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Virtual Reality High Dimensional Objective Spaces for

Multi-objective Optimization: An Improved Representation

Julio J. Valdés, Alan J. Barton and Robert Orchard

Abstract— This paper presents an approach for constructing
improved visual representations of high dimensional objective
spaces using virtual reality. These spaces arise from the solution
of multi-objective optimization problems with more than 3
objective functions which lead to high dimensional Pareto
fronts. The 3-D representations of m-dimensional Pareto fronts,
or their approximations, are constructed via similarity structure
mappings between the original objective spaces and the 3-D
space. Alpha shapes are introduced for the representation and
compared with previous approaches based on convex hulls. In
addition, the mappings minimizing a measure of the amount of
dissimilarity loss are obtained via genetic programming. This
approach is preliminarily investigated using both theoretically
derived high dimensional Pareto fronts for a test problem
(DTLZ2) and practically obtained objective spaces for the 4
dimensional knapsack problem via multi-objective evolutionary
algorithms like HLGA, NSGA, and VEGA. The improved
representation captures more accurately the real nature of
the m-dimensional objective spaces and the quality of the
mappings obtained with genetic programming is equivalent to
those computed with classical optimization algorithms.

I. INTRODUCTION

In multi-objective optimization, rather than finding a single

best solution for a given problem, what is found is a set

of ”compromise” solutions from which the decision maker

selects a particular one, based on additional domain knowl-

edge. For up to three objectives, a scatter plot suffices for

displaying the set of solutions on which the decision will

be made, but this approach is no longer possible when the

problem involves more than 3 objectives. This prevents the

decision maker from using visual information in the decision

making process and therefore to use the powerful geometric

pattern processing capabilities of the human brain.

The development of suitable visualization techniques for

multi-objective optimization is considered one important

open problem. A first general approach addressing this

issue using similarity structure preservation mappings was

proposed [9] where the mapping between the two spaces

can be computed with or without evolutionary computation

methods.

In this paper, alpha shapes are introduced for constructing

visual represents and compared with previous approaches

based on convex hulls [9]. In addition, the mappings min-

imizing a measure of the amount of dissimilarity loss are

obtained via genetic programming [8]. The approach is

illustrated using: i) the representation of a collection of

J. J. Valdés, A. J. Barton and Robert Orchard are with the National
Research Council Canada’s Institute for Information Technology’s Integrated
Reasoning Group, 1200 Montreal Road, Ottawa, Ontario, Canada, K1A 0R6
(email: julio.valdes@, alan.barton@ and robert.orchard@nrc-cnrc.gc.ca).

increasingly high dimensional theoretical Pareto fronts (3, 4
and 10) derived from a test problem (DTLZ2) (also cov-

ered by [9]), and ii) the comparison of approximations to

the Pareto front of a real problem, obtained with different

evolutionary computation-based multi-objective optimization

methods.

II. MULTI-OBJECTIVE OPTIMIZATION

Multi-objective optimization (MOO) studies optimization

problems involving more than one objective function and the

goal is to find one or more optimal solutions. Most real world

problems involve multiple objectives and typically different

solutions lead to conflicting scenarios: a solution which is

optimal in the sense of a given objective might not be from

the point of view of one or more of the other objectives

[17]. Therefore, the goal is to find a set of optimal solutions

representing the best trade-offs, from which the user, with

further higher level information about the problem can make

a decision.

Most multi-objective algorithms use the concept of dom-

inance in their formulation. A solution
↼

x(1) is said to

dominate [18] a solution
↼

x(2) for a set of m objective

functions < f1(
↼

x), f2(
↼

x), ..., fm(
↼

x) > if

1)
↼

x(1) is not worse than
↼

x(2) over all objectives.

For example, f3(
↼

x(1)) ≤ f3(
↼

x(2)) if f3(
↼

x) is a

minimization objective.

2)
↼

x(1) is strictly better than
↼

x(2) in at least one objective.

For example, f6(
↼

x(1)) > f6(
↼

x(2)) if f6(
↼

x) is a

maximization objective.

Accordingly, the goals of multi-objective optimization can

be summarized [17] as: i) to find a set of solutions as close

as possible to the Pareto-optimal front, and ii) to find a set

of solutions as diverse as possible.

It is natural to use use evolutionary algorithms for solving

multi-objective optimization problems (MOEA in general

and MOGA if based on genetic algorithms), because an

evolutionary algorithm constructs a population of individuals,

which evolve through time until stopping criteria are satis-

fied. Several algorithms inspired by this principle have been

proposed. Among them, VEGA [19], HLGA [20], NSGA-

NSGA-II [21], [22], [23], SPEA [24] and many others.

III. VISUALIZING OBJECTIVE SPACES

General approaches for constructing m-dimensional

Pareto-optimal fronts [27] have been previously reported

in the literature for the purpose of systematically investi-

gating the properties of multi-objective evolutionary algo-

rithms (MOEAs) [28]. Some design characteristics of the



approaches for test problem construction are that they should

be: i) simple to implement, ii) scalable to any number of de-

cision variables and objectives and iii) lead to knowledge of

the exact shape and location of the resulting Pareto-optimal

front. However, once such a front has been constructed, either

theoretically [27] or empirically, it becomes of interest to

investigate its properties.

A. Space Visualization

There are many possible paradigms for creating visual

spaces within data mining. In particular Virtual Reality (VR)

is a suitable paradigm. It is flexible and allows the user to be

an active participant and control the information consump-

tion. Also it is very important that no special background

knowledge is required of the user. A virtual reality technique

for visual data mining on heterogeneous, imprecise and

incomplete information systems was introduced in [25], [26].

One of the steps in the construction of a VR space for

data representation is the transformation of the original set

of attributes describing the objects under study, often defining

a heterogeneous high dimensional space, into another space

of small dimension (typically 2-3) with intuitive metric

(e.g. Euclidean). The operation usually involves a non-linear

transformation; implying some information loss.

B. Space Taxonomy

From the point of view of the property(s) which the

objects in the space must satisfy, several paradigms can be

considered [31]:

• Unsupervised: The location of the objects in the space

should preserve some structural property of the data,

dependent only on the set of descriptor attributes.

• Supervised: The goal is to produce a space where

the objects are maximally discriminated w.r.t. a class

distribution.

• Mixed: A space compromising the two goals is sought.

Very often these two goals are conflicting.

In this study, unsupervised spaces are constructed which

preserves distance relationships between the elements of the

objective space [29], [26]. The mapping ϕ can be constructed

to maximize some metric/non-metric structure preservation

criteria for example by minimizing some error measure

of information loss [30]. If δij is a dissimilarity measure

between any two objects i, j in the high dimensional space

and ζivjv is another dissimilarity measure defined on objects

iv, jv (the images of i, j in the target space). A frequently

used error measure is:

Sammon error =
1∑

i<j δij

∑
i<j (δij − ζivjv )2

δij

(1)

C. Mapping Taxonomy

From the point of view of their mathematical nature, the

mappings can be:

• Implicit: the images of the transformed objects are

computed directly and the algorithm does not provide a

function representation.

• Explicit: the function performing the mapping is found

by the procedure and the images of the objects are

obtained by applying the function. Two sub-types are:

– analytical functions.

– general function approximators: neural networks,

fuzzy systems, or others.

D. Mapping Computation

Explicit mappings can be constructed in the form of

analytical functions (e.g. via genetic programming), or using

general function approximators like neural networks or fuzzy

systems. An explicit mapping (e.g. ϕ) is very useful. On one

hand, in dynamic data sets (e.g. incremental data bases) an

explicit transform ϕ will increase the update rate of the VR

information system. On another hand, it can give semantics

to the attributes of the VR space, thus acting as a general

dimensionality reducer.

Classical algorithms have been used for directly opti-

mizing Eq-1 and similar, like Steepest descent, conjugate

gradient Fletcher-Reeves, Powell, Levenberg-Marquardt, and

others. For this study, the Fletcher-Reeves method, which is

a well known technique used in deterministic optimization

[7] was used. It assumes that the function f is roughly

approximated as a quadratic form in the neighborhood of

an N dimensional point P and it uses the information given

by the partial derivatives of the original function f . This is

the conjugate gradient family of minimization methods and

requires an initial approximation to the solution (typically

random), which is then refined in a sequence of iterative

steps. The convergence of these methods is relatively fast, but

on many occasions the obtained solutions are locally optimal.

E. Object Representation using Alpha Shapes

In the ideal case of a multi-objective optimization with

m objectives, the Pareto front will be at most a m − 1
dimensional object as a locus of the non-dominated solutions

within the feasible space. For m = 2 it is a curve, for m = 3
a surface and for m > 3, it will be a hypersurface. When

high dimensional spaces are mapped to lower dimensional

spaces (in particular to 3-D for visualization) information

loss is inevitable. Typically this loss increases with the

number of objectives. In addition mapping the solutions on

the hypersurface of the m-dimensional Pareto front to a 3-D

surface will not be possible in general. Therefore, in general

the 3-D mapped m-D front will be a solid object. In [9] that

object is modeled by the convex hull of the 3-D images of

the m-D front solutions, in order to obtain a simple, unique

geometric object containing all of the optimal solutions.

However, a more general approach for representing the set

of mapped solutions is possible by relaxing the constraint

of the geometric object to contain all of them. In this way,

instead of a single object, a set of related objects spawning

a sequence ranging from all to none of the solutions will be

more helpful in understanding the structure and composition



of the m-D Pareto fronts and in decision making. The use

of alpha shapes for this purpose is particularly appealing.

The concept of alpha shapes formalizes the intuitive notion

of shape for spatial point set data and it is a generalization

of the convex hull [10], [11], [16]. A finite set of points

in 3-dimensional space and a real parameter alpha uniquely

define a so-called simplicial complex, consisting of vertices,

edges, triangles, and tetrahedra (a simplex is the convex hull

of a set of n + 1 affinely independent points, where n is the

dimension of the space). This is the alpha-complex of the

points and the alpha-shape is the geometric object defined

as the union of the elements in the complex. Thus, alpha

shapes generalize the notion of convex hull of the point set

and when varying the parameter alpha, it ranges from crude

to fine shapes. The most crude shape is the convex hull itself,

which is obtained for very large values of alpha. As alpha

decreases, the shape shrinks and develops cavities that may

join to form tunnels and voids. For sufficiently small alpha,

the alpha shape is empty. For each alpha, the alpha-complex

is a subcomplex of the 3-dimensional Delaunay triangulation

[12], [14]. In alpha-shapes, the parameter alpha controls the

maximum curvature of any cavity of the resulting object,

which consists of a number of straight edges and polygonal

faces [13]. Alpha shapes were computed for the 4-D and 10-

D Pareto fronts of the DTLZ2 test Problem as well as for

the 4-D approximations of the Pareto front obtained with

the HLGA, NSGA and VEGA algorithms applied to the

Knapsack problem.

IV. MAPPING COMPUTATION USING GENETIC

PROGRAMMING

Genetic programming (GP) techniques aim at evolving

computer programs. They are an extension of the Genetic

Algorithm introduced in [3] and further elaborated in [4], [5]

and [6]. The algorithm starts with a set of randomly created

computer programs. This initial population goes through

a domain-independent breeding process over a series of

generations. It employs the Darwinian principle of survival of

the fittest with operations similar to those occurring naturally,

like crossover, occasional mutation, duplication and gene

deletion. A computer program is understood as an entity

that receives inputs, performs computations which transform

these inputs and produces some output in a finite amount of

time. The operations include arithmetic computation (pos-

sibly involving many other functions), conditionals, itera-

tions, recursions, code reuse and other kinds of information

processing organized into a hierarchy. Genetic programming

combines the expressive high level symbolic representations

of computer programs with the search efficiency of the

genetic algorithm. For a given problem, this process often

results in an exact solution or if not, at least provides a

fairly good approximation. Those programs which represent

functions are of particular interest and can be modeled

as y = F (x1, · · · , xn), where (x1, · · · , xn) is the set of

independent or predictor variables, and y the dependent or

predicted variable, so that x1, · · · , xn, y ∈ R, where R are

the reals. The function F is built by assembling functional

subtrees using a set of predefined primitive functions (the

function set), defined beforehand. In general terms, the model

describing the program is given by y = F (�x), where

y ∈ R and �x ∈ R
n. Most implementations of genetic

programming for modeling fall within this paradigm but for

some problems vector functions are required. Recently a GP

based approach for finding vector functions was presented

[8]. In these cases the model associated to the evolved

programs is �y = F (�x). Note that these are not multi-objective

problems, but problems where the fitness function depends

on vector variables. The mapping problem between vectors

of two spaces of different dimension (n and m) is one of

that kind. In this case a transformation like ϕ : R
n → R

m

mapping vectors �x ∈ R
n to vectors �y ∈ R

m would allow a

reformulation of Eq. 1 as in Eq. 2:

Sammon error =
1∑

i<j δij

∑
i<j (δij − d(�yi, �yj))

2

δij

, (2)

where �yi = ϕ(�xi), �yj = ϕ(�xj).
The implication from the point of view of genetic pro-

gramming is that instead of evolving expression trees, where

there is a one-to-one correspondence between an expression

tree and a fitness function evaluation (the classical case), the

evolution has to consider populations of forests such that the

evaluation of the fitness function depends on the set of trees

within a forest [8]. In these cases, the cardinality of any forest

within the population is equal to the dimension of the target

space m.

A. Gene Expression Programming

Gene Expression Programming (GEP) [2] is one of the

many variants of GP and has a simple string representation

for the expression tree. Source code is available [1] and was

extended to evolve programs that represent vector functions.

In the GEP algorithm, the individuals are encoded as simple

strings of fixed length with a head and a tail, referred to as

chromosomes. Each chromosome can be composed of one or

more genes which hold individual mathematical expressions

that are linked together to form a larger expression.

To facilitate experimentation with the GEP algorithm, an

extension to an existing Java-based Evolution Computing

Research System called ECJ [1] from George Mason Uni-

versity has been made. ECJ has an infrastructure to support

various types of evolutionary computing, including Genetic

Programming (GP). The extension, ECJ-GEP, implements

almost all of the features of GEP addressing four basic types

of problem: function finding, classification, time series, and

logical. It supports a large set of fitness functions and allows

expressions to be created using many types of arithmetic

functions in such a way that further design modifications

are straightforward. The problem parameters that determine

which functions to use in expressions, how to perform

the evolutionary operations, the size of the population, the

number of generations to run, etc. are defined within param-

eter files. The system has been designed so that for most

problems no code should need to be written. However, for



those other problems, code may be incorporated in order to

address the special need (e.g. to generate data, do something

special with the fitness calculation, etc). There is a graphical

interface and in addition batch files may be constructed for

execution upon distributed systems (e.g. Condor: http:

//www.cs.wisc.edu/condor/) to allow for large scale

experimentation.

For the research described in this paper, a new idea led to

an extension of the GEP algorithm, whereby an individual

in the population may have multiple chromosomes (a vector

function). The chromosomes are independent but evolve

together from generation to generation. This supports the

population of forests needed for such problems.

B. A Theoretical Case: Test Problem DTLZ2

Test problem DTLZ2 [28] was chosen for the study, whose

fronts are segments of spherical surfaces with a straight-

forward generalization towards higher dimensional objective

spaces (hyperspherical surfaces) (Eq.3). A collection of 5

fronts with the following radii r = {1, 5, 10, 20, 50} in

objective spaces of dimension M = {3, 4, 5, 7, 10} were

generated. In all cases the dimension of the decision space

was kept the same as the corresponding objective space. For

each decision space a mesh of sampling points was generated

so that each decision variable xi ∈ [1, M − 1] was sampled

from a regular interval in the [0, 1] domain. If nj is the

number of sampling points along a given decision variable

in a j-dimensional decision space, then for each dimension

determined by 1/nj the number of points in the theoretical

front is nM−1
j . In the study j ∈ {3, 4, 5, 7, 10} and nj =

{5, 5, 3, 3, 3}. For M = 3 the sequence of theoretical Pareto

fronts is shown in Fig.1. The chosen design allows: i) the

simulation of a MO-process “converging” towards the first

front of the sequence (lower right) and ii) the reproduction

of the same type of relationship in dimensions larger than

3 which makes the interpretation of the obtained VR spaces

easier.

C. An Applied Case: The Knapsack problem

A 0/1 knapsack problem [32], [33], [34] is a real world

situation that consists of i) a set of items, ii) weight and profit

Fig. 1. An example of five theoretical 3-D Pareto fronts which correspond
to fronts generated from test problem DTLZ2. Left to right: fronts with radii
50, 20, 10, 5 and 1 respectively.

TABLE I

EXPERIMENTAL SETTINGS FOR GP-GEP.

GEP Parameter Experimental Values

No. Generations 100, 500 and 1000
Population Size 100, 200 and 500
No. Chromosomes / Individual 3
No. Genes / Chromosome 5
Gene Head Size 5
Linking function Addition
No. Constants / Gene 4
Bounded Range of Constants [1, 10]
Inversion Rate 0.1
Mutation Rate 0.044
is-transposition Rate 0.1
ris-transposition Rate 0.1
One-point Recomb. Rate 0.3
Two-point Recomb. Rate 0.3
Gene Recombination Rate 0.1
Gene Transposition Rate 0.1
rnc-mutation Rate 0.01
dc-mutation Rate 0.044
dc-inversion Rate 0.1
8 Functions(weight) add(2), sub(2), mult(2),

div(1), pow(1), exp(1),
sin(1), cos(1)

associated with each item, and iii) an upper bound for the

capacity of the knapsack. The task is to find a subset of items

which will be placed within the knapsack, which maximizes

the total profit in the subset (the total weight must not exceed

the given capacity of the knapsack). This problem is extended

to a the multi-objective case by allowing a given number of

knapsacks.

This problem is included in the Test Problem Suite for

Multiobjective Optimizers [35]. In particular, data and runs

using a collection of different MOGA algorithms are com-

piled for the 750 items, 4 knapsacks case. From them, the

results corresponding to objective spaces generated with the

HLGA [20], NSGA [21] and VEGA [19] algorithms for

optimization run 1 were used in this study (files HLGA.1,

NSGA.1 and VEGA.1). A broad comparative study including

these and other algorithms has been made [24]. The 4-

dimensional objective spaces represent approximations to

the Pareto front obtained with the algorithms mentioned

and they were represented as VR 3-D spaces using the

approach described here. The idea was to study the behavior

of the proposed MO visualization technique using non-

theoretical objective spaces. In this way, a visual comparison

between the results given by the HLGA, NSGA and VEGA

is possible, complementing the numeric comparison already

made [24].

V. RESULTS

All VR spaces were computed from Eq.1 using Euclidean

distance as the dissimilarity measure. Regular sampling along

each dimension in the m-space leads to an exponential

growth in the number of points; therefore a subset of

them were used in the computation. The leader clustering

algorithm [36] was used for extracting a kernel set ensuring

that no similarity structure was lost beyond a specified

threshold. Table II shows the thresholds and the resulting



Minimize f1(x) = (1 + g(xM ))cos(x1π/2)cos(x2π/2) · · · cos(xM−2π/2)cos(xM−1π/2)

Minimize f2(x) = (1 + g(xM ))cos(x1π/2)cos(x2π/2) · · · cos(xM−2π/2)sin(xM−1π/2)

Minimize f3(x) = (1 + g(xM ))cos(x1π/2)cos(x2π/2) · · · sin(xM−2π/2)

...
... (3)

Minimize fM−1(x) = (1 + g(xM ))cos(x1π/2)sin(x2π/2)

Minimize fM−1(x) = (1 + g(xM ))sin(x1π/2)

0 ≤ xi ≤ 1, for i = 1, . . . , n

g(xM ) =
∑

xi∈xM

(xi − 0.5)2

(a) Convex hulls corresponding to the sequence of Pareto
fronts.

(b) Alpha shapes corresponding to the sequence of Pareto
fronts.

Fig. 2. Comparison of two representations (convex hulls and alpha shapes) after the 4-D test problem DTLZ2 has been mapped down to 3-D (using
FRPR). Fronts constructed with radii 50, 20, 10, 5 and 1 are shown.

(a) Convex hulls corresponding to the sequence of Pareto
fronts.

(b) Alpha shapes corresponding to the sequence of Pareto
fronts.

Fig. 3. Comparison of two representations (convex hulls and alpha shapes) after the 10-D test problem DTLZ2 has been mapped down to 3-D (using
FRPR). Fronts constructed with radii 50 and combined radii (20, 10, 5 and 1) are shown.



(a) Convex hulls corresponding to the sequence of Pareto
fronts.

(b) Alpha shapes corresponding to the sequence of Pareto
fronts.

Fig. 4. 4 Knapsacks Problem with 750 items. The 4-D objective space has been mapped down to 3-D (using FRPR) and shows solution sets for each of
the 3 fronts obtained separately from 3 different multi-objective algorithms. Improving from left to right: H: HLGA algorithm, V: VEGA algorithm and
N: NSGA algorithm.

number of points for each problem. Gower’s coefficient [37]

was used as a similarity measure because of its simplicity

and insensitivity to scaling differences among the decision

variables.

An implicit mapping for Eq.1 was computed using the

classical Fletcher-Reeves-Polak-Ribiere (FRPR) conjugate

gradient algorithm and the previously described GP-GEP

method with experimental settings described in Table I.

For the former, the best solution from 100 random initial

configurations was obtained.

The mapping errors (all small) are shown in Table III. They

indicate that the visible structure in the VR space should be

very similar to that of the original space (objective space).

With the only exception being that of the DTLZ2 (4-D)

problem, where the FRPR algorithm outperformed GP-GEP

by a factor of two, both algorithms produced similar results.

However, GP-GEP provides explicit mapping equations for ϕ
in Eq.2. The two computed equations (Eq.4 and Eq.5) are for

the DTLZ2 (4-D) and Knapsack (4-D) problems respectively,

where fi(·) is the i-th objective function for the related multi-

objective problem. Both equations are non-linear, with Eq.5

having higher complexity.

A comparison of two visual representations (convex hulls

vs. alpha shapes) for the Pareto fronts of the DTLZ2 (4-D)

problem is shown in Fig. 2 with associated alpha values for

each problem shown in Table IV. The two representations in

Fig. 2 clearly indicate the sizes and relative sequencing of

the fronts, with the alpha shape representation being superior

when both are compared with DTLZ2 (3-D) in Fig. 1, whose

4-D extension is being analyzed.

For the DTLZ2 (10-D) test problem the fronts cannot be

mapped to open surfaces because of severe dimensionality

reduction. However, the alpha shape still exhibits a hollow

discontinuous outer surface (front radius= 50) wrapping a

core composed of all other fronts (merged by the leader

algorithm).

For the 4-D Knapsack problem (Fig. 4) the regions of

data concentration are clearly indicated by the alpha shape,

whereas outliers distort the convex hull.

The spaces obtained for DTLZ2 (4-D) with the FRPR

and GP-GEP algorithms are shown in Fig. 5. Not only do

they clearly exhibit the expected relationships between the

individual Pareto fronts (Fig. 1) but they look very similar,

despite GP-GEP having twice as large an error.

For the 4-D Knapsack problem the VR spaces for both

algorithms are again very similar (Fig. 6), as expected

because of their comparable error.

ϕx = kx1 + f3(·) (4)

ϕy = (f1(·) − ((f2(·) ∗ f1(·))/(f1(·) + ky1)))

+ ky2 + (ky3 ∗ f2(·))

ϕz = kz1 + f4(·)

where kx1 = 24.1447678, ky1 = 8.5520020, ky2 =
5.5644552, ky3 = 1.0908070, and kz1 = 12.7015751.

ϕx = (kx1 ∗ f4(·)) + kx2 (5)

+ cos(f3(·)) + ((kx3 + f2(·))/f2(·)
f3(·))

ϕy = f3(·) + cos(cos((f4(·) ∗ f2(·))
sin(f4(·))))

+ ky1 + cos(f1(·))
f1(·) + (f3(·)/ky2)

ϕz = kz1 + sin((kz2 − f2(·))) + f2(·) + (f1(·)/kz3)

+ (kz4 − (cos(f1(·)) + (f4(·)/f1(·))))

where kx1 = −1.099411,kx2 = 7.800379, kx3 =
16446.856860, ky1 = 4.421008,ky2 = 8.823775, kz1 =
2.145460,kz2 = 8.493845, kz3 = 3.746729, and kz4 =
2.552130.



(a) Fletcher-Reeves-Polak-Ribiere classical optimization
algorithm

(b) Genetic Programming (Gene Expression Program-
ming) evolutionary algorithm

Fig. 5. Comparison of two algorithms (FRPR and GP-GEP) for computing the mapping from the 4-D version of test problem DTLZ2 down to 3-D.
Fronts constructed with radii 50, 20, 10, 5 and 1 respectively.

(a) Fletcher-Reeves-Polak-Ribiere classical optimization
algorithm

(b) Genetic Programming (Gene Expression Programming)
evolutionary algorithm

Fig. 6. Comparison of two algorithms (FRPR and GP-GEP) capable of computing a mapping for the 4 Knapsacks Problem with 750 items, which is a
4-D objective space, down to 3-D. Fronts obtained from 3 multi-objective algorithms are shown in addition to the respective solution locations. (H: HLGA
algorithm, N: NSGA algorithm, and V: VEGA algorithm)

TABLE II

LEADER ALGORITHM RESULTS FOR LARGE PROBLEMS

Number of Similarity Number of
Dimension Objects Threshold Leaders

DTLZ2 Front’s (10-D) 98415 0.94 309
Knapsack HLGA’s Front (4-D) 225 0.945 123
Knapsack NSGA’s Front (4-D) 314 0.945 126
Knapsack VEGA’s Front (4-D) 196 0.945 96

VI. CONCLUSIONS

Two multi-objective optimization problems, one theoret-

ical (DTLZ2 4-D and 10-D) and one real (4-D Knapsack

problem), have been investigated from the point of view of

the construction of visual representations (using Virtual Re-

ality) for high dimensional Pareto fronts or their approxima-

TABLE III

RESULTS FOR THE COMPUTATION OF THE NEW SPACE USING

CLASSICAL OPTIMIZATION AND GENETIC PROGRAMMING

Problem FRPR GP-GEP

DTLZ2 Fronts (4-D) 0.003289 0.006533
DTLZ2 Fronts (10-D) 0.056397 0.087126
Knapsack Fronts (4-D) 0.011820 0.017191

tions. Unsupervised similarity preservation mappings (using

classical optimization and genetic programming separately)

led to good VR spaces (of low error). Therefore, construction

of convex hulls and alpha shapes exhibiting compatible

properties to that of the theoretical or expected nature of

the Pareto fronts was obtained. The use of a combination of

uniquely defined representations (convex hulls) with that of



TABLE IV

ALPHA VALUES USED FOR COMPUTING THE SHAPES IN FIGS. 2, 3 AND 4

Problem Critical α (αCr) Used

DTLZ2 Radius 1 Front (4-D) 3.214063 αCr

DTLZ2 Radius 5 Front (4-D) 113.515 αCr

DTLZ2 Radius 10 Front (4-D) 1862.33 αCr

DTLZ2 Radius 20 Front (4-D) 10054.7 αCr

DTLZ2 Radius 50 Front (4-D) 97113.4 75000

Knapsack HLGA’s Front (4-D) 8.42387 106 3423870

Knapsack NSGA’s Front (4-D) 3.79343 107 20934300

Knapsack VEGA’s Front (4-D) 1.41452 107 7145200

subjective representations (alpha shapes) leads to alternative

visual constructs for aiding decision makers when consider-

ing sets of high dimensional Pareto optimal solutions. The

obtained visual representations are robust because spaces

of similar spacial structure are expressed despite important

deviations in mapping errors. Further, evolutionarily obtained

explicit mappings (via genetic programming) provide further

insight over implicit mappings because the influence of the

different objectives may be studied analytically. These are

preliminary results for which further experimentation would

be required.
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