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Splitting a trap containing a Bose-Einstein condensate: Atom number fluctuations

Juha Javanainen
Department of Physics, University of Connecticut, Storrs, Connecticut 06269-3046

Misha Yu. Ivanov
Steacie Institute for Molecular Sciences, National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario, Canada K1A 0R6

~Received 22 March 1999!

We theoretically study atom number fluctuations between the halves of a double-well trap containing a

Bose-Einstein condensate. The basic tool is the two-mode approximation, which assumes that only two one-

particle states are involved. An analytical harmonic-oscillator-like model is developed and verified numerically

for both stationary fluctuations in the ground state of the system, and for the fluctuations resulting from

splitting of a single trap by dynamically erecting a barrier in the middle. With increasing strength of the

atom-atom interactions and/or increasing height of the potential barrier, the fluctuations tend to evolve from

Poissonian to sub-Poissonian. Limits of validity of the two-mode model and its relations to the phase-atom-

number approach of Leggett and Sols @A. J. Leggett and F. Sols, Found. Phys. 21, 353 ~1991!# are discussed

in detail. @S1050-2947~99!07809-9#

PACS number~s!: 03.75.Fi, 05.30.2d, 32.80.Pj

I. INTRODUCTION

The recent experimental observations of Bose-Einstein

condensates ~BEC’s! have, among other things, reinvigo-

rated theoretical studies of condensates in double-well traps.

The most often cited goal is to understand the analog of the

Josephson effect @1# in this type of system. Broadly speak-

ing, there are two main approaches capable of dealing with

quantum fluctuations in this variant of the Josephson effect

@2#. Authors with a quantum optics background tend to favor

models in which two boson modes are involved @3–6#. Re-

cently a numerical simulation has been presented that even

takes into account both decoherence due to noncondensate

atoms, and the detection of the atoms @7#. The second cat-

egory of theories is based on using the differences of con-

densate phases and atom numbers between the two sides of

the trap as conjugate quantum variables @8–10#.
The two quantum approaches have not coexisted entirely

without friction. There has been a difference in opinion

about the state of the system after a condensate is split in two

by raising a potential barrier in the middle of a trap contain-

ing a condensate @11,12#. This exchange serves as the point

of departure for the present paper. We address two specific

questions. First, what would the two-mode approach say

about the state of the split trap? Second, more generally,

what is the relationship between the two-mode and the

phase-atom-number pictures?

We present and solve, for the most part analytically, a

two-mode description for the splitting of the trap. Unfortu-

nately, this analysis proves quantitatively accurate only in
the limit of a weakly interacting gas. On the other hand, it
also turns out that in the limit of a weakly interacting gas, the
phase-atom-number approach does not correctly describe the
unsplit trap. The two methods agree in the tunneling limit
when the barrier is high enough. However, we contend that a
reliable quantitative treatment of splitting of a trap that con-

tains a strongly interacting condensate is yet to be devised

@12#.
In Sec. II we review the quantum-optics-style two-mode

approach. The ground state and the fluctuations in atom

number between the sides of the double trap is the subject of

Sec. III. We develop simple harmonic-oscillator and pertur-

bation theory expansions that cover the ground-state proper-

ties of the two-mode model for all relevant problem param-

eters, and verify the results against numerical computations.
In Sec. IV we analyze adiabaticity when the trap is split
using the harmonic-oscillator approximation, and again vali-
date the results with numerical computations. The limitations
of the two-mode approach in the case of a strongly interact-
ing gas are discussed in Sec. V. A detailed comparison be-
tween the prevalent phase-atom-number approach and the
two-mode approximation is the subject of Sec. VI. Whereas
the two-mode picture has problems in the limit of a strongly
interacting gas, the phase-atom-number picture is question-
able for a weakly interacting gas and for modest atom num-
bers. Remarks in Sec. VII conclude the paper.

II. TWO-MODE MODEL

We begin by reviewing the two-mode approximation. We
are following a well-traveled path; in addition to numerous
publications that deal directly with the double trap @3–7#,
there are numerous other BEC publications that resort to one
form or another of the two-mode model @13–17#.

In a symmetric double-well potential, the ground state of
a single particle is represented by an even wave function cg

that belongs equally to both wells of the potential. Provided
the barrier between the halves of the potential is tall enough
so that the tunneling rate between the potential wells is
small, nearby lies an excited odd state ce that likewise be-
longs to both halves of the double well. The superpositions

c l ,r5(1/A2)(cg6ce) represent states in which the particle
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lies predominantly on either the ‘‘left’’ or ‘‘right’’ side of the
barrier. These are not stationary states: a single particle pre-
pared in the left-localized state c l slowly oscillates between
the halves of the potential, tunneling to the right-localized
state cr and back.

Let us next consider interacting bosons. In the mean-field
approximation one writes down the Gross-Pitaevskii equa-
tion ~GPE! @18–20#. The interpretation of the GPE is that its
stationary solution gives a one-particle state such that putting
all N bosons in this state gives a ~variational! approximation
to a stationary state of the interacting many-particle Hamil-
tonian. One may check the validity of this description by
using Bogoliubov theory. If the noncondensate fraction
proves sufficiently small @21#, the GPE presumably is useful.

It is intuitively obvious, and we have also checked this
numerically, that for a symmetric double-well potential with
a high middle barrier, the GPE similarly has nearly degener-
ate even and odd solutions cg and ce . However, since the
GPE is nonlinear, it does not readily tell us about the dynam-
ics of a boson prepared in the left- or right-localized states

c l ,r5(1/A2)(cg6ce). Our central questions are the follow-
ing: how should one think about states in which the atoms
live in the left and right halves of the double well in the
presence of atom-atom interactions, and how do the atom-
atom interactions modify the simple single-particle tunneling
between the wells?

Our basic assumption is that we take only two one-
particle states cg and ce to be available to the N bosons. We
adopt the usual two-particle contact interaction U(r1 ,r2)
5(4p\2a/m) d(r12r2), where a is the s-wave scattering
length and m is the atomic mass. Given the restricted state
space of precisely two one-particle states, the many-particle
Hamiltonian is

H5
1
2 ~ee1eg!~ae

†ae1ag
†ag!1

1
2 ~ee2eg!~ae

†ae2ag
†ag!

1keeae
†ae

†aeae1kggag
†ag

†agag

1keg~ae
†ae

†agag1ag
†ag

†aeae14ae
†ag

†aeag!. ~1!

Here, and from here on, we set \[1, and correspondingly
use the terms energy and ~angular! frequency interchange-
ably. In Eq. ~1! ag and ae are the boson operators for the
ground and excited wave functions. The constants e and k
are the one- and two-particle matrix elements

ee5E d3r ce~r!F2

1

2m
¹2

1V~r!Gce~r!,

kee5

2pa

m
E d3r uce~r!u2uce~r!u2,

keg5

2pa

m
E d3r uce~r!u2ucg~r!u2, . . . . ~2!

V(r) is the symmetric double-well binding potential. With-
out restricting the generality, we assume that the wave func-
tions ce ,g are real. By virtue of the inversion symmetry of
the wave functions, there are no off-diagonal one-particle
matrix elements in this basis. The same symmetry also re-
moves a number of two-particle matrix elements.

Physically, there are two key parameters in this many-
body problem. First, there is the energy of one-particle exci-
tations in the absence of atom-atom interactions,

d5ee2eg . ~3!

It also characterizes the single-particle tunneling rate be-
tween the left and right wells. The second parameter is the
many-body interaction energy per atom. The expectation
value of the Hamiltonian when all N atoms are in the state g

is given by E(N)5egN1N(N21)kgg . In the limit N@1
the chemical potential is therefore

dE

dN
5eg12Nkgg[eg1m . ~4!

The second term, which is the excess over the chemical po-
tential of the noninteracting system, determines the many-
body interaction energy per atom. Since the zero-point en-
ergy eg is somewhat trivial here, in what follows we drop it
and refer to m52Nkgg as the chemical potential. It is intu-
itively clear, and is confirmed by the analysis below, that the
departure of the true many-body dynamics from simple
single-particle tunneling picture, valid in the noninteracting
limit, is determined by the relative magnitudes of d and m .

To simplify the discussion a bit further, we note that when
the trap is nearly split in two halves, the absolute squares of
the even and odd wave functions,

ucg ,eu
2
5

1
2 ~ uc lu

2
1ucru

2
62c lcr!, ~5!

should be nearly equal since the overlap c lcr is small. For
the time being, we therefore set

keg5kee5kgg[k . ~6!

This approximation is lifted in Sec. V.
To discuss physics in terms of left- and right-localized

states, we introduce the corresponding boson operators

a l5

1

A2
~ag1ae!, ar5

1

A2
~ag2ae!, ~7!

and rewrite the Hamiltonian ~1! in terms of a l ,r . Notice that
we may freely add or drop powers of the conserved particle

number N5ae
†ae1ag

†ag in the Hamiltonian. For a fixed total

atom number, this kind of a variation will never have any
dynamical consequences, although the zero of the energy
scale may vary in an N-dependent manner. The development
we pursue thus runs as follows:
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H.
d

2
~ae

†ae2ag
†ag!1k~ae

†ae
†aeae1ag

†ag
†agag1ae

†ae
†agag1ag

†ag
†aeae14ae

†ag
†aeag!

5

d

2
~ae

†ae2ag
†ag!1k$ae

†ae
†agag1ag

†ag
†aeae2ae

†ae
†aeae2ag

†ag
†agag12@~ae

†ae1ag
†ag!2

2~ae
†ae1ag

†ag!#%

.
d

2
~ae

†ae2ag
†ag!1k$ae

†ae
†agag1ag

†ag
†aeae2ae

†ae
†aeae2ag

†ag
†agag%. ~8!

Now, substituting the expressions for a l ,r , and again ignor-
ing a function of the conserved particle number, we obtain

H52

d

2
~a l

†ar1ar
†a l!24ka l

†a l ar
†ar . ~9!

The Hamiltonian, whether in the form of Eq. ~8! or ~9!,
involves two modes, and in addition the particle number is
conserved. This means that the state space for the system
may be spanned with the N11 vectors

un&[un& luN2n&r , n50, . . . ,N , ~10!

where the subscripts denote the number states for the left and
right boson operators. Writing the state vector as a linear
combination of un&, the action of Hamiltonian ~9! is

H(
n

cnun&5(
n

F2

d

2
„An~N2n11 ! cn21

1A~n11 !~N2n ! cn11…24kn~N2n ! cnG un&.

~11!

The meaning of the operators a l ,r as left- and right-trap
operators is unambiguous only in the limit of a completely
split trap, but we nevertheless use them as our primary de-
scription of the double-trap states. Of course, the state space
of the system is not affected by substitutions ~7!.

We next turn to the analysis of the Hamiltonian as in Eq.
~11!. The key aspect is that H is tridiagonal in a suitable
basis. For notational simplicity, from now on we always as-
sume that the atom number N is even. We also introduce k,
the difference between the number of atoms in the wells, and
the average number N/2: n[N/21k .

III. GROUND STATE OF DOUBLE TRAP

Our first objective is to analyze the ground state and its
number fluctuations for Hamiltonian ~8! or ~9!; specifically,
fluctuations of atom number between the left and right sides
of the trap. Modification of the atom-number fluctuations
with increasing atom-atom interaction will answer the key
question of how does the atom-atom interaction affect tun-
neling between the wells.

Two limiting cases are handled easily. First, suppose that
atom-atom interactions totally dominate, so that the Hamil-
tonian is

H524ka l
†a l ar

†ar . ~12!

The states uk&[uN/21k& luN/22k&r from Eq. ~10! are the
eigenstates in this limit, and their corresponding eigenener-
gies are vk5k(4k2

2N2). The ground state is k50, with
atoms split evenly between the wells. Obviously, there are no
fluctuations in atom number between the sides of the trap for
any of these states.

Second, suppose there are no atom-atom interactions at
all:

H5

d

2
~ae

†ae2ag
†ag!. ~13!

The ground state is the one with all N atoms in the state g.
Raising another atom to the upper state always costs the
energy d .

As in the previous case, the ground state has an equal
number of atoms in each well. The difference is in the co-
herence between the wells, which shows up in atom number
fluctuations between the sides of the trap ~absent in the first
case d50). A simple calculation shows that, for the nonin-
teracting case, the ground state in the l2r basis is

1

AN!
~ag

†!Nuvac&5

1

AN!
S a l

†
1ar

†

A2
D N

uvac&

5

1

2N/2 (
n50

N

AS N

n
D un&. ~14!

Hence, in the limit k50, the atom number statistics is bino-
mial in the l2r basis, and the difference between particle
numbers in the left and right sides has the standard deviation
AN/2.

To see how tunneling is changed by the atom-atom inter-
action, we develop a more refined picture, valid when both
atom-atom interactions and tunneling are present simulta-
neously. To this end, we have to diagonalize the matrix in
Eq. ~11!. We start with a simple approximate analytical pro-
cedure, and then check it numerically.

Let us assume that the expansion coefficients cn[C(k)
(n[N/21k) change little from k to k61, and expand
cn61[C(k61) in Eq. ~11! as Taylor series @13#:

cn61[C~k61 !5C~k !6C8~k !1
1
2 C9~k !1••• . ~15!

We also assume the limit N@1, and expand all the coeffi-
cients in Eq. ~11! in powers of 1/N . In the ensuing expression
we pick and choose terms as follows. First, in the coefficient
of C9, which is proportional to d , we keep only the leading
order in 1/N , which is }dN1k0. Second, the coefficient of C8
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similarly is }dk1N21. Third, on the account that they simply
make a trivial shift in energy, in the coefficient of C we
ignore all contributions that are independent of k. Some of
the remaining terms are proportional to d , others to k . We
keep the leading order in 1/N for both these type of terms,
}dk2N21 and }kk2. These choices lead to the time-
independent Schrödinger equation

F2Nd

4

d2

dk2 1

dk

N

d

dk
1S d

N
14k D k2GC~k !5e C~k !.

~16!

Suppose that the typical k scale for the solution is given by
Dn . Then we estimate k;Dn , d/dk;1/Dn . Hence the first-
derivative term has an estimate O(1/N), and is always much
smaller than the other two terms in Eq. ~16! ~it transpires

shortly that Dn&AN is a reasonable estimate!. We therefore
ignore the first derivative altogether, and write our final re-
sult as

F2Nd

4

d2

dk2 1S d

N
14k D k2GC~k !5e C~k !. ~17!

Equation ~17! is nothing but the Schrödinger equation for
the simple harmonic oscillator. In the ground state the root-
mean-square fluctuations of the variable k, and hence of the
variable n, are simply

Dn5AN

2
S d

d14Nk D 1/4

. ~18!

The frequency of the oscillator is

v5Ad~d14Nk !. ~19!

The state of a double condensate was studied in Ref. @17#
using an angular-momentum representation along with the
projection of the Bloch sphere into a plane. Equation ~18!
agrees with a result given in Ref. @17#. We believe that, even
though the approaches seem quite different, the present
method and the method of Ref. @17# in the end are function-
ally equivalent.

Naturally, Eq. ~18! agrees with the known limiting cases
both for k˜0 and d˜0, although in the latter case partly
for the wrong reasons; with d˜0 we have Dn˜0, and ex-
pansion ~15! eventually fails. We will rectify this shortcom-
ing momentarily. Meanwhile, we emphasize the main mes-
sage of our results: In the limit of large N, the key
comparison of the parameters is between d and Nk , essen-
tially the tunneling rate and chemical potential. As the
chemical potential m increases and exceeds the tunneling
coupling between the wells, tunneling is suppressed, and the
atom number fluctuations decrease.

Let us now return to the case with Dn&1, whereupon
expansion ~15! becomes dubious. We study this case using
standard time-independent perturbation theory. The zeroth-
order states are the eigenstates of Eq. ~12!, and the rest of Eq.
~9! acts as the perturbation. In this way we find, to the lead-
ing order in 1/N , the fluctuations

Dn5

1

8A2

dN

k
. ~20!

The transition between the forms of fluctuations ~18! and
~20! occurs approximately where the same Dn is obtained
from both expressions. In the limit of large N, this happens
when

d5

28/3k

N
. ~21!

In this case both Eqs. ~18! and ~20! give Dn50.56, which is
comfortably close to unity.

We have checked our arguments numerically. Standard
algorithms from Numerical Recipes @22# were used to find
the eigenvalues of the tridiagonal Hamiltonian. However, to
compute particle number fluctuations, one also needs the
lowest-energy eigenvector. With N approaching a couple of
hundred, the attendant algorithms for finding eigenvectors
start sputtering on roundoff error. We find the ground-state
eigenvector by inverse iteration @22# instead.

The computed fluctuations Dn are shown in Fig. 1 as a
function of the tunneling rate d . In this figure the fixed pa-
rameters are N55000 and k50.0002, so that Nk51. There
clearly are three different physical regimes in this graph.
First, for the largest values of d , we are in the regime with

Dn5AN/2. When d is decreased, at d.kN.m.1, the de-
pendence of fluctuations on atom-atom interactions kicks in
as in Eq. ~18!. Finally, at about d.k/N.1027, expansion
~15! and the harmonic-oscillator model fail, and the system
enters the regime of Eq. ~20!. We also show the analytical
results from Eqs. ~18! and ~20!. They agree with the numeri-
cal data where they should.

Summarizing, within the two-state model, we have a com-
plete analytical picture of atom number fluctuations in a

FIG. 1. Atom number fluctuations Dn between the left and right

sides of a split trap as a function of the tunneling rate d in the

ground state of the double trap. The fixed parameters are particle

number N55000 and the parameter characterizing atom-atom in-

teractions, k50.0002. Exact numerical results are plotted as a solid

line. Also shown as dotted and dot-dashed lines are the small- and

large-d limits from the respective equations ~20! and ~18!. Here,

and elsewhere in this paper, the unit of frequency is arbitrary,

though naturally the same for all frequencies.
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double-well system for the limit N@1. The analytical argu-
ments have been verified by comparisons with direct numeri-
cal computations. Large atom-atom interactions m.kN.d
suppress atom number fluctuations between the sides of the
well, partially ‘‘freezing’’ the tunneling.

IV. ADIABATICITY IN SPLITTING OF TRAP

Suppose next that the double-well system starts out in its
ground state, and subsequently the potential barrier in the
middle is ramped up, decreasing the tunneling rate d . The
particle number fluctuations would also decrease @see Eq.
~18!#. The question is, how close to zero can one take the
fluctuations @11#?

Let us assume that there is a time scale t to the decrease
of d , and that the harmonic-oscillator expansion ~15! is valid.
The system’s ability to adjust its ground state, that is, the
coefficients C(k), to the changing potential is determined by
the frequency v @Eq. ~19!#. As long as t@1/v , the change of
the potential is adiabatic, and the oscillator of Eq. ~17! re-
mains in its ground state. Adiabaticity breaks down when d
has decreased to the point where @11#

v5Ad~d14Nk !5

1

at
. ~22!

Here a is a numerical parameter of the order of unity, which
our crude argument can not determine. Below this point, the
state can no longer follow the decreasing tunneling rate d ,
and fluctuations that prevail at the time of the decoupling of
the wells will be seen thenceforth.

We solve Eq. ~22!, and insert the result into Eq. ~18!. This
gives the fluctuations once the wells are decoupled,

Dn`5AN

2
S A11~2Nakt !2

22Nakt

A11~2Nakt !2
12Nakt

D 1/4

. ~23!

Clearly, the time scale to which t should be compared is
(2Nk)21

5m21. In the limit of slow ramp, t@m21, Eq. ~23!
becomes

Dn`.
1

4Aakt
. ~24!

In the opposite limit of fast ramp, t!m21, we obtain

Dn`.AN

2
~12Nakt !. ~25!

The analytical expressions ~22!–~25! come with a sub-
stantial dose of heuristics. A comparison against numerical
results is thus in order. We start by choosing d0 large enough
to be firmly in the adiabatic limit, and find the stationary
solution for this d0. Next we integrate the time-dependent
Schrödinger equation starting from this initial ground state,
letting d decrease exponentially as d(t)5d0 e2t/t. As we go
along, we compute the fluctuations Dn as a function of time.

As before, the Hamiltonian is tridiagonal in the basis un&,
but now we are faced with a genuinely time-dependent inte-
gration. It turns out that standard general-purpose differential
equations solvers quickly fail on roundoff error by the time a

few hundred atoms are employed. Instead, we resort to an
adaptation of the Crank-Nicholson method @22#. Basically, a
time step from t to t1h is carried out as follows:

uc~ t1h !&5

12
1
2 ihH~ t1h/2!

11
1
2 ihH~ t1h/2!

uc~ t !&. ~26!

The operator inversion entails solving a set of linear equa-
tions, but this set is tridiagonal. Algorithm ~26! is unitary,
i.e., it preserves the norm of the state vector, and therefore
does not permit runaway roundoff errors. Moreover, we
amend the algorithm by writing

uc~ t1h !&

5

12
1
2 ih@H~ t1h/2!2^c~ t !uH~ t1h/2!uc~ t !&#

11
1
2 ih@H~ t1h/2!2^c~ t !uH~ t1h/2!uc~ t !&#

uc~ t !&.

~27!

Here we subtract from the Hamiltonian its expectation value,
and thus arrest any rapid time evolution that would ensue
from an inopportune choice of the zero of energy. Of course,
mathematically, adding any ~even a time-dependent! scalar
to the Hamiltonian only amounts to modifying the overall
phase of the wave function, and has no effect on the physics.
To integrate the wave function over any fixed finite time
interval, we simply keep on halving the step size h until
convergence.

Results from our computations are shown in Fig. 2. Here
we again choose N55000, k50.0002, and thus Nk51. The
figure shows the size of the fluctuations Dn as a function of
the value of the parameter d(t) reached while the time runs
on. The solid line is the stationary value of Dn as in Fig. 1.
Formally, it corresponds to the choice t5` . The various
dashed lines depict Dn(d) for the ramping time scales t
50.01, 0.1, 1, 10, and 100. One clearly sees how the width
first decreases adiabatically as d is decreased, then decouples

FIG. 2. Atom number fluctuations Dn as a function of time-

dependent tunneling rate d(t) when the tunneling rate is decreased

exponentially as d(t)}e2t/t. The fixed parameters are N55000 and

k50.0002. The solid line gives the steady state fluctuations corre-

sponding to t5` , the dashed lines from top to bottom are for t
50.01, 0.1, 1, 10, and 100.
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and freezes to a constant value. The faster d is decreased, the
sooner nonadiabaticity sets in, i.e., the smaller the ramping
time scale t is.

We have compared the final widths with expression ~23!.
It turns out that, after setting a52p , the analytical predic-
tion works at the level of 1% for all of the data in Fig. 2.
This agreement validates our analytical argument.

In summary, at least while the fluctuations satisfy Dn

*1, and therefore the harmonic-oscillator expansion ~15! re-
mains useful, we have an accurate analytical description for
the adiabaticity, or lack thereof, as a barrier is raised to split
the double well in two. The basic conclusion is that, starting
from the case d@Nk and thus from fluctuations of the order
AN/2, the key time scale is m21

5(2Nk)21. If the time scale
of adjusting the well t is shorter than this, the fluctuations

cannot be reduced substantially from their initial value AN/2.
For slow variation of the tunneling rate d , the fluctuations are
brought down to a magnitude that scales as t21/2.

V. LIMITATIONS OF THE TWO-MODE MODEL

We have adopted two basic approximations in our reason-
ing; that only two one-particle states are relevant, and that
the assumption about the matrix elements kee5kgg5keg

5k @see Eq. ~6!# holds. We shall discuss the validity of our
model, paying attention to both of these assumptions.

In preparation, we note that there will be two major lim-
iting cases, weakly interacting gas and strongly interacting
gas. The watershed is the condition that Nkgg;v0, where
v0 is the natural frequency of the unsplit trap. Let us corre-
spondingly denote the length scale of the unsplit trap by l,
whereupon the formulas for a harmonic oscillator give the
estimate

v0;
1

ml2 . ~28!

On dimensional grounds, one estimates that kgg;a/ml3. Us-
ing estimate ~28!, the condition Nkgg;v0 then becomes
Na;l . In most current BEC experiments, Na@l , which im-
plies that the gas is strongly interacting.

Nonetheless, let us begin with the case of weakly inter-
acting gas, Nkgg!v0. In this limit and for the unsplit trap,
the very existence of the excited state is immaterial, and all
atoms are in the single-particle state cg . As we split the trap
by increasing the barrier in the middle, the atom-atom inter-
action becomes essential. When d.Nk.m , the ground state
is no longer obtained by simply depositing all atoms in the
state cg . For weak atom-atom interactions, this happens
when d!v0. Then the states cg and ce are close to one
another in energy but well separated from the other states,
and the two-mode approximation is justified. If our second
approximation kee5kgg5keg5k is already valid at this
point, all previous results are quantitatively correct.

If the matrix elements are not equal, a more refined treat-
ment is required. In the Hamiltonian ~1!, we keep the various
matrix elements k with the notations

k[keg , Kg[kgg2keg , Ke[kee2keg . ~29!

While the left and right states (cg6ce)/A2 may not be suf-
ficiently well localized in this case, there is nothing in the
mathematics that would prevent us from introducing their
annihilation operators exactly as in Eq. ~7!. We proceed to
do so. Of course, since we still have only two one-particle
states to deal with, the state space is once more spanned by
the vectors ~10!. We may look for the ground state in terms
of these basis states and the corresponding expansion coeffi-
cients cn .

As before, in the limit of large N we expand the coeffi-
cients cn as in Eq. ~15!. It turns out that, since KgÞ0, the
Hamiltonian is no longer tridiagonal, and cn are also coupled
to cn62. Therefore, we also use the expansion

cn62[c~n62 !5c~n !62c8~n !12c9~n !1••• . ~30!

Proceeding exactly as we did on going from Eq. ~15! to Eq.
~17!, we obtain the effective Schrödinger equation for C(k)
[cN/21k :

H 2

1

4
N~d22NKg!

d2

dk2 1F 1

N
~d22NKg! 14kGk2J C~k !

5e C~k !. ~31!

This result is equivalent to the previous result @Eq. ~17!# with
the simple replacement d˜d22NKg . Hence the root-
mean-square fluctuations of particle number and the charac-
teristic excitation frequency are simply

Dn5AN

2
S d22NKg

d22NKg14Nk D 1/4

, ~32!

v5A~d22NKg!~d22NKg14Nk !. ~33!

One might wonder why the coefficient characterizing the
ground-state atom-atom interactions Kg appears in these ex-
pressions, yet not the corresponding excited-state coefficient
Ke . After all, Hamiltonian ~1! treats the ground and excited
states exactly equally. The explanation is that the state vec-
tors with slowly varying coefficient cn have a preference for
the ground state already built in. If nearly all atoms were in
the excited state, the proper slowly varying expansion coef-

ficients should be defined as c̄n5(21)ncn . All of this fol-
lows from the choice of where to put the 1 and 2 signs in
Eqs. ~7!.

Consider now the limit of strong atom-atom interactions,
Nk*v0. The major weakness of our previous arguments in
this case is not the validity or lack thereof of the equality ~6!,
but instead the jitters of the two-mode assumption. Atom-
atom interactions are a major part of the entire structure of
the excitations, and of the stationary states lying far from the
ground state that involve a large fraction of the atoms, such
as vortices. As anyone who has attempted to solve the Bo-
goliubov theory numerically knows, one has to include pos-
sibly a large a number of wave functions to arrive at a rea-
sonably accurate description of the elementary excitations.
Alternatively, one has a multitude of excited solutions to the
GPE available. As long as the system is not in a regime in
which the GPE has two nearly degenerate solutions, there
simply is no outstanding single candidate for use as the
excited-state wave function ce .
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We thus propose a heuristic model that hides as much of
our ignorance about the excited state as possible. First, we
take the frequency ~33! to represent the actual, observed,
frequency of the lowest elementary excitation in the system.
Second, we rewrite the particle number fluctuations ~32! in
terms of this frequency and the chemical potential m
52Nkgg , using the substitution 2Nk5(k/kgg)2Nkgg

˜bm:

Dn5AN

2 S v

bm1A~bm !2
1v2D

1/2

. ~34!

Here b is a semiempirical parameter. In the limit of the split
trap, where there is a dominant excited-state wave function
satisfying uceu

2.ucgu2, b.1. In the unsplit trap, uceu
2

should be something akin to particle density in the excited
states of the GPE, or the ~zero-temperature! density profile of
noncondensate atoms. Either way, uceu

2 would be more
spread out than the ground state, reducing the overlap be-
tween ucgu2 and uceu

2. Our best guess is that b,1, maybe
even b!1.

Since we are back to the harmonic-oscillator model, our
previous considerations about adiabatic ramping of the po-
tential barrier remain valid with minor modifications. When
the barrier is ramped up and the excitation frequency de-
creases on a time scale t , adiabatic following ceases by the
time v(t).1/(2pt), giving the final particle number fluc-
tuations

Dn5AN

2 S 1

2pbmt1A11~2pbmt !2D
1/2

. ~35!

If the system has landed deep in the tunneling regime to
make b51, it may be verified easily that Eqs. ~35! and ~23!
agree. Unfortunately, we have no general prediction for the
parameter b other than b&1.

VI. COMPARISONS WITH MODELING OF LEGGETT

AND SOLS

A. General features

There is a long-standing tradition to describe a Josephson
junction in terms of the particle number difference between
the sides and the phase difference across the junction. A
particularly well-known line of thought of this type has been
put forward by Leggett, Sols, and their co-workers @8–10#.
We refer to this as the Leggett-Sols approach ~LSA!. We
now examine the similarities and differences between the
LSA and our modeling in detail.

In order to avoid various clashes in notation, we write the
basic Hamiltonian of the LSA as

HLS52EJ cos f1EC~DN !2/2. ~36!

Here EJ is called the Josephson coupling energy, and EC the
capacitive energy. DN is the difference in particle number
between the sides of the junction, and f is the phase canoni-
cally conjugate to DN .

In order to compare with our approach, we first note that
eigenstates of the relative phase between the sides of the trap
may be chosen, in the notation of the present paper, as @23,5#

ufp&5

1

AN11
(
n50

N

e infpun&. ~37!

As there is only a finite number of relative-number states un&,
there is only a finite number of phase eigenstates as well.
Here we choose them as fp52pp/(N11), with p5

2N/2,2N/211, . . . ,N/2. The vectors ufp& make an ortho-
normal basis in the same Hilbert space as the vectors un&.
The phase operator is then written

f5(
p

ufp&fp^fpu. ~38!

In the basis un&, the difference-in-particle-number operator is
evidently

DN5(
n

~2n2N !un&^nu. ~39!

Equations ~38! and ~39! do not define canonical conjugate
operators. As a matter of fact, it may be shown that, within
the two-mode picture and for any finite number of particles
N, there cannot exist an operator conjugate to DN . If such a
f existed, we would have the nonsensical chain of reasoning

2i5^N/2u@DN ,f#uN/2&

5~^N/2uDN ! fuN/2&2^N/2uf ~DNuN/2& !

50. ~40!

The familiar position and momentum operators x and px get
past an analogous objection because the variable x is con-
tinuous, an escape that is not available in the present case.

Since there are, strictly speaking, no canonical number
difference and phase operators within the two-mode model, a
comparison with the LSA is by necessity somewhat ambigu-
ous. In the absence of any better alternatives we plug in the
operators ~39! and ~38! to Eq. ~36!. The spectral representa-
tion of the two-mode version of the LSA Hamiltonian ~36! is
then

HLS52
1
2 EJ (

k
~ uN/21k11&^N/21ku1H.c.!

12EC (
k

k2uN/21k&^N/21ku. ~41!

We once more use a summation index k such that n5N/2
1k . The motivation is to facilitate comparison with our form
of the Hamiltonian from Eq. ~9!,

H52

d

2 (
k

SAS N

2
1k11 D S N

2
2k D uN/21k11&

3^N/21ku1H.c.D 14k(
k

k2uN/21k&^N/21ku.

~42!

The difference is small. When acting on a state vector
(ncnun& such that only expansion coefficients cN/21k with
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uku!N are materially nonzero, Hamiltonians ~41! and ~42!
produce approximately the same results, provided we make
the identifications

EJ ↔

Nd

2
, EC ↔ 2k . ~43!

To make the assertion uku!N somewhat more quantita-
tive, we derive the time-independent Schrödinger equation
from Hamiltonian ~41! following exactly the same steps that
we took going from Eq. ~15! to Eq. ~17!. Using identifica-
tions ~43!, instead of Eq. ~17! we have

S 2Nd

4

d2

dk2 14kk2DC~k !5e C~k !. ~44!

A stiffness term }(d/N)k2 is missing here, the term that
would limit particle number fluctuations to be at most of the

order AN when d@Nk .
We have carried out a detailed comparison by restricting

the LSA to two boson modes. However, the basic features of
the comparison are generic, and apply no matter what the
microscopic meanings of the operators f and DN are in Eq.
~36!. In our approach there are three independent parameters,
N, k , and d , while in the LSA there are only two, basically
Nd and k . The difference shows in the limit of a weakly
interacting gas. As a matter of fact, in the LSA particle num-
ber fluctuations then diverge. The LSA does not have a coun-
terpart of the ground state g built in.

B. Fluctuations in a split trap

There has recently been some discussion about fluctua-
tions of the particle number after a trap has been split. With
the remark that ‘‘at the moment we have no proof to this
effect, but at least in the limit of weak interactions the as-
sumption is clearly valid,’’ we have assumed @5# that the

fluctuations are of the order AN . Leggett and Sols criticized
this assumption @11#. They applied basically the same adia-
baticity argument to their Hamiltonian that we have adopted
here for our model. Our response was @12# that the question
cannot be regarded as closed, because the model of Leggett
and Sols does not seem to apply to the unsplit trap.

In the present paper we have given a description of the
events that take place when the trap is split. Unfortunately,
our model describes the splitting of the trap from the begin-
ning to the end in a quantitatively reliable manner only for a
weakly interacting gas. In this case we see from Eq. ~24!
that, inasmuch as the barrier is raised on a time scale no

longer than t;m21
*v0

21, where m is the change in the

chemical potential due to atom-atom interactions, AN fluc-
tuations apply at the end of the splitting.

As we have already noted, the descriptions of the splitting
of the trap as in Eqs. ~23! and ~35! both apply and agree
~even if the atom-atom interactions are strong! if the trap
manages to make it far enough into the tunneling regime
with the atoms in the ~many-body! ground state. This hap-
pens if the trap is split slowly enough. We write the splitting
time scale as t51/(lv0), where v0 is the trap frequency
and at the same time the frequency scale for the elementary
excitations of the ~unsplit! condensate, and the numerical

parameter l is as small as it takes to make it deep into the
tunneling regime. For strong atom-atom interactions we in-
variably have Nk@d , and so, from Eq. ~24! we have the
result

Dn`5AN

2

1

2
Alv0

pm
. ~45!

In the Thomas-Fermi limit @19,20# the chemical potential of
N/2 atoms in a spherically symmetric potential well is

m5j2/5v0 , j5

15Na

27/2l
, ~46!

where a is the scattering length and l5A1/mv0 is the char-
acteristic length scale of the trap. Inserting this into Eq. ~45!,
we have

Dn`5AN

2

1

2Ap

Al

j1/5
. ~47!

Equation ~47! displays exactly the same parameter depen-
dences as the result of Leggett and Sols in Ref. @11#. The

difference from AN is important as a matter of principles.
However, according to Leggett and Sols, ‘‘the fluctuations

are . . . by no means of the order of AN , but much smaller’’
@11#. Given that we do not know how large the parameter l
could be, and that the parameter j even in the most extreme
of the present alkali experiments only reaches up to about
j.105, such a statement may be overly categorical.

For a strongly interacting gas, we have not been able to
come up with a quantitatively reliable description of splitting
of the trap, or even of the left-right fluctuations in the ground
state of the unsplit trap. Leggett and Sols went even further,
in that they denied us the unsplit ground state altogether;
their ‘‘argument . . . does not depend on the ~incorrect! as-
sumption that @the many-particle state with all atoms in the
ground state of the GPE# describes the unsplit well’’ @11#.
However, as they do not elaborate, we do not know what this
statement is intended to mean or imply. We have to regard
the question of splitting a strongly interacting gas as un-
solved, just as it was when we began the present work.

VII. CONCLUDING REMARKS

It is relatively easy to discuss both atom number fluctua-
tions and adiabaticity of the splitting of the trap in a two-
mode description, as we have done in this paper. The prob-
lem is that the two-mode description is, generally speaking,
valid only for either a weakly interacting gas, or when the
condensate has already been split in two. As most of the
current BEC experiments operate in the limit of strong inter-
actions, a major gap remains in the understanding of the
condensate.

Besides questions about the process of splitting, the limit
of an unsplit trap containing a strongly interacting conden-
sate leads to another even more basic question. The opera-
tional meaning of the left and right annihilation operators
may be vague, but what the left and right sides of the trap are
is not; more generally, one might inquire about particle num-
ber fluctuations in any part of the condensate @6#. If Eq. ~34!
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could be relied on, one would expect sub-Poissonian local
fluctuations. Given that the coherence properties of a con-
densate analogous to the coherence properties of light are
likely to be a major focus in the discussion of condensates
and atom lasers, the case of a strongly interacting gas will
presumably have to be solved in the end. As another future
development, we anticipate that the loss of phase coherence
in multiple traps, i.e., atomic tunnel arrays @24#, will furnish

an interesting topic of study already in the experimental case
@24# of a weakly interacting gas.
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