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Abstract: A primary strategy for the energy-efficient operation of commercial office 

buildings is to deliver building services, including lighting, heating, ventilating, and air 

conditioning (HVAC), only when and where they are needed, in the amount that they are needed. 

Since such building services are usually delivered to provide occupants with satisfactory indoor 

conditions, it is important to accurately determine the occupancy of building spaces in real time 

as an input to optimal control. This paper first discusses the concepts of building occupancy 

resolution and accuracy and briefly reviews conventional (explicit) occupancy detection 

approaches. The focus of this paper is to review and classify emerging, potentially low-cost 

approaches to leveraging existing data streams that may be related to occupancy, usually referred 

to as implicit / ambient / soft sensing approaches. Based on a review and a comparison of related 

projects / systems (in terms of occupancy sensing type, resolution, accuracy, ground truth data 

collection method, demonstration scale, data fusion and control strategies) the paper presents the 

state-of-the-art of leveraging existing occupancy-related data for optimal control of commercial 

office buildings. It also briefly discusses technology trends, challenges, and future research 

directions. 

Keywords— occupancy detection; data fusion; commercial office buildings; energy 

conservation; HVAC control; lighting control 
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1.  Introduction 

According to United Nations Environment Programme’s Sustainable Building and Climate 

Initiative (UNEP-SBCI), the building sector contributes up to 30% of global annual greenhouse 

gas emissions and consumes up to 40% of global energy [1]. Similar results were reported by the 

US Department of Energy [2]: buildings in the United States account for about 41% of national 

energy consumption. Among the total commercial building energy consumption in 2010, 39.6% 

was consumed by space heating, cooling and ventilation, 20.2% by lighting, 4.3% by water 

heating, and 30.5% by plug-in equipment loads. These systems and devices are essential to 

support commercial building operations and maintain occupant comfort. Among all the buildings, 

commercial office buildings are the largest in floor space and energy use in most countries [3]. 

It has been widely recognised that the key to saving energy in commercial office buildings is to 

deliver building services only when and where they are needed, in the amount that they are 

needed [4-6]. Since such building services are usually delivered to provide occupants with 

satisfactory indoor conditions, it is important to accurately determine the occupancy of building 

spaces in real time [7-9] in order to garner such energy savings. Therefore, occupancy detection 

has attracted a lot of attention for decades, particularly in the field of lighting control [10]; 

occupancy sensors have long-been deployed at the room level to save energy, primarily in electric 

lighting systems [11-14]. The potential for energy savings with HVAC (heating, ventilating, and 

air conditioning) systems is also emerging [15-22]. From these deployments, savings of 20-50% 

are typically reported. A study conducted by Gunay et al. [23] indicates that a 10-15% reduction 

in the space heating and cooling loads can be achieved just by applying individual temperature 

setback periods based on historical office occupancy patterns. Occupancy sensors for lighting 

systems have been mandated in certain space types in contemporary energy codes and standards 

(e.g., National Energy Code for Buildings in Canada [24], ASHRAE 90.1-2016 [25]). However, 

penetration of these technologies as retrofits in all eligible spaces in existing commercial 

buildings is low, and first cost remains a tangible barrier.   

One possible solution that is emerging is to leverage data from existing systems, installed for 

some other purposes, to provide an indication of occupancy. According to two studies [26, 27], 

significant energy savings can be achieved by using the existing IT (Information Technology) 

infrastructure to enable energy savings in both IT (computers and networking) and non-IT 
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infrastructure. Such occupancy information can be used by building control systems to reduce the 

energy consumption of lighting, HVAC, and other building systems [28, 29]. Occupancy 

detection can provide information to these building systems to allow them to operate 

proportionally to the number of occupants in the building [26, 30] and ultimately to optimize the 

building energy management through integrated optimal control of active and passive heating, 

cooling, lighting, shading, and ventilation systems [31]. 

In addition to direct energy and cost savings through real-time intelligent control of HVAC, 

lighting, and plug loads, detailed and accurate occupancy information may also be leveraged for 

other energy-saving applications, including occupant engagement and behaviour adjustment [32], 

achieving optimal demand response [33], optimizing energy storage, improving building energy 

simulation [34], enhancing building space modeling and utilization [35], supporting building 

planning and evacuation [36], and increasing building energy use forecasting accuracy [37]. 

Finally, there is some potential to lower building operation and maintenance costs. A study by the 

Electrical Power Research Institute (EPRI) found that while the increased on/off switching by 

occupancy sensors reduced fluorescent lamp life from 34,000 to 30,000 hours, it also dramatically 

increased lamp longevity (time in the socket between replacements) from 3.9 years for always-on 

lamps to 6.8 years by not wasting lamp life during unoccupied hours [38]1. 

The objective of this paper is to review and classify emerging, potentially low-cost approaches 

to leveraging existing data streams that may be related to occupancy, usually referred to as 

implicit/ambient/soft sensing approaches. The rest of this paper is organized as follows. Section 2 

defines building occupancy resolution and accuracy. Section 3 reviews conventional occupancy 

detection approaches. In addition, illustrative examples from the literature were provided to 

demonstrate the strengths and the weaknesses of these occupancy detection approaches. Section 4 

provides a comprehensive review of implicit/ambient/soft sensor approaches. Section 5 presents 

some concluding remarks and briefly discusses future research and development directions. 

                                                           
1 LED lighting technology lifetime is largely impervious to switching frequency, rendering this trade-off less 
important in new installations. 
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2.  Building Occupancy Resolution and Accuracy 

2.1 Building Occupancy Resolution  

Different applications require different levels of building occupancy resolution and accuracy. 

Melfi et al. [26] proposed to measure the occupancy resolution in three dimensions (as shown in 

Figure 1): 

• Spatial (zone) resolution: Building, Floor, Room  

• Temporal resolution: Day, Hour, Minute, Second 

• Occupancy resolution: 

- Level 1: Occupancy: at least one person in a zone 

- Level 2: Count: how many people are in a zone 

- Level 3: Identity: who they are 

- Level 4: Activity: what they are doing 

Another level (Level 5) may also be added to track where an occupant was before, as 

suggested by Labeodan et al. [39]. Such Level 5 information indicates the particular occupant’s 

movement history across different zones in the building and is essential in the design of proactive 

comfort systems [40, 41]. However, this review focuses on the first four levels only. 

A room typically refers to a single office or a space with four full-height walls (e.g., an office 

or a conference room) or a large zone containing many cubicles. In the context of this paper, we 

also consider a cubicle as a room if it has independent sensing and control. 

We will use this classification of occupancy resolution throughout the paper when reviewing 

existing technologies and solutions. A slightly different, but compatible classification scheme can 

be found in [42]. 
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Figure 1: Occupancy resolution in three dimensions (modified from Melfi et al. [26]) 

2.2 Building Occupancy Accuracy 

Occupancy detection accuracy can be defined as the proximity of measured value (usually 

based on a number of readings from a sensor) to the ground truth (actual) occupancy. 

High levels of occupancy detection accuracy are important for building control systems to 

make correct decisions for the delivery of building services. However, the accuracy of occupancy 

information for building energy management may not be as important as that for building security 

systems, for example. Further, high accuracy requirements usually bring high deployment cost. 

Therefore, an appropriate level of accuracy needs to be determined based on some return on 

investment analysis. 

Different types of occupancy detection errors have different implications. In the domain of 

building energy management, false negatives (concluding there is no one in the zone when, in 

fact, the zone is occupied) are more problematic than false positives (concluding there is someone 

in the zone when, in fact, the zone is unoccupied). For example, a false negative might lead to 

lights being automatically switched off. Particularly, incorrect vacancy detections in lighting 

controls can lead to occupant annoyance, and in many cases occupants place an opaque material 

to cover the surface of motion detectors [43]. Figure 2 presents an example from a private office 

space in an academic building in Carleton University.  
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Figure 2: An example where the occupant taped over the motion detectors (taken from [44] 

credit: Sara Gilani). 

Although a system inclined towards false positives will waste energy, a system inclined 

towards false negatives will lead to occupant annoyance, which often results in automatic controls 

and sensors being sabotaged [45] and a reduction in energy savings in the long run. This concern 

with false negatives means that conventional occupancy sensing systems often have long timeout 

periods (15-60 minutes), meaning that the system must detect no occupancy for the entire timeout 

period, to have a high confidence there is no occupancy, before engaging in control actions. This 

reduces the risk of occupant annoyance, but also lowers energy savings potential. 

3.  Conventional Occupancy Detection Approaches 

PIR sensors are the most common sensor type used in commercial buildings to detect human 

presence. They detect movements from changes in the infrared-radiation impinging on them 

[46]. Given that movements are discrete-events, in practice a delay value (e.g., 15 to 60 min) is 

heuristically selected to avoid incorrect vacancy detections during immobility. After movement 

detection, the space is assumed occupied for this delay period. The uncertainties in occupants’ 

activeness (frequency of detectable movements), office layouts and sensor positioning play a 

nebulous role over the reliability of PIR sensors. As discussed earlier, these uncertainties force 

controls technicians and programmers to select conservatively long delay values – which 

diminish the energy savings potential. For example, Gunay et al. [45] investigated the impact of 

the PIR sensor delay decisions on the accuracy of occupancy detections at three different sensor 

locations in a shared office space. Against ground-truth occupancy data, the accuracy was 

quantified with two different metrics: (1) presence accuracy is the correctly detected fraction of 

the occupied periods (i.e., true positives) and (2) absence accuracy is the correctly detected 

fraction of the unoccupied periods (i.e., true negatives). As shown in Figure 3, when the PIR 

sensor delay values are too small, even brief periods of immobility are interpreted as absence 

periods. As a result, false absence detections are very common particularly at delay values 
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smaller than 15 to 20 min. However, as the PIR sensor delay values get larger, false presence 

detections become common. At 60 min delay, more than 20% of the unoccupied periods were 

falsely interpreted as occupied. From a controls point of view, this causes a reduction in the 

potential energy savings.  

After numerous experiments, Nagy et al. [47] showed that for lighting controls the optimal 

PIR time delay is the one with which 95% of the occupied periods can be correctly detected. For 

example, for the illustrative example shown in Figure 3, the optimal PIR delay is between 15 and 

20 min – depending on the location of the sensor. However, Nagy et al. [47] demonstrated that 

optimal delay values in different space types can differ by a factor of five (4 to 20 min), and they 

developed a method for selecting the optimal delay value by looking at the distribution of the 

frequency of movement detections. Upon this method, Gunay et al. [45] created a recursive 

algorithm to select the optimal delay values inside a controller and verified its accuracy in a 

controls laboratory. 

 

 

Figure 3: Accuracy of presence and absence detections using PIR sensors in a shared office 
space. Three different PIR placement options were studied: facing the door, facing the interior 

space, and on the ceiling. The figure was modified from Gunay et al. [45]. 

PIR motion detectors require a direct line-of-sight. Oftentimes, a single motion detector 

cannot have a direct line-of-sight to all occupants in an office space. For example, Figure 4 

presents a 17 m2 shared office space with three commercial PIR sensors. Any of the three PIR 

sensors alone cannot provide a full coverage of this small office space. Similar findings were 

reported by others [48]. This is partly because of the room geometry and the furniture layout. 
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But, other contextual factors may force control technicians to choose rather suboptimal locations 

for PIR sensors. Within a building controls network, PIR sensors are often built-in inside control 

interfaces such as thermostats or light-switches and mounted on vertical surfaces, or they are 

mounted on ceilings as standalone sensors. When they are built-in inside control interfaces, the 

design purpose of the control interface dictates where the PIRs are placed. For example, the 

light-switches in commercial buildings are typically placed about 100 cm above the floor level. 

For thermostats, this value is about 150 cm. Thus, the same motion sensor placed inside a wall 

thermostat rather than a light switch would tend to have a lesser coverage of a seated occupant. 

Within a wall thermostat (which contains a thermistor sensor), a PIR sensor needs to be placed 

away from terminal HVAC units and exterior walls. The controls technicians are often expected 

to make such decisions during the installation with little, if any, guidance.  

 

Figure 4: An illustrative example for the coverage of three PIR sensors in a small shared office 
space. The figure was modified from Gunay et al. [45]. 

Ultrasonic sensors – similar to PIRs – detect human movements, and thus suffer from the 

same types of limitations as the PIR sensors with the exception that they were reported to be 

more sensitive to the motion of inanimate objects (e.g., blowing curtains) [49]. In an early study, 
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Maniccia [50] reviewed 23 commercially available ultrasonic and PIR sensors. Of them, 18 

failed to detect movements with the manufacturers claimed coverage range. Almost two decades 

after this study, there is no evidence whether this remains as a valid issue. 

Note that both PIR and ultrasonic sensors are motion detectors. They output only a binary 

signal upon movement detection, and thus they fail to detect the number of occupants using a 

space. The building controls industry has begun to integrate CO2 sensors inside wall thermostats. 

The CO2 generation rate of a sedentary occupant is about 0.3 L/min [51]. Thus, a single occupant 

in a hypothetical perfectly airtight and unventilated 15 m2 office space can increase the CO2 

concentration by about 350 ppm/hour. The CO2 sensors render the potential to infer the number 

of occupants in a space by filtering out occupants’ influence on the CO2 concentration of the 

office spaces. In the reviewed literature, this was done via simple physical models assuming 

perfectly mixed indoor air [52-54]. 

Although the early attempts to estimate the whole-building occupancy by taking CO2 readings 

at the air-handling unit’s supply and return air were successful [53], estimating the spatial 

distribution of occupancy at the zone level were found to be challenging [54]. Transport of CO2 

emitted by occupants is a transient process. Depending on the office furniture layout and the 

distance between occupants and the CO2 sensor, the influence of occupants on the sensor’s 

readings will lag. Although room specific anecdotal observations were reported for the time lag 

values in the literature (e.g., Arora et al. [54] 30 min or Dong and Andrews [55] 20 min), the 

variables such as ventilation rate and style (e.g., displacement or mixing ventilation), room size, 

window/door positions can affect the CO2 transport rate (by changing the process from diffusion 

to advection). Furthermore, estimating occupants’ influence on CO2 sensors’ readings may 

require auxiliary information from ventilation airflow rate and CO2 concentration, door position 

and corridor CO2 concentration, and air permeability of the envelope and outdoor CO2 

concentration. As a result, CO2 sensors have been treated as a secondary source of information 

after the PIR or ultrasonic sensors [55-57]. They were used to complement PIR sensors for cases 

in which a direct line-of-sight to the motion of all occupants is not possible [57]. 

Because of the uncertainty associated with the determination of occupancy using single-point 

sensing, a network of linked, cheaper conventional occupancy sensors [10, 46] was proposed to 

offer more accurate and robust occupancy measurement, and greater energy savings than that 

which can be achieved with a single sensor. Wired sensors may be replaced by wireless sensors 
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(therefore wireless sensor networks or WSN) to further reduce the deployment and maintenance 

costs. 

The weaknesses of the conventional occupancy detection approaches can be summarized as 

follows: 

• Cost: A high-quality, wired, standalone occupancy sensor can cost US$150 or more to be 

installed. Wireless devices may offer lower installation costs, but are not completely reliable 

regarding data communications, and must be powered by batteries (that eventually need to 

be changed), or by energy-scavenging systems that add cost and have their own reliability 

issues. 

• Field of view (restricted to visual line of sight): if there is any object between the sensor and 

the occupant, the occupancy cannot be detected. 

• Low occupant resolution: at Level 1 with limited information on count, identity, and 

activity. 

• False detection: a shadow or a flash (e.g., headlight from a passing car) can trigger PIR 

sensors. 

• Robustness: if the single sensor fails, drifts out of calibration, or is physically compromised, 

control for the zone becomes sub-optimal or is lost entirely. 

4.  Implicit / Ambient / Soft Sensing Approaches  

4.1 Overview 

Extracting and leveraging occupancy information from systems already in the building for 

other primary purposes, rather than from those explicitly designed to collect occupancy 

information, has been termed implicit occupancy sensing [26], ambient sensing [57], or soft 

sensing [58, 59]. 

Sources of implicit occupancy information include data that are already collected but not used 

for building control purposes, and data that are potentially available, but not yet collected. In the 

former category are things like computer network traffic, security card access systems, elevator 

usage, and detection of mobile devices at Wi-Fi access points. In the latter category are things like 

keyboard and mouse activities, webcams, and PC microphones. The advantage of implicit 
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occupancy sensing is that these sensors are already present for other purposes, are powered and 

capable of communication so that they can be accessed by the building control systems, and thus 

come at little or no incremental cost. Although these individual channels might have limited 

accuracy independently, their aggregated data may result in higher accuracy, and certainly more 

robustness, than any one high-end sensor [16, 48, 56, 58, 60]. 

Melfi et al. [26] proposed a three-tier classification of implicit occupancy sensors: 

• Tier I requires no modification to existing systems other than a collection and processing 

point. 

• Tier II involves the addition of software to existing infrastructure to make existing 

occupancy-related data available. 

• Tier III involves the addition of software and hardware to introduce new sources of 

occupancy data to existing systems.  

We will use this three-tier classification for review and comparison of various implicit 

occupancy sensing approaches developed in the research literature. Note that Tier III approaches 

are essentially similar to the conventional approaches, with the exception that they use other types 

of sensors (e.g., light, relative humidity (RH), temperature, and physical pressure) or sensor 

networks (e.g., Radio-frequency identification (RFID) and ZigBee-based wireless sensor 

networks) rather than conventional motion detectors and CO2 sensors. About 60% of the projects / 

systems being reviewed fall in this category. 

Table 1 summarizes various implicit sensing approaches proposed and developed in the 

research literature. Table 2 provides an overview of the same projects as listed in Table 1 in terms 

of occupancy resolution, accuracy, demo scale, data fusion and control strategies. 
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Table 1: Implicit occupancy sensing: summary of prior studies in the research literature. 
 Tier I Tier II Tier III 

Research Group with 

References 

DHCP/

ARP 

Outbound 

phone calls 

Access 

badge, 

codes 

WiFi-

based  

IP 

Traffic 

Instant 

Msg,  

Calendar 

Key-

board, 

Mouse 

Webcam Microphone Bluetooth RFID Motion 

Sensors 

Special purpose 

sensors 

Wireless 

Sensor 

Networks 

Melfi et al. [26] x x x    x        
Ghai et al. [58]; 
Thanayankizil et al. [59] 

  x x  x         

Oldewurtel et al. [61]      x      x   
Ekwevugbe et al. [62]   x         x RH, light, VOC, 

CO2, sound, 
pressure mats 

 

Dodier et al. [46]  x          x   
Hay and Rice [63]   x            
Kushki et al. [64]    x           
Chintalapudi et al. [65]    x           
Balaji et al. [15]    x           
Kim et al. [66]     x        Circuit power 

monitor 
 

Jin et al. [67]    x         Plug load sensor, 
sonar, 
accelerometer 

 

Ruiz-Ruiz et al. [36]    x           
Zhao et al. [68]    x   x x  x  x Chair sensors  
Dalton and Ellis [69]        x       
Huang et al. [70]         x      
Harris and Cahill [71]          x    x 
Conte et al. [72]          x    x 
Dong et al. [56]       PC 

activity 
     With existing IT 

infrastructure 
x 

Zhen et al. [73]           x    
Li et al. [41]           x    
Augello et al. [11]           x  RH, light, 

temperature 
 

Lam et al. [57]            x CO, CO2, TVOC x 
Nguyen and Aiello [74]            x Pressure (chair), 

acoustic 
x 

Yang et al. [19]            x RH, light, 
temperature, CO2, 

x 

Khan et al. [18]            x RH, light, 
temperature, sound 

x 

Dong et al. [16]            x RH, temperature, 
light, CO2 

 

Polese [75]             Image processing 
occupancy sensor 

 

Labeodan et al. [39, 76]             Chair sensors  
Jazizadeh and Becerik-
Gerber [77] 

            Light intensity 
sensors 

x 

Liao et al. [78]             Beam-break 
sensors 

 

Meyn et al. [79]             Camera, CO2  



 

13 
 

 Tier I Tier II Tier III 

Research Group with 

References 

DHCP/

ARP 

Outbound 

phone calls 

Access 

badge, 

codes 

WiFi-

based  

IP 

Traffic 

Instant 

Msg,  

Calendar 

Key-

board, 

Mouse 

Webcam Microphone Bluetooth RFID Motion 

Sensors 

Special purpose 

sensors 

Wireless 

Sensor 

Networks 

Wu and Clements-Croome 
[80] 

            RH, temp, light x  

Tiller et al. [48]            x  Wired SN 
Dedesko et al. [81]             Beam-break 

sensors, CO2 
 

Erickson et al. [82]             Wireless Camera  
Erickson et al. [17]             Wireless Camera  
Harle et al. [83]             Ultrasonic 3D 

tracking 
 

Benezeth et al. [84]             Camera  
Hailemariam et al. [29]             RH, temperature, 

light, AC current 
Sensor 
array 

Attar et al. [85]             RH, temperature, 
light, AC current 

Sensor 
array 

Han et al. [86]             RH, temperature  
Han et al. [87]             CO2, PIR, RH  
Pandharipande and Caicedo 
[88] 

            Ultrasound array 
sensor 

 

Agarwal et al. [21]             PIR + door sensor x 
Weekly et al. [89]             Particulate matter 

sensor 
 

Yavari et al. [90]             Doppler Radar  
Arora et al. [54]             Illuminance, RH, 

PIR, power 
consumption, door 
contact, CO2 

 

Gunay et al. [45]        x     PIR, door contact, 
CO2 

 

Philipose et al. [91]           x    
Ramoser et al. [92]        x       
Brackney et al. [93]             Image processing 

occupancy sensor 
 

Milenkovic and Amft [94]             PIR, ultrasound 
range finders, and 
plug-in equipment 
load 
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Table 2: Occupancy resolution, accuracy, demo scale, data analysis, and control strategies used by implicit occupancy sensing studies in the research literature. 
Research Group 

with References 

Occupancy 

Resolution 

Spatial 

Resolution 

Temporal 

Resolution 

Accuracy Ground 

Truth 

Demo Scale Data fusion & 

control 

strategies 

Applications Remarks 

Melfi et al. [26] Level 1/2 Room Minutes 89% Manual 
recording  

2 buildings   Focus on accuracy analysis 

Ghai et al. [58]; 
Thanayankizil et al. 
[59] 

Level 
1/2/3 

Floor, 
cubicles 

 90% Manual 
recording 

5 people for 
6 weeks on a 
floor 

Classification, 
Regression 

 Classification is much better than Regression 

Oldewurtel et al. 
[61] 

Level 1/2 Zone, 
Room 

Days   20 persons 
for 5 years 
(simulation) 

Model 
Predictive 
Control 

 Simulation only, no physical tests 

Ekwevugbe et al. 
[62] 

Level 1/2 Building 
areas 

Minutes   A building 
area 

Adaptive 
Neuro-Fuzzy 
Inference 

 Indoor climatic variables, indoor events and energy data 
obtained from a non-domestic building to infer occupancy 
patterns 

Dodier et al. [46] Level 1 Room Seconds  Manual & 
camera 

2 offices 2 
days 

Belief network  Cheap sensor approach, wired sensor network 

Hay et al. [63] Level 3/4 Floor, 
Room 

Seconds   A building   Study on apportioning the total energy consumption of a 
building to individual users to provide incentives to make 
reductions 

Kushki et al. [64] Level 3 Floor, 
Zone 

      WiFi based indoor positioning  

Chintalapudi et al. 
[65] 

    Theoretica
l value for 
analysis 

No demo   Conceptual proposal on WiFi-based ad-hoc localization use 
ranging & sectoring devices 

Balaji et al. [15] Level 
1/2/3 

Zone Seconds 86% Manual 
recording 

1 building, 
10 days 

  WiFi + smartphone for occupancy detection; applied for 
HVAC control 

Kim et al. [66] Level 1/2 Zone Seconds   Lab setting   IP traffic + power monitoring. Simulation & analysis only. 
Jin et al. [67] Level 1 Room Seconds 89% Manual 5 cubicles A zero-training 

algorithm 
 Focused on power monitoring to infer occupancy 

Ruiz-Ruiz et al. 
[36] 

Level 1/2 Buildings Seconds   A large 
hospital, 2 
weeks 

 Building 
planning, 
evacuation 

Use sole measurement of WiFi signals from peoples’ 
devices to estimate the density of people in the hospital for 
building planning purpose (e.g., evacuation).  

Zhao et al. [68] Level 1 Room, 
Zoom 

Seconds 97% Manual 2 rooms, 2 
weeks 

Bayesian 
Networks 

HVAC control Two types of virtual occupancy sensors: room level virtual 
occupancy sensors are composed of physical occupancy 
sensors, chair sensors, keyboard, and mouse; working zone-
level virtual occupancy sensors based on real-time GPS 
location and Wi-Fi connection from smart devices. 

Dalton and Ellis 
[69] 

Level 4 Room Seconds  Simulated 1 laptop   Face monitoring instead of keyboard and mouse detection 
for screen saver control. Average power saving 10~30% 
based on a few experiments. 

Huang et al. [70] Level 1/2 Room Seconds 90%+ 
 

Simulated 1 room  HVAC control Use audio processing techniques (i.e., speaker recognition 
and background audio energy estimation) to estimate room 
occupancy (i.e., the number of people inside a room) 

Harris and Cahill 
[71] 

Level 1 Device Seconds 80%  6 user trails, 
each for a 
week 

Bayesian 
Networks 

 Context-aware desktop PC power management by detecting 
Bluetooth phone. Trade-off between energy saving by 
shutting off a device and the waiting time (user satisfaction) 
for starting up. 

Conte et al. [8] Level 
1/2/3 

Room Seconds 83~ 
84% 

 3 rooms, 
1,000 
samples 

k-NN, decision 
trees 

 BLE (Blow Low Energy), modified iBeacon protocol 
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Research Group 

with References 

Occupancy 

Resolution 

Spatial 

Resolution 

Temporal 

Resolution 

Accuracy Ground 

Truth 

Demo Scale Data fusion & 

control 

strategies 

Applications Remarks 

Dong et al. [56] Level 1/2 Floor Minutes 65~ 
90% 

Networke
d cameras 

A large open 
office area 
for 90 days 

Hidden Markov 
Models, NN, 
SVM 

 Open-plan office building with wireless ambient sensing, 
wired CO2& IAQ sensing; wired camera network for 
ground truth. 

Zhen et al. [73] Level 3 Floor, 
Zone, 
Room 

Seconds 93% Manual 
recording 

1 person 
with 4 tags 
moving in 
12 zones 

Support vector 
machine 

Lighting 
control 

Active RFID-based lighting control 

Li et al. [41] Level 1/2 Floor, 
Zone 

Seconds 88% 
stationar
y; 62% 
mobile 

Manual 
recording 

One floor 
within an 
educational 
building 

 HVAC control RFID-based occupancy detection 

Augello et al. [11] Level 
1/2/3 

Room Seconds   1 room with 
2 people & 1 
open area 

K-means 
clustering 

Lighting 
control 

Sensor mining to profile user behavior patterns. Potential 
for agent-based implementation. RFID for presence 
detection. 

Lam et al. [57] Level 1/2 Floor Minutes 80% Video 
camera 

2 bays of a 
large open 
workspace 
for 57 days 

SVM, Hidden 
Markov Models 
(HMM), ANN 

 Various classification methods including SVM, NN, and 
HMM used to count the number of occupants in an open 
office environment. 

Nguyen and Aiello 
[74] 

Level 1 Room Minutes 95%  1 room 5 
days 

  Simple sensors (but moderate-to-high cost) 

Yang et al. [19] Level 1/2 Room Minutes 86~89% 
trained 
63~66% 
generic 

Manual 
on a 
mobile 
device 

Three-story 
building for 
20 days 

Radial basis 
function neural 
network 

HVAC control A occupancy estimation model built on a combination of 
nonintrusive sensors 

Khan et al. [18] Level 1/2 Room Seconds ~ 
hours 

92~95% Camera & 
manual 

10 days SVM, k-NN HVAC and 
lighting 
control 

Combined environmental sensors & contextual info; 
Hierarchical Occupancy estimates with decision 
confidences 

Dong et al. [16] Level 1/2 Room, 
Zone 

Minutes 83% Networke
d cameras 

One zone 
with 
multiple 
rooms 

  Findings: important sensors for the accurate occupant 
behavior pattern prediction are CO2, acoustics and motion. 

Polese [75] Level 1 Room Seconds 99.57%  A few hours  HVAC and 
lighting 
control 

Developed a new image processing occupancy sensor to 
replace a PIR sensor. 

Labeodan et al. [39, 
76] 

Level 1/2 Room Seconds 87~99%  1 chair, 1 
day 

 HVAC and 
lighting 
control 

Experiments with chair sensors using sensing techniques 
based on strain, vibration and a mechanical-switch for 
occupancy detection in an office space. 

Jazizadeh and 
Becerik-Gerber [77] 

Level 1/2 Room Minutes   A few rooms Machine 
learning 

HVAC control 
(not 
implemented) 

Extract device info from IFC model; ambient sensors to 
monitor lighting systems; devices/ appliances to send their 
energy consumption info to the server for HVAC decisions 

Liao et al. [78] Level 1/2 Room, 
Zone 

Minutes   One room 
with one 
person 

  Agent-based simulation of occupant behavior for modeling 
and estimating occupancy in commercial buildings 

Meyn et al. [79] Level 1/2 Zone, 
Building 

Minutes 89% at 
building, 
79% at 
zone  

Recorded 
video 

A building 
with 
multiple 
floors/zones 

Senor-Utility-
Network 

 Senor-Utility-Network: estimation based on sensors, prior 
knowledge of building utilization & building network 
structure 

Wu and Clements-
Croome [80] 

Level 1/2 Room, 
Zone 

Seconds   Existing 
dataset  

Clustering 
algorithms 

 Data mining for temperature, RH, and lighting distribution, 
rather than on occupancy detection,  
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Research Group 

with References 

Occupancy 

Resolution 

Spatial 

Resolution 

Temporal 

Resolution 

Accuracy Ground 

Truth 

Demo Scale Data fusion & 

control 

strategies 

Applications Remarks 

Tiller et al. [48] Level 1 Room Seconds 88%   Belief network Lighting 
control 

Wired sensor network for improved lighting system control 

Dedesko et al. [81] Level 1 Room Seconds  Manual  10 patient 
rooms 

  A method that utilized data from CO2 and beam-break 
sensors to characterize time-varying occupancy and 
occupant activity in a hospital environment. 

Erickson et al. [82] Level 1/2 Zone, 
Building 

Seconds 80% 3 
webcams 
(3 images 
every 2 s) 

A large 
multi-
function 
building 

Multivariate 
Gaussian 
models 

HVAC control Wireless sensor network for data collection. Multivariate 
Gaussian and agent based models for occupancy prediction. 
14% energy reduction from HVAC. 

Erickson et al. [17] Level 1/2 Zone, 
Building 

Seconds  7 cameras 
covering 
10 areas 

A large 
building for 
a few days 

Markov chain 
model 

HVAC control Changed modeling approach from the above work. 42% 
Annual energy saving based on simulations & analyses. 

Harle et al. [83] Level 1/2 Room, 
Zone 

Seconds 95% Ultrasonic 
location 
system 

50 rooms, 40 
people, 60 
days. 

  Using an existing ultrasonic location system. Lighting 
energy reduction of 50% based on estimation & analysis. 

Benezeth et al. [84] Level 1/2 Room Seconds 97% Recorded 
videos 

Proof-of-
concept tests 

  Vision-based system for human detection and activity 
analysis. 

Hailemariam et al. 
[29] 

Level 1 Room Minutes 98% Camera One cubicle, 
one person, 
7 sensors, 
days 

Decision Trees  Decision Trees method for data analysis. It improves the 
detection accuracy with motion sensors alone, but the 
accuracy reduces with multiple sensor types.  

Attar et al. [85] Level 1 Room, 
Zone 

Minutes   One cubicle 
data, zone 
visualization  

  Focusing on time-based visualization of thermal values 
linked to as-built BIM. 

Han et al. [86] Level 1 Room Seconds 92%  One sensor, 
three 
persons, 27 
hours 

  Use only the relative humidity to detect the human presence 
by adjusting the threshold, sampling window and size. 

Han et al. [87] Level 1/2 Room, 
Zone 

Seconds 81% Manual 
recording 

A lab with 6 
people for 3 
weeks 

Autoregressive 
Hidden Markov 
Model 

 Compared with classical Hidden Markov Model and 
Support Vector Machine. 

Pandharipande and 
Caicedo [88] 

Level 1/2 Room Seconds   A test office 
room for a 
short period 

 LED control Ultrasound array sensor. Specifically, for LED control, 
considered both occupancy and daylight distribution. OK to 
consider two people that are very close as one object. 

Agarwal et al. [21] Level 1 Room Seconds  Manual 
recording 

10 rooms, 10 
days 

 HVAC control Errors are mostly caused by the door sensor which assumes 
occupancy if the door is open. 

Weekly et al. [89] Level 1 Small area Seconds 66% Camera One sensor, 
8 hours 

  Use low-cost (<$8) particulate matter sensor to infer the 
local movement of occupants. 

Yavari et al. [90] Level 1 Room Seconds  Piezo-
electric 
chest belt 

One sensor , 
couple of 
minutes 

  A Doppler radar sensor is used to detect human presence by 
extracting respiratory and heart signals while the human 
subject is at rest and moving at different activity levels. 

Arora et al. [54] Level 2 Room Minutes 65% Recorded 
videos 

One room, 
five days 

Decision Trees  Decision Trees method for data analysis. It ranks the 
information gain from individual sensors. The method 
appears promising for classifying presence, however low-
accuracy detecting the number of occupants in the room. 

Gunay et al. [45] Level 1 Room Minutes 95% Recorded 
videos 

One room, 
two months 

  Different complementary sensors such as CO2, door contact, 
and webcam-based computer vision were used to improve 
presence detections using PIRs. 
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Philipose et al. [91] Level 3/4 Room Seconds      Anecdotal observations reported for a method to detect 
occupant position and activity type by using RFID tags and 
Bayesian filtering using existing activity models. Accuracy 
of the method was not quantified. 

Ramoser et al. [92] Level 3/4 Small area Seconds      Using the surveillance camera records, occupants’ locations 
were detected. Limited preliminary are promising but 
accuracy was not quantified. 

Brackney et al. [93] Level 2/3 Room Seconds 94% Recorded 
videos 

One cubicle, 
several days 

  Preliminary results from a new computer vision-based 
sensor. It conducts computations required for image 
processing locally and images are not stored. This may 
alleviate the privacy concerns pertaining to other camera-
based occupancy detection solutions. 

Milenkovic and 
Amft [94] 

Level 2/3 Room Minutes Presence 
87% 
People 
count 
78%  

Manual 
recording 

One shared 
office and 
one single 
office, 100 
hours 

Layered hidden 
Markov models 

 Layered hidden Markov models were trained with 30 h 
worth of data for presence detection and with 50 h worth of 
data for people count detection. The models were shown to 
detect presence accurately. Activity type detection and 
people count detection accuracies were less than 80%.  

 

 



 

18 
 

4.2 Explicit or Implicit Occupancy Sensing 

Among more than fifty projects / systems being reviewed, only a small number of them use 

the existing IT infrastructure to collect occupancy information (as listed in Table 1). Many 

researchers have proposed and developed systems using supplementary devices and systems 

including Wireless Sensor Networks [19, 56, 57, 71, 74, 77, 80, 95-98], sensor arrays [29, 85], 

RFID (Radio-frequency identification) [11, 41, 73, 91], different motion sensors [19, 57, 62, 74], 

and other dedicated sensors like chair sensors [74, 76], image processing occupancy sensors [93], 

RH and temperature sensors etc. [29, 85, 86]. Other interesting efforts include applying 

particulate matter sensors to infer the local movement of occupants [89]; using individual power 

monitoring data to enhance presence detection [54]; utilizing a Doppler radar sensor to detect 

human presence by extracting respiratory and heart signals while the human subject is at rest and 

moving at different activity levels [90]; and using only RH to detect the human presence by 

adjusting the threshold, sampling window and size [86]. 

4.3 Sensors / Data Sources Use 

Among all the projects / systems being reviewed, most projects / systems use only one 

sensing approach or source for occupancy data collection, with some exceptions [16, 26, 29, 45, 

54, 56-58, 78]. For example, Dong et al. [16] employed a combination of motion, sound, RH, 

temperature, light, and CO2 sensors and found that important sensors for the accurate occupant 

behavior pattern prediction are CO2, acoustics, and motion. Hailemariam et al. [43] used various 

types of sensors including motion, RH, temperature, light, and AC current, though their results 

showed that additional sensors do not help to improve detection accuracy when using decision 

trees. Lam et al. [57] deployed a wide array of sensor types including various gas sensors, sound 

pressure level, illuminance, PIR, RH, and temperature in an open office environment to detect  

occupancy count. Similarly, to detect the occupancy count in a shared office space, Arora et al. 

[54] employed illuminance, RH, PIR, power consumption, door contact, and CO2 sensors. Melfi 

et al. [26] is one of the early studies that investigated occupancy detection using the existing IT 

infrastructure including computer networking, phone calls, access badges, as well as computer 

usage through keyboard and mouse activities. Ghai et al. [58] is another example of using only 

context sources that are commonly available in commercial buildings such as area access badges, 

Wi-Fi access points, Calendar and Instant Messaging clients. 
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A recent study by Khan et al. [18] investigated the combination of environmental sensing and 

contextual information to produce Levels 1 and 2 occupancy estimates with some promising 

results. However, there has not been any rigorous investigation of multiple sensors and/or 

multiple data sources, as well as the combination of implicit sensing (using the existing IT 

infrastructure) and explicit sensing (e.g., using motion sensors). Another recent study by 

Newsham et al. [99] explored the viability of detecting occupants’ presence at the one-person 

office or cubicle level through various contextual information such as keyboard and mouse 

activities, webcam, microphone, proximity sensor, air temperature and relative humidity sensor, 

and pressure mat (for the ground-truth). Through a case study, they demonstrated that occupancy 

information can be retrieved more accurately with these low-cost and readily available sensing 

technologies than with traditional PIR motion detectors. 

4.4 Occupancy Resolution 

A majority of the systems being reviewed provided occupancy detection at Level 1 (yes or no) 

and Level 2 (counting numbers of people). Among more than 50 systems reviewed, only 11 

detected occupancy at Level 3 (identity) and only three at Level 4 (activity). Related to spatial 

resolution, most systems detected occupancy at the room or zone level. Li and Becerik-Gerber 

[41] listed six different occupancy detection technologies that can locate occupants in the indoor 

environments at a higher spatial resolution. These technologies are the indoor global positioning 

systems [100], inertial navigation systems [101], a network of PIR motion detectors [102], ultra-

wide band positioning systems [100], wireless local area networks  [103], and RFID tags [104]. 

In terms of temporal resolution, almost all the reviewed studies focused on exploiting short-term 

(in the range of minutes or seconds) occupancy information for increasing energy efficiency in 

buildings. 

4.5 Occupancy Detection Accuracy 

Most reviewed systems report an overall accuracy of 80 to 98% which is believed to be high-

enough for building automation. Note that accuracy here is typically in the context of a heavily 

curated pilot / research study, and one could expect accuracy in a longer-term commercial 

implementation in multiple space types and with a variety of user types to be lower. As argued 

by many researchers, the accuracy requirement is really dependent on various control 

applications. For example, for lighting automation, Nagy et al. [105] observed that even 90% 
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accuracy in detecting presence can cause substantial occupant dissatisfaction – e.g., lights switch 

off automatically upon false vacancy detection. Later, they showed that a minimum of 95% 

accuracy should be achieved, if the occupancy detections are intended for lighting automation. 

Depending on the purpose of the occupancy detections, larger presence prediction errors can be 

acceptable. For example, incorrect detection of vacancy periods for HVAC control, may not 

cause a noticeable thermal discomfort given that buildings respond to thermal loads slowly. 

Since high accuracy requirements also bring high implementation cost, the key is to have high-

enough accuracy with minimal cost, at the same time ensuring occupant comfort and protecting 

occupant privacy. As described above, any analysis of occupancy accuracy in the context of 

building systems control should discriminate between false positives and false negatives. For 

example, the false positive rate could be greater than 20% according to three studies [45, 82, 

106]. However, very few efforts have been reported on the separation of error types. Further, 

some studies have inflated accuracy by including overnight periods when, in commercial 

settings, extended vacancy is self-evident and detection is not challenging. 

4.6 Demo Scale 

Almost all reported systems are at the proof-of-concept stage, and most have been 

demonstrated at the very small scale only over short time periods in a limited number of spaces. 

There have been a few exceptions of studies at the building level over a period of a few months 

[12, 17, 19, 56, 79, 83, 99, 106]. 

4.7 Data Fusion and Control Strategies 

Having knowledge regarding occupancy and being able to accurately predict usage patterns 

will allow significant energy-savings by intelligent control of lighting and HVAC systems. 

However, with the massive amount of data being collected using various occupancy detection 

systems, it is very challenging to process the collected data efficiently and effectively in real-

time in order to provide accurate inputs into building control systems. Various approaches have 

been reported for data fusion and control strategies including: 

- Classification approaches by Ghai et al. [58]; 

- K-means Clustering by Augello et al. [11]; 

- Adaptive Neuro-Fuzzy Inference approach by Ekwevugbe et al. [62]; 
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- Belief Network based approaches by Dodier et al. [46] and by Tiller et al. [48]; 

- Bayesian Networks by Harris and Cahill [71] and Zhao et al. [68]; 

- Support Vector Machine (SVM) by Zhen et al. [73]; 

- Markov Chain Model by Erikson et al. [17]; 

- Hidden Markov Models by Dong et al. [56], Han et al. [87], Lam et al. [57]; 

- Layered hidden Markov models by Milenkovic and Amft [94]; 

- Sensor-utility Network by Meyn et al. [79]; 

- Decision Trees by Hailemariam et al. [29] and Arora et al. [54]. 

Most of these data fusion methods are mentioned in the literature review sections of many 

papers, but it is rare to find a comparison of these different data fusion approaches on the same 

dataset. 

4.8 Applications 

While most reported efforts on occupancy detection are still purely on feasibility studies on 

various devices, systems, and technologies, a few applications have been demonstrated for 

HVAC control, lighting control, and computer management. For those that did engage in energy 

management, they were generally successful in illustrating the energy savings potential, with 

savings of 15-20% for HVAC control [16, 107], 20-30% for lighting control [10], and about 20-

30% for computer power management [83].  

With the innovations in sensing technologies, the focus in occupancy detection research has 

diverted to tracking occupants’ position and activities from monitoring spaces (to infer 

anonymous occupancy information). For example, Li and Becerik-Gerber [41] and Philipose et 

al. [91] employed RFID tags, Milenkovic and Amft [94] used ultrasound range finders mounted 

on computer monitors, and Nguyen and Aiello [74] monitored occupancy through pressure 

sensors placed on seats. Tracking individuals – in lieu of monitoring spaces – brings about 

heightened privacy concerns [108]. And, arguably it will provide limited benefits for the 

operation of existing buildings because of the course-granularity of the HVAC and lighting 

equipment control. As Li and Becerik-Gerber [41] reported, a large portion of the occupancy 

detection literature has been generated by computer scientists and electrical engineers. As a 
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consequence, the focus has been on developing new sensing technologies without 

acknowledging the application specific requirements and constraints of indoor occupancy 

sensing. Occupancy sensing for indoor climate control (e.g., HVAC and lighting) should be 

tailored in recognition of the granularity of HVAC and lighting zoning and numerous contextual 

factors such as privacy and the interior design [43]. 

Occupancy sensing technologies that provide information at Level 1 and 2 (i.e., zone level 

presence and occupant count) may still cause substantial privacy concerns. The privacy issues 

may be exacerbated, particularly for the computer vision based occupancy detection 

technologies, if the images are stored and processed in a central server. Brackney [93]’s image 

processing occupancy sensor is embedded on a device with limited computational power, and  

each sensor can process images locally in real-time and output an occupancy state signal that can 

be interpreted by a commercial building controller. This may alleviate some of the concerns-

related with the occupants’ privacy.  

Implicit occupancy sensing also means using data that are not originally intended for controls-

oriented applications inside an automation and controls network. This will bring about 

integration challenges. For example, after demostrating the theoretical feasibility of using Wi-Fi 

as a proxy to the occupancy in the Univesity of British Columbia library, Henderson [109] 

discussed the challenges to integrate the existing IT and controls infrastructures. Similarly, 

access control, despite being a promising source of occupancy information [58], is seldom 

integrated to the HVAC and lighting controls. In addition, HVAC and lighting controls are rarely 

integrated with each other in existing buildings [106]. These issues bring about hidden capital 

and labour costs, and thus represent a major barrier against the wider usage of indoor climate 

control with implicit occupancy sensing. 

5.  Concluding Remarks and Future Research Directions 

This paper presents a comprehensive review and classification of implicit occupancy sensing 

approaches by leveraging occupancy related data streams from existing IT infrastructure. About 

fifty related projects / systems have been reviewed and compared in terms of occupancy sensing 

type, occupancy resolution, accuracy, ground truth data collection method, demonstration scale, 

data fusion and control strategies. Implicit occupancy sensing has the potential to provide 

acceptable occupancy accuracy for efficient building energy management through optimal 
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delivery of building services (including lighting, heating, ventilating, and air conditioning) with 

lower costs compared to traditional explicit sensing approaches. However, the development of 

implicit occupancy sensing systems is still in the early stages, and considerably more work is 

necessary to demonstrate a large-scale, robust and persistent deployment. For example, optimum 

combinations of sensors and data sources need to be identified, along with the most efficient and 

accurate data fusion and analysis approaches.  

With the recent fast development and deployment of Mobile/Cloud Computing and the Internet 

of Things (IoT), the IT infrastructure will likely provide even more sources of implicit occupancy 

information and more opportunities for combining occupancy related sensors and data sources to 

support building occupancy determination with less cost, and for mutually-supportive applications 

beyond energy savings. For example, sensors deployed for access control or for fire safety 

purposes can provide useful occupancy information, and accurate occupancy information from 

implicit sources can be useful to support building evacuation planning as well as emergency 

response and rescue. The challenges are to develop efficient occupancy determination algorithms 

under easy-to-use Big Data analytics platforms. In this direction, data semantics and 

interoperability is another major challenge. 

On the development and commercialization side, there will be a trend to develop more 

intelligent and accurate but less expensive occupancy sensors that can be connected to the 

building control systems (lighting, HVAC, and plug loads), in the short-term through wired 

connections, but in a few years all wirelessly through an IoT environment. Such occupancy 

sensors will soon be embedded into IT equipment (computers and monitors etc.) and fire alarm 

devices. 

Despite the potential for more efficient building operations, the exploitation of some implicit 

data sources may understandably raise privacy concerns among building occupants (e.g. 

webcams, image processing occupancy sensors, security card access systems). Efforts will need to 

be expended to develop methods to engage such data in a way that preserves appropriate privacy 

in a transparent manner and demonstrates value to the occupant, otherwise deployment of such 

systems will be compromised. 
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