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Quel or ondé en tresses s’allongeant 

      Frapoit ce jour sa gorge nouvelette, 

      Et sus son col, ainsi qu’une ondelette 

      Flotte aux zephyrs, au vent alloit nageant [10] 

      

Les amours, de Pierre de Ronsard. 

 

Abstract 
 

We have used wavelet shrinkage to reduce by 14% the noise level in the signal of the 

transformers used in some heavy ions accelerators. The loss of information is minimal 

compared to other techniques and our approach is non parametric. We provide some source 

code.  

 

1) Introduction 
 

Linear accelerators are crucial to high-energy physics research and measuring the 

behaviour of these accelerators is of the highest importance. The linear accelerator of heavy 

ions LINAC III allows the production and acceleration of pure isotope 208 . The 

accelerated head ions are injected into a circular accelerator the Proton Synchrotron 

Booster (PSB) and then into the Proton Synchrotron (PS) accelerator [1]. The transformers 

of the LINAC III and PSB (see Fig.1a) measure a mixture of low frequencies (ions 

production) and high frequencies (abrupt modification due for example to injection or 

ejection).  

+53Pb

 

 
   

Figure 1a.    Block diagram of the instrument. 

 
* Daniel Lemire, Research Officer, National Research Council of Canada 
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The maximum input voltage for the ADC (1.8 V ) determines the maximum output voltage 

of the amplifier V . The signal (see Fig. 1b) is digitalised with a regular sampling time of 

400 ns has a long duration (

0

sµ560≈ ) relative to perturbations (with a duration 1≤ ms) 

caused by magnetic perturbations, bad grounding etc. so that the base line is non linear [5] 

[8] [9]. The noise amplified by the gain affects the precision of the measure. This paper 

attempts to answer the following question: how to reduce systematically the bandwidth by 

filtering and   thus loosing potentially valuable information. Several solutions exist: 

1) we could change the sensor for a better one; 

2) we could use less noisy electronics. 

The solution that we adopted is called the wavelet de-noising by thresholding; which is a 

type non-parametric de-noising method. The basic process is as follows: 

1) we calculate the Wavelet Discrete Transform (DWT); 

2) we identify and cut the noise in the wavelet domain; 

3) we calculate the Inverse Discrete Wavelet transform (IDWT). 

To reduce the noise we could also use the Fourier transform but in that case there could be 

a major disadvantage: the Fourier transform is global and provides a description of the 

overall regularity of the signal. It is not well adapted for finding the location and the spatial 

distribution of singularities physically induced by the injection or ejection (in presence of a 

singularity the transform contains a great number of impacted coefficients.) Thus in the 

high frequencies, it becomes impossible to distinguish between the signal and the noise. 

We could use a Windowed Fourier Transform (WFT), but one must then determine the 

window size and we are seeking a non-parametric approach.   

 

The wavelet coefficients coming from the signal are typically larger than the coefficients 

coming from the noise because the corresponding energy is spread over fewer coefficients: 

the wavelet transform is a time-frequency analysis, in presence of a singularity, the number 

of impacted coefficients is reduced. The key idea behind wavelet de-noising is to remove 

the coefficients with small amplitude and to calculate the inverse wavelet transform. As 

shown in Fig. 1b, the de-noised signal has very little remaining noise while no de-noising 

artefacts are visible.  
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Figure 1b.    Transformer ITH.MTR41.  

 

The text is structured as follow. In section two, we will explain the decomposition of a 

function on a basis. We will discuss the Haar wavelet [6] for two reasons: 

1) in our software to reduce the noise of the signal we use the Haar transform;  

2) studying  the Haar transform in detail will provide a good foundation for 

      understanding the more sophisticated wavelets transform. 

In section three, we will explain the multiresolution analysis. In a wavelet transform, the 

signal is decomposed by a succession of low-pass and high-pass filters. In section four, we 

will give the DWT, the IDWT and a wavelet de-noising written in ANSI C. In section five 

we will discuss an application and we will measure the effect of the noise reduction. 

 

Notation 

 

Translation and dyadic dilation of a function  is noted with two indices )(tf

)
2

(
2

1
)(, k

t
ftf

jj
kj −= . 

The scalar product is noted  

     . )()(| nynxyx
n

∑
+∞

−∞=

>=<
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2) An orthogonal basis 

 

The Haar basis: 

 

A discrete signal is acquired by an Analog Digital Converter (ADC) on a regular sampling 

time t . The signal can be represented by the vector  or by the sequence  n )(nx
→

 

),...}2(),1(),0(),1({...,)}({ xxxxnx −=   with t nn =  n ∈  Z. 

 

In turn a vector can be converted to an analog signal  with a Digital Analog Converter 

(DAC) (see Fig. 2a). 

)(0 tf

 

 
      

   Figure 2a.  Analog signal. 

 

The signal in Fig.2a can be represented by a sum of translated first-order cardinal B-spline 

functions )(tφ  also called “box function” (see Fig. 2b) defined by  

 

)(tφ  = 1  for 10 <≤ t     

    0 otherwise. 

 

 
Figure 2b.    Box function. 
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For example the signal  (see Fig. 2a) can be written as )(0 tf

 

k

N

k

N

k

k

N

k

krkmkltf ,0

127

0

0

121

65

,00

31

11

00 )()]()([)( φφ ∑∑∑
=

=

=

=

=

=

=+= . 

 

The ‘box functions” are an orthonormal basis (Haar basis). Indeed we have 

 

  .    (2.1) 
k

mmkdtmtkt δφφφφ >==<−−∫ ,0,0

1

0
|)()(

 

where  is the usual Kronecker delta symbol.   fork

pδ 1=m

kδ mk = and 0 otherwise.  

 

For the purpose of this paper, the scale is defined to be the support of basis function. 

Example:  for )
2

( k
t

j
−φ  the scale is proportional to  j−2 .

 

Remark that the equality (2.1) remains valid if we change the scale 

 
k

mmjkj δφφ >=< ,, | .     (2.2) 

 

To change the scale wich we analyse a signal, we need to study the relation existing 

between the function )(tφ  and its dilation.  

 

2.1) The dilation equation 

  
For the “box function” the dilation equation is 

 

)12()2()( −+= ttt φφφ .    (2.1.1) 

If we set )0()2(|)(
2

1
htt >==< φφ  and )1()12(|)(

2

1
htt >=−=< φφ , we can written the 

equation (2.1.1) as 

 

)2()(2)(
1

0

ktkht
k

−= ∑
=

φφ . 

 

Let V  the Hilbert subspace spanned by m )}
2

( k
t
m
−φ{  k Z∈ . 
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2.2) The Haar wavelet 
 

Some signals created by a DAC (see Fig. 2c) can better represented by a sum of functions 

with a zero mean value called wavelet.  

 

 
 

Figure 2c.    Analog signal. 

 

The Haar wavelet is defined by the function (see Fig. 2.2a) with  for )(tw 1)( =tw

2

1
0 <≤ t  and  for 1)( −=tw 1

2

1
<≤ t .  

 

   
 

Figure 2.2a. Haar wavelet.                         

 

We have a relation between )2( tφ , )12( −tφ  and the new function  )(tw

 

)12()2()( −−= tttw φφ .    (2.2.1) 

 

This last equation is sometimes called the wavelet equation. 
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If we set )0()2(|)(
2

1
gttw >==< φ  and )1()12(|)(

2

1
gttw >=−=<− φ , we can written the 

equation (2.2.1) as 

 

)2()(2)(
1

0

ktkgtw
k

−= ∑
=

φ . 

  

The Haar wavelets also are an orthonormal basis. Indeed we have 

 

>=<=−− ∫∫ mkmk wwdtwwdtmtwktw ,0,0,0

1

0
,0

1

0
|)()( .  (2.2.2) 

 

1=m

kδ   for , 0 otherwise.  mk =
 

The equality (2.2.2) remains valid if we change the scale  

 
k

mmjkj ww δ>=< ,, |  .    

 

Let W  the Hilbert subspace spanned by m )}
2

( k
t

w
m
−{ with Zk ∈ .    

 

Moreover there is a significant relation between the scale function )(tφ  and the wavelet 

  )(tw

0|)()( ,0,0,0

1

0
,0

1

0
>==<= ∫∫ mkmk wdtwdttwt φφφ .   (2.2.3) 

 

The equality (2.2.3) remains valid if we change the scale  

 

0| ,, >=< mjkj wφ .  

    

We see that scale function is orthogonal with the wavelet. 

 

The signal  created by a DAC (see Fig. 2c) can be written with the Haar wavelet as 

   

)(0 td
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0,0
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3) The multiresolution analysis 
 

In this section, we are going to show how we can represent a signal as a series of coarser 

and coarser approximation. Recall that the most basic level, a sampled signal{ is an 

approximation of the analog input signal (see Fig. 3a). 

)}(0 nf

)(tf  

          

   
       

  Figure 3.a.    Discrete signal. 

 

The concept of approximation is rigorously defined with what that one calls the resolution. 

Intuitively, the higher the resolution, the better the approximation. 

  

 Definition 1. “For a finite length signal, the resolution is the minimum number of samples 

required to represent it”. [15] 

Example:  for  the resolution is: 2 . 72128 ==N 7

 

Given the vector { , the process by wich we keep only half the components, 

, is called down- sampling by a factor two. Obviously, down-sampling reduces the 

resolution and creates a coarser approximation. Using this idea, we can apply a succession 

of digital filters to a signal while keeping the storage usage constant. For example, given 

the vector { , we can apply both a low-pass filter and a high-pass filter. 

)}(0 nf

)}

)}2({ 1 nf

(0 nf

1)  Apply a low-pass filter and down-sample the result by a factor of two. The result 

      noted { can be seen as an approximation to { . )}2(1 nf )}(0 nf

2)  Apply a high-pass filter and down-sample the result once again. The resulting  

     vector is often described as containing the details of the signal and we note it  

    { .In turn the filtered and down-sample approximation { can be )}2(1 nd )}2(1 nf

     decomposed with a low-pass and a digital high-pass filter and so on (see Fig. 3.b).  

     This process will progressively reduce the resolution and create coarser and coarser 

     approximations. We call this iterative process a wavelet transform (WT). 

 

 

 10



EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH 

CERN    A&B DIVISION 

 

 
 

   Figure 3.b.     Wavelet transform. 

 

3.1) The digital low-pass filter 

 

We study the simplest low-pass digital filter: the moving average 

 

)1(
2

1
)(

2

1
)( 001 ++= nfnfnf .  

 

It can represent by a Toeplitz matrix [13] 
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The coefficients of the filter are 
2

1
)1()0( == hh .   

For  we have  
xinenf π2

0 )( −=
 

xinxinxixnixin exHeeeenf πππππ 2222)1(2

1 )()1(
2

1

2

1

2

1
)( −−−+−− =+=+=   

 

Where the frequency response  is  )(xH

 
xiexxH ππ −= )cos()(   
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3.1.1) The down-sampling 

 

We shall have only the even-numbered component of the output vector{ . The odd-

numbered components are removed 

)}(1 nf

 

),...}4(),2(),0(),2({...,)}2(){2()( 111111 ffffnfmf −=↓= . 

 

The symbol indicates down-sampling or decimation. We multiply the surviving 

components { by 

↓
f )}2(1 n 2  to keep the norm constant. 2l

 























=↓=

)1()0(

..

..

)1()0(

)1()0(

)2(

cc

cc

cc

CL . 

 

The coefficients of the filter are  

 2)1(2)0(
2

1
)1()0( hhcc ==== .  

This new vector{  can be in turn filtered and down-sampled (we call this 

vector{ ). It is possible to continue this process until the number of points is one. We 

have represented this process for two-step at the Fig. 3c (for similar figures see [2]). 

)}(1 mf

)}(2 lf

 

  
 

Figure. 3c    Down-sampling (low-pass filter). 
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The vectors{ ,{ , {  contain the coefficients of respective 

approximations in the Hilbert subspaces V . These subspaces satisfy the following 

relation  

)}(0 nf )}(1 mf )},...(2 lf

,...,, 210 VV

 

01234... VVVVV ⊂⊂⊂⊂⊂ .   (3.1.1) 

 

3.2) The high-pass filter 

 

We study the simplest high-pass digital filter: the moving difference. This filter is the 

mirror of the low-pass 

 

)1(
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1
)( 001 +−= nfnfnd .  

 

It can represent by a Toeplitz matrix. 
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The coefficients of the filter are 
2

1
)0( =g and 

2

1
)1( −=g .  

For  we have  
xinenf π2

0 )( −=

xinxinxixnixin exGeeeend πππππ 2222)1(2

1 )()1(
2

1

2

1

2

1
)( −−−+−− =−=−=  

 

and so the frequency response  is  )(xG

    
xiexixG ππ )sin()( = .   

 

3.2.1) The down-sampling 

 

We keep only half output vector{ ; the odd-numbered components are removed and 

we multiply the surviving vector{  by 

)}(1 nd

)}2(1 nd 2  

 

),...}4(),2(),0(),2({...,)}(){2()( 111111 ddddndmd −=↓=  . 
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
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




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
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The coefficients of the filter are 2)0(
2

1
)0( gd ==  and 2)1(

2

1
)1( gd =−= .  

The vector {  contains the coefficients corresponding to the Hilbert subspace W . It 

encodes the difference between the input vector {

)}(1 md 1

00 )}( Vnf ∈ and the vector { 11 )}(mf V∈  

(see Fig. 3d).  

 

 
  

Figure 3d.     Down-sampling (high-pass filter). 

 

 { ,{  and {22 )}( Vlf ∈ 22 )}( Wld ∈ 11 )}( Wmd ∈  are a example of multiresolution  
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 where the same signal is represented by coefficients at different scales. Typically, 

  multiresolution is achieved by using a filter bank (set of filters). 

 

Remark: 

 

We have the relation 

 

01234... VVVVV ⊂⊂⊂⊂⊂ .   (3.1) 

 

“There exist many ladders of spaces satisfying (3.1) that have nothing to do with 

“multiresolution”; the multiresolution aspect is a consequence of the additional 

requirement” [3] 

0)}2({)}({ VnfVnf j

j ∈⇔∈ . 

 

A multiresolution can be useful in itself. However, because we required orthogonality and 

perpendicularity of our basis function, we also have an inverse transform making it 

possible achieve perfect reconstitution of the signal. 

  

3.2) The synthesis bank 
 

The matrix representation for this operation is 
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We have the matrix annotation [ ]].[[] 00 fIf =  where [  is the unit matrix. ]I

Using the vector {  and the vector {11 )}( Wmd ∈ 11 )}( Vmf ∈ , one can reconstitute the vector 

. Between the Hilbert subspaces V ,W  and the Hilbert space V , we have the 

relation  

00 )}({ Vnf ∈ 1 1 0

 

110 WVV ⊕= . 

 

For all j , we have  

 

jjj WVV ⊕=−1 . 
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We have represented the process of the exact reconstitution for two steps (see Fig. 3.2a). 

 

 
 

   Figure 3.2a.    Exact reconstitution. 

 

The analysis filter bank can be represented by the rectangular matrices  CL )2(↓=
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and  DB )2(↓=
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We can write the low-pass matrix and the high-pass matrixL B  in a same square matrix 
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The perfect reconstitution is possible because there is a corresponding inverse square 

matrix[ called synthesis bank  1]−A

[ ]TT BLA =−1][ .  

 

We have    

[ ] IBBLLBL
B

L
AA TTTT =+=








=− .]].[[ 1   

 

with . 0== TT LBBL

 

The vectors {  and {  have half the component of { . To multiply by two 

the number of components, we insert a zero between each component of {  and 

. We call this process the up-sampling.  It is represent by the symbol ↑ . To filter 

this operation we use the same filters that for the analysis. “The synthesis bank also has two 

steps, the up sampling and the filtering”. [13]  

)}(1 md )}(1 mf )}(0 nf

)}(1 nd

)}({ 1 nf

 

Explicitly, the synthesis bank is given by the low-pass filter 
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and the high-pass filter 
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
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
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d
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4) The denoising and the algorithms in ANSI C  

 
The solution that we adopted is called the wavelet de-noising by thresholding. Recall that 

the process is as follows: 

1) we give the algorithm for DWT; 

2) we give the algorithm to identify and cut the noise in the wavelet domain; 

3) we give the algorithm for the IDWT. 

 

4.1) The DWT 

   

To simplify the implementation, instead of using the square matrix [  from section 3.2, 

we use the equivalent matrix  

]A
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~

dd

cc

dd

cc

dd

cc

A . 

 

In language ANSI C we have 

 

/* coefficients for the scale */ 

const float Da1_scle[2]  = { 0.7071067811865,  0.7071067811865 }; 

/* coefficients for the wavelet */ 

const float Da1_wavl[2] = { 0.7071067811865, -0.7071067811865 }; 
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/*   Haar  */ 

/* ===== */ 

void fast_daubech1 ( int half, int PO_MEM_WAVEL, int PO_MEM_SCALE,  

int LS_MEMO_DWT) { 

int kapa; 

for (kapa = 0; kapa < half; kapa++){ 

signa [LS_MEMO_DWT + kapa] = 

  signa [ (2 * kapa) + PO_MEM_SCALE      ] * Da1_scle[0] + 

   signa [ (2 * kapa) + PO_MEM_SCALE + 1] * Da1_scle[1] ; 

signa [PO_MEM_WAVEL + kapa] = 

  signa [ (2 * kapa) + PO_MEM_SCALE      ] * Da1_wavl [0] + 

       signa [ (2 * kapa) + PO_MEM_SCALE + 1] * Da1_wavl [1] ; 

}  /* end for (kapa = 0; kapa < half; kapa++) */ 

}/* end fast_daubech1 */ 

 

Remark: 

 

The variable “half “is number of coefficients for the vectors {  and 

. 

jj Wkd ∈)}(

jj Vkf ∈)}({

The variable “PO_MEM_SCALE »is the position in the memory, for the vector 

. 11 )}({ −− ∈ jj Vkf

The variable « LS_MEMO_DWT »is, in the memory, the position for the filtered (with the 

low-pass filter) and down-sampled vector jj Vkf ∈)}({ . 

The variable « PO_MEM_WAVEL »is, in the memory, the position for the filtered (with the 

high-pass filter) and down-sampled vector jj Wkd ∈)}({ . 

 

 

4.2) The IDWT 

   
Again, to simplify the implementation, we use the equivalent matrix  
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In language ANSI C we have 

 

/*  Invert Haar  */  

/* ========= */ 

void inv_daubech1 ( int half, int NXT_SCALE_IDWT, int PO_MEM_SCALE,  

int PO_MEM_WAVEL) { 

int kapa; 

for (kapa = 0; kapa < half; kapa++){ 

signa [NXT_SCALE_IDWT +     ( 2 * kapa )] += 

signa [PO_MEM_SCALE + kapa] * Da1_scle[0] + signa 

[PO_MEM_WAVEL + kapa] * Da1_wavl [0]; 

signa [NXT_SCALE_IDWT + 1 + ( 2 * kapa )] += 

signa [PO_MEM_SCALE + kapa] * Da1_scle[1] + signa 

[PO_MEM_WAVEL + kapa] * Da1_wavl [1]; 

} /* end for (kapa = 0; kapa < half; kapa++)*/ 

  } /* end inv_daubech1 */ 

 

Remark: 

 

The variable “half ” is the number of coefficients for the vectors {  and 

. 

jj Wkd ∈)}(

jj Vkf ∈)}({

The variable “NXT_SCALE_IDWT» is the position in the memory, the for the vector 

. 11 )}({ −− ∈ jj Vkf

The variable « PO_MEM_SCALE» is, in the memory, the position for the filtered (with the 

low-pass filter) and up sampled vector jj Vkf ∈)}({ . 

The variable « PO_MEM_WAVEL » is, in the memory, the position for the filtered (with 

the high-pass filter) and up sampled vector jj Wnd ∈)}({ . 

 

4.3) The denoising 
  

We have  

rJ

J

r
J WVV −

−

=
⊕=

1

0
0 . 

 

While the energy of the noise will often spread itself over all wavelet coefficients, 

especially if the noise is white, the energy of the noise-free signal will usually only use few 

coefficients. To de-noise the signal, it is often sufficient to remove the coefficients with 

small amplitude and calculate the IDWT. We have chosen the hard thresholding approach 

[4] (see Fig. 4.3a). The hard tresholding is implemented with  

 

Tmgif

Tmgifmd
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The de-noised vector is{  and { the input vector. )}(mg k )}(md k

   

 
 

   Figure 4.3a.    Hard denoise. 

 

The threshold estimated by the formula  NC elog.2σ=T  [4] ,  

with σ  =  the noise standart deviation estimated by the formula 
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1 1
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i xx
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   =  total number of samples = 20 N

  C  = constant. We have choice C , by a empirical method C , 2=
 

is computed, always at the same time, using a short window in the original signal  where 

we have the noise only (see Fig. 4.3b). 

 

 
 

Figure 4.3b.    Noise estimation. 
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In language ANSI C we have 

/* Hard denoise*/ 

void Hard_denoise ( int half, int PO_DEN_WAVEL, float TRESHOLD_VAL){ 

int kapa; 

  for ( kapa = 0; kapa < half; kapa++) { 

 if _ABS (signa [ PO_DEN_WAVEL + kapa] ) <= TRESHOLD_VAL) { 

  signa [ PO_DEN_WAVEL + kapa] = 0.0; 

} /* end  if */ 

 } /* end for ( kapa = 0; kapa < half; kapa++) */  

 

Respectively, we have represented at the figures Fig. 4.3c, Fig. 4.3d, Fig. 4.3e the 

vector {  when the input signal is noise-free, when we add a noise and when 

we subtract the noise.  
11 )}( Wmd ∈

 

      
 

Figure 4.3c.   { Without noise.  Figure 4.3c. { With noise. )}(1 md )}(1 md 

 

     
      

Figure 4.3e.  { With de-noising. )}(1 md
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Remark: 

 

With a classical filtering  (Bessel, Butterworth, Tchebitchef low-pass, high pass or band-

pass etc.), we reduce all the frequencies before or after the cut-off frequencie(s). It is not 

the case for wavelet shrinkage. 

 

In Fig. 4.3f, we show the input vector {  when we add a noise. )}(0 nf

 

   
    

Figure 4.3f.    Input vector with noise. 

 

In  Fig. 4.3g, we have represent the input vector {  when we apply the hard denoising 

for the vector{ . 

)}(0 nf

)}(1 md

 

 

 
 Figure 4.3g.    With de-noising for { . )}(1 md
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In Fig. 4.3h,  we show the input vector {  when we apply the hard  )}(0 nf

de-noising for the vectors{  and { . )}(1 md )}(2 ld

 

 
 

Figure 4.3h.    With de-noising for {  and { . )}(1 md )}(2 ld

 

 

In Fig. 4.3i, we show the input vector {  when we apply the hard  )}(0 nf

de-noising for the vectors{ ,{ and { . )}(1 md )}(2 ld )}(3 kd

 

 
 

 Figure 4.3i.    With de-noising for { , {  and { . )}(1 md )}(2 ld )}(3 kd 
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5) Application  
 

We have installed our software as a single file called “filt.c” in the DSC DLN3TRA1 

(LINAC III) and in the DSC DPSBBDI (PSB injection). This file filter 2048 bytes  

created by a Struck ADC 755 and send the filtered data (1800 bytes) and row data (1800 

bytes) to a sampler. 

 

The characteristics of the DSC are  

 

VME Power PC 603E  

CPU CES RIO 8062  (32 bits). 

Frequency clock: 200 MHz.  

32 Mbytes RAM with no cache L2.  

 

We don’t use optimisation (DEBUG = - g). All the process use 5 ms but with full 

optimisation (DEBUG = - 02). It possible to reduce the execution time by two.  

   

Remark: 

 

A DSC is the generic name (Device Stop Controller) used for VME-based front-end 

computers. These computers embed   a local CPU (single unit VME) running the real-time 

OS Lynxos. This is used to drive various  kind of equipment (e.g. field bus like GPIB, 

MIL1553, CAN, or data acquisition cards.  

 

In Fig. 5a, we show the raw data and the filter data for the transformer ITH.MTR41. 

 

 
      

Figure 5a.    Transformer ITH.MTR41  
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In Fig. 5b, we show the details for the calibration of  ITH.MTR41. 

 

 
 

Figure 5b.    Calibration of  ITH.MTR41 

 

In Fig. 5c, we show the raw data and the filter data for the transformer ITH.MTR15 

 

 
     

Figure 5c.    Transformer ITH.MTR15 
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We have measured the characteristics of the noise for the data filtered and no filtered for a 

typical transformer used to measure the beam injection in the PSB: the transformer 

BI.TRA10 (see respectively TAB 1 and TAB2):  

 

Column1 Column1

Mean 0.62 E+09 ions Mean 0.72 E+09 ions

Standard Error 14.80 Standard Error 17.21

Median 0.67 E+09 ions Median 0.56 E+09 ions

Standard Deviation 1.40 E+09 ions Standard Deviation 1.72 E+09 ions

Kurtosis 0.87 Kurtosis 0.09

Skewness 0.17 Skewness 0.03

Minimum  -3.1 E+09 ions Minimum  -3.7 E+09 ions

Maximum 4.5 E+09 ions Maximum 4.9 E+09 ions

Count 100 Count 100

With de-noising.  Without de-noising.   

         

   TAB 1.        TAB2. 
 

With the wavelet de-noising we have reduce the standard deviation by≈ . While we 

compensated for some errors sources, other remains such as imperfect base line correction 

and also imperfect calibration. Thus, it might be that the only solution remaining to 

improve further the signal would be to upgrade the sensor. 

%14

 

6) Conclusion: 

  

The wavelet shrinkage is not really a solution for all noise–related problems. We have 

show that it can make a significant difference and we hope to promote further its use in the 

CERN engineering community. The best de-noising technique will always depend on the 

characteristics of the signal. In wavelet de-noising, one needs to choose the best wavelet 

basis and this choice warrants further research.  
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