making these changes dynamically is highlighted when considering mobile application users whose

context will continually change.

The toolkit architecture is presented, focussing on the specification of widget behaviour and the mechanism for capturing and

effecting context-sensitive changes to the interaction. An initial implementation of the system which offers multimodal,

resource-sensitive output is described and the issues involved in extending the implementation are discussed.

INTRODUCTION
The environments in which applications are being run are often mobile and capable of being monitored via a variety of

sensors. Systems that take advantage of this dynamic environment are difficult to design and build [3]. The challenge for user

interface software developers is to be able to provide functionality cost-effectively in a way that best exploits the available

resources. This paper presents a partial response to this challenge: a toolkit of resource-sensitive, multimodal widgets. The

toolkit’s widgets can use multiple forms of feedback, using the most appropriate form(s) according to resource availability

and suitability. If the user is using a hand-held device then the display of large amounts of visual feedback is not feasible.

Similarly, if the user is in a loud environment then perhaps the use of audio feedback is not appropriate.

Of course, the presentation of the widgets is only half of the user-interface story. Just as the resources available for

presentation may vary in availability and suitability as the context of the user changes so may the suitability and availability

of input mechanisms vary. This paper also considers the mechanisms required to ensure consistency between widget input

and output. If, for example, the presentation area of a widget changes due to a change in screen size this has a direct impact

on the input area to the widget. The proposed solution to this problem is the use of interaction spaces which define the space

in which an input mechanism or output resource exist, enabling communication to take place between the two.

MOTIVATION
The toolkit of widgets described in this paper can be considered to fulfil four main objectives.

Dynamic Configuration

The widgets described in this paper are capable of modifying their input behaviour and output presentation dynamically. This

contrasts with the approaches being taken by, for example, UIML [2] or Plasticity [3]. In these cases the user interface and,

importantly, the platform are modelled prior to the interface being created. Once the interface has been created there is no

scope for changing it according to the context. Multiple interfaces can be built using the same application model for multiple

2

platforms but there is no support for significant run-time change. This is significant as the environment in which the

application is running can no longer be considered static when considering mobile devices.

Decoupled Decision Making

The widgets in the toolkit have no part in the process of determining how they can be interacted with. Whilst the widgets may

have some pertinent information, given to them by external sources, they have no understanding of what this information

represents and how it should be used. This is appropriate because it is not reasonable to expect a widget to understand its

wider context - e.g. the ambient volume of the room - or whether its request for feedback is appropriate or not - e.g. the

number of sounds already being played.

Exploitation of Contextual Information

The toolkit is able to exploit different strategies in using the contextual information to modify interaction with the interface.

This means that simple strategies can quickly be implemented but there is no limit on how these strategies can evolve or be

replaced. A sensor which detected the ambient volume could be used to adjust the volume of any audio feedback being

generated. This strategy would be effective until the ambient volume increased to a level where it is no longer feasible to

increase the volume and an alternative strategy would need to be employed. This strategy would not necessarily replace the

simpler rule but rather a third rule would be used to determine which strategy should be applied in a particular situation.

Multiple Modalities

The toolkit described in this paper does not assume that the feedback will be in the form of graphical output. Indeed, no

assumptions are made about the form of the feedback at all as the most appropriate form of presentation will depend upon the

context. The context will define what presentation resources are available (and in what quantities) and what would be most

suitable. A handheld device with a small screen will have less visual presentation resource available than a desktop machine

with a large monitor for example. Equally, as described in the previous section, audio feedback is more appropriate in some

contexts than in others.

TOOLKIT ARCHITECTURE
In this section the architecture of the toolkit is discussed, focussing on the key design-oriented features described in the

previous section. An overview of the toolkit architecture is given in Figure 1.

Figure 1: The high level architecture of the toolkit showing how the major software components of the system are
linked.

There are three main components in the architecture: the widgets which encapsulate the abstract i/o abilities of the interface

components; the interaction manager which coordinates i/o devices and widget requirements; and the external modules which

provide the concrete interaction capabilities. These components are discussed in more detail in the following sections.

3

Widgets

The widget consists of an abstract representation of the widget’s behaviour allied with some concrete knowledge of different

input mechanisms and presentation forms. The widget would, for example, know that it is using a particular output module to

provide feedback and that a particular set of options could be used to tailor that feedback. The widget is only the repository

for that information. It does not play a role in deciding what this information should be. Each widget consists of several sub-

components as shown in Figure 2.

Figure 2: The components that comprise an individual widget.

The feedback controller stores the knowledge of what output modules the widget is currently using. For each output module

used it creates an Output Mapper (OM) that stores information that the output module uses to tailor the widget’s feedback.

This information could be simple parameters or could be more explicit feedback instructions. For example, the OM could

produce VRML which a VRML output module would render appropriately. In both cases, the widget is simply requesting

feedback with no concept of its appropriateness or suitability, as discussed in Section 2.2

The behaviour of the widget is defined in both the Abstract Widget Behaviour (AWB) and the Input Mappers (IM). The

AWB defines the abstract behaviour of the widget whilst each IM defines the concrete behaviour of the widget for a

particular input mechanism.

Interaction Manager

This component is the driving force behind the toolkit’s ability to manage the presentation of the widgets. It interfaces with

the context (in the form of sensors and the output modules), applications (through an API) and users (via a user interface). It

also makes the decisions regarding the presentation of the interface using rules which are driven by information provided by

the context. The interaction manager uses two concepts which allow it to manage the presentation of the widgets: interaction

spaces and rules. The interaction spaces define the space in which the widgets live and the rules determine the changes that

should be made to the interface according to the capabilities and state of the interaction spaces.

An interaction space can be considered as defining the state and capabilities which a widget can use in a particular context. A

windowing interaction space, for example, would define the input mechanisms (such as mouse and keyboard) and output

resources (such as a visual display) available as well as an indication of the amount of resource available and its suitability.

The screen may be described, for example, in terms of width and height in pixels and its suitability may depend upon the

ambient brightness of the environment. An interaction space would also define the parameters within which the presentation

may be modified. In the case of a windowing interaction space these parameters may include presentation parameters such as

size and contrast and input parameters such as click or move over to select.

4

I/O Modules

The input and output modules are software components, which act as the toolkit’s interface to the outside world. There are

three basic types of module, although a individual module may consist of more than one type. Input modules encapsulate

input mechanism(s), output modules encapsulate output modality(ies) and sensors encapsulate a part of the changing context

in which the toolkit resides. Output modules map widgets’ requests for feedback into concrete presentation. They can be

considered as simple renderers. Input modules map user events into events that are understood by the toolkit. Sensors map

changes in the context to events that can be understood by the toolkit. The events generated by sensors will often drive

changes in the interaction manager’s rules but may also act as an input to the toolkit’s widgets.

IMPLEMENTATION
An initial prototype has been implemented in Java, based on the Java Swing toolkit (described more fully in [1]). The

prototype is focussed on the modification of the presentation of the widgets according to their context. Consequently, the

input side of the architecture has not been implemented and the abstract behaviour of the widget has been defined in terms of

the concrete behaviour of the widget with respect to mouse input. The advantage of this approach is that it enabled a speedy

implementation which proved the concept of the architecture was fundamentally sound. A disadvantage was the limited

scope in changing the graphical presentation of the widgets due to the tight coupling between the graphical presentation of

the widgets and Java’s standard AWT event mechanism.

CONCLUSIONS
This paper describes a user interface toolkit which allows the interaction with a user interface to be dynamically changed to

suit the current context. These changes are managed in terms of interaction spaces which define the techniques available for

input and output; the resources available to support these techniques and suitability of these techniques in different contexts.

The current implementation of the toolkit allows for the alteration of the widget’s presentation according to the context.

Using the toolkit, the size and volume for the presentation of the widgets can be alerted according to the context. The future

of the toolkit lies in the continued implementation so the input to the widgets can be handled as flexibly as the output is

currently. This requires the concept of interaction spaces which encapsulate the resources that can be used for interaction.

Doing this would provide a toolkit for quickly developing interfaces that are effective regardless of the context.

ACKNOWLEDGMENTS
Some of the work described in this paper was funded by EPSRC grant GR/L79212.

REFERENCES
[1] M. Crease, P. Gray, and S. Brewster, "A Toolkit of Mechanism and Context Independent Widgets," in 7th

International Workshop , Design, Specification and Verification of Interactive Systems, P. Palanque and F. Paterno,

Eds. Limerick Ireland: Springer-Verlag, 2000, pp. 121-143.
[2] C. Phanouriou, "UIML: A Device-Independent User Interface Markup Language," in Computer Science.

Blacksburg: Virginia Polytechnic Institute and State University, 2000, pp. 161.
[3] D. Thevenin and J. Coutaz, "Plasticity of User Interfaces: Framework and Research Agenda," in Proceedings of

Interact'99, vol. 1, A. Sasse and C. Johnson, Eds. Edinburgh: IFIP, IOS Press, 1999, pp. 110-117.

