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Monotone Pieces Analysis for Qualitative Modeling
Yuhong Yan 1 and Daniel Lemire 2 and Martin Brooks 3

Abstract. It is a crucial task to build qualitative models of industrial
applications for model-based diagnosis. A Model Abstraction proce-
dure is designed to automatically transform a quantitative model into
qualitative model. If the data is monotone, the behavior can be eas-
ily abstracted using the corners of the bounding rectangle. Hence,
many existing model abstraction approaches rely on monotonicity.
But it is not a trivial problem to robustly detect monotone pieces from
scattered data obtained by numerical simulation or experiments. This
paper introduces an approach based on scale-dependent monotonic-
ity: the notion that monotonicity can be defined relative to a scale.
Real-valued functions defined on a finite set of reals e.g. simula-
tion results, can be partitioned into quasi-monotone segments. The
end points for the monotone segments are used as the initial set of
landmarks for qualitative model abstraction. The qualitative model
abstraction works as an iteratively refining process starting from the
initial landmarks. The monotonicity analysis presented here can be
used in constructing many other kinds of qualitative models; it is ro-
bust and computationally efficient.

1 INTRODUCTION

Qualitative models are more suitable than classical quantitative mod-
els in solving many problems. Qualitative models are used in tasks
such as diagnosis [18], explaining system behavior [9, 14], and de-
signing novel devices from first principles [21]. Building a qualita-
tive model for a complex system requires significant knowledge and
is a time consuming process. Current research efforts are on auto-
matic generation of qualitative models from numerical models . The
numerical data originate either from simulation or sensors. Many
qualitative models have been proposed with different tasks in mind,
for exampleFinite Relation Qualitative Model(FRQ) [18], Quali-
tative Derivative Model(QD) [6], or Qualitative Constraint Func-
tion (QCF) [19]. Studying the different model abstraction processes,
we find that the monotonicity of the numerical data plays an impor-
tant role in constructing the qualitative models. Indeed, in [18, 22]
where the FRQ is generated from simulation data by iteratively re-
fining partitions of the data, the monotone pieces determine the ini-
tial landmarks for the refining procedure. Also, in [6], the analysis
relies on “signs of deviation” [∆y] taking values in +, -, 0.Numerical
Analysis provides some techniques, like linear regression and linear
splines [13], but these methods are relatively expensive or approxi-
mate, so that better approaches are possible. [19] presents a machine
learning approach which is even more expensive to use and has not
shown to be able to deal with complex functions.
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This paper presents one robust and inexpensive solution to the
problem of piecewise monotone segmentation of numerical data.
Scale-dependent monotonicity as defined in [2] “ignores” numeri-
cal differences smaller than a given scale or “tolerance”δ. For a
given scaleδ > 0, the numerical data can be partitioned into in-
tervals upon each of which the function is “quasi-monotone” or
δ-monotone. Compared with many common numerical segmenta-
tion methods,δ-monotonicty analysis is computationally efficient
and scalable (O(n)), and the number of monotone segments are in-
variant under different implementations, which makes it suitable for
constructing qualitative models. The physical meaning ofδ is the
magnitude of noise tolerated by the qualitative model. Based onδ-
monotonicity analysis, we develop an automatic method to abstract
an FRQ model from simulation data.

2 MONOTONICITY ANALYSIS FOR
CONSTRUCTING QUALITATIVE MODELS

Monotonicity analysis is critical for constructing some types of qual-
itative models. This section shows three examples, FRQ, QD and
QCF, among which FRQ and QD are used for model-based diagno-
sis and QCF is used for explainig system behavior. Because FRQ will
be used in section 4, we describe it in detail.

The Finite Relations Qualitative (FRQ) Model is a mapping be-
tween two sets of intervals:

Definition 1 A Finite Relation Qualitativemodel q is a mapping
between two sets of intervalsΨ1 andΨ2: q : Ψ1 7→ Ψ2.

The source setΨ1 = [lm1
i , lm

1
i+1] is the set of qualitative inputs

to the model, the target setΨ2 = [lm2
k, lm2

k+1] is the set of qualita-
tive outputs from the model, the valueslmi are calledlandmarks.

The mapping is a multiple-valued relation, i.e.∀[lm1
i , lm

1
i+1] ∈

Ψ1, q : [lm1
i , lm

1
i+1] 7→ Ψ

′
2 ⊂ Ψ2, where Ψ

′
2 is

empty or has one or more elements. If we can enumerate
the mapping pairs,q can be presented in set of tuples, as:
{([lm1

i , lm
1
i+1], [lm

2
j , lm

2
j+1]), . . . , ([lm

1
p, lm1

p+1][lm
2
q, lm

2
q+1])}

Definition 1 can be extended to the multi-dimensional case. The
intervals used here are closed, unlike the traditional qualitative pre-
sentation as in [14]. Use of open versus closed intervals depends on
the problem. . Other than in the Qualitative Simulation (QSIM) [14],
where the landmarks are the solutions or other significant values of
the Qualitative Differential Equations (QDE), the real valued land-
marks in our application of model-based diagnosis do not have sig-
nificant meanings. And the intervals are treated as strings in the di-
agnosis engine. Thus open or closed intervals make no difference.

From the numerical modely = f(x) to the qualitative model, we
need a qualitative model abstraction procedure:

Definition 2 A system y = f(x) with ordered landmarks
x1, x2, . . . , xn ∈ Domain(f), and y1, y2, . . . , ym ∈



Range(f). A qualitative abstraction q(f) is a mapping
from set Ψ1 = [x1, x2], [x2, x3], . . . , [xn−1, xn] to set
Ψ2 = [y1, y2], [y2, y3], . . . , [yn−1, yn]:

q(f) : [x1, x2], [x2, x3], . . . , [xn−1, xn] 7→
[y1, y2], [y2, y3], . . . , [yn−1, yn],

such that∀[xi, xi+1], q(f) : [xi, xi+1] 7→ [yj , yj+1] iff ∃x, y such
that f(x) = y andxi ≤ x ≤ xi+1, yj ≤ y ≤ yj+1. A qualitative
abstractionq(f) provides a qualitative model.

Going from f to q(f) is a discretization procedure [18, 22]. If
f is monotone, we can determine the landmarks as the corners of
the bounding rectangle off ; that is, the smallest rectangle� =
[xa, xb] × [ya, yb] such thaty = f(x)

∧
xa ≤ x ≤ xb ⇒ (x, y) ∈

�. But robustly detecting monotone pieces from discrete simulation
data is not a trivial problem. [18] limits the algorithm to monotone
functions or monotone segments of a function. With the monotonic-
ity constraint, the tuples are determined by the bounding landmarks
(e.g. the corners of the rectangle). However, they [18] assume that
monotonicity can be determined from the value of derivatives com-
puted numerically from the discrete simulation data. We argue that a
derivative-based approach is not sufficiently robust, because discrete
simulation data may contain numerous small-amplitude numerical
disturbances, which will result in many meaningless monotone seg-
ments. [22] uses random points to probe the extrema between the
intervals; this pragmatic solution assumes a large number of random
points. The extrema can be missed and the abstracted qualitative be-
havior may not be “sound”.

[6] presents a method to abstract qualitative deviation models
(QD) from numerical models. Iff is monotone, the sign of deviation
[∆y] from a reference pointxref is defined as +,-, or 0, according
to whetherf is increasing, decreasing or flat. For example, iff is
monotone increasing, we have[∆y] = sign(f(x) − f(xref )) =
sign(x − xref ) = [∆x]. If f is not monotone, [6] suggests that the
domain has to be split in sub-intervals so thatf is monotone on each
sub-interval. However, monotonicity is a strong requirement, even on
sub-intervals. It may result in a large number of monotone pieces, due
to numerical disturbances caused by noise or computational round-
off errors.

The two approaches discussed above illustrate the importance of
monotonicity analysis and the associated problem of robustness; we
now discuss a third approach having more robustness but lacking
in scalability. Inductive learning is used in [19] to automatically
construct qualitative models from quantitative examples. The mono-
tonicity definition in [19] has the same spirit as partial derivative: the
function is strictly increasing (decreasing) in its dependence on the
i-th variable. The induced qualitative model is a binary tree, called
a qualitative tree, which contains internal nodes (called splits) and
qualitatively constrained functions at the leaves. A split is a partition
of a variable. The qualitative constraint functions (QCF) define qual-
itative constraints on the function’s range. The learning algorithm
QUIN, a top-down greedy approach similar to ID3, is used. Given
examples as training data, QUIN chooses the best split by comparing
the generated partitions: for every possible split, it splits the exam-
ples into two subsets, finds the best QCF in both subsets, and selects
the split which minimizes the tree error-cost (a utility function). It
puts the best split at the root of the tree and recursively finds subtrees
for the corresponding subsets, until the best split does not improve
the tree error-cost. QUIN is an unsupervised learning algorithm. It
determines the landmarks for the splits. QUIN claims to handle noisy
data, and at least in simple domains, produces qualitative trees that

correspond to human intuition. However, the training data in QUIN
is composed of all possible pairs of points from the quantitative data.
Thus, forn points, the learning set hasn(n− 1) samples, thus con-
straining how bign can be. The example in [19] uses only 12 points
to estimate three segments of linear functions, which gives 4 points
to each linear segment. It is dubious that with such limitation on
the sampling rate, this method is able to deal with more complex
functions. Discrete data from a simulation environment may contain
thousands of data points. The efficiency of QUIN on simulation data
is not proven.

In response to the problems of robustness and scalability that
plague other methods, the next section presents a method for robustly
partitioning scattered data into monotone segments in linear time.

3 SCALE-DEPENDENT MONOTONICITY

3.1 δ−monotonicity

Given a finite series of measurementsx1, x2, . . . , xn over an inter-
val I (a “time series”), we want to partitionI into a small number
of subintervals where for each subinterval the measures either go up
or down, in a general sense. Then, qualitatively, we can describe the
measurements over each subinterval as a range of measured values
which either increase or decrease. Of course, we desire noise tol-
erance, so that small perturbations do not result in numerous small
subintervals. For example, we might say that over a given interval
where values generally increase, it is acceptable for the measure to
drop byδ once, whereδ is some small parameter. Also, we want to
be able to compute these segments on-line, in timeO(n), using very
little memory (O(1)). For example, Fig. 1 depicts a data set made of
a few “δ−monotone” segments.
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Figure 1. Plot of measurements where the end points of each
delta−monotone segment are indicated by large filled circles. As can be seen
on the figure, we tolerate small variation in the general upward or downward
trend. The function ise−x sin(x2) with white noise having a standard devi-
ation of 0.01. The parameterδ for this example is 0.05. Z0 and extrema are
computed by our algorithms.

We want to be able to determine at any given point whether the
measurements are going up or down in a robust fashion. One might
be tempted to first use linear splines to approximate the data [13],
and then segment the domain based on the sign of the slope in a
neighborhood of the data point. As long as the spline function re-
mains relatively close to the data points, this should offer a reason-
able indication as to whether the measures are going up or down. Al-
ternatively, we could use linear regression to find segments that are
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closely approximated by a straight line; that is, we no longer require
approximation by a continuous linear spline, but only piecewise ap-
proximation by straight lines forming a possibly discontinuous func-
tion. However, such linear fitting algorithms are relatively expensive
or approximate [13]. Specifically, no knownO(n) algorithm finds a
linear approximation with the least number of segments given some
toleranceδ.Moreover, as can be seen in Fig. 1, thefunctionresulting
from the measurements can have somecurvature, forcing the curve
fitting algorithm to use several segments even if the measures are
consistently going upward (or downward). Hence, the linear spline
approach will lead to needlessly expensive algorithms.

A naïve approach to the segmentation problem might be as fol-
lows. Given an ordered set of measurements{xk} and some small
tolerance valueδ > 0, we say that the data points arenot going down
or is upward monotone, if consecutive measures do not go down by
more thanδ, that is, are such thatxi − xi+1 > δ. However, this def-
inition is not very useful because measures can repeatedly go down
and thus the end value can be substantially lower than the start value.
A more useful definition ofupward monotonicitywould be to require
that we cannot find two succesive measuresxi andxj (j > i) such
thatxj is lower thanxi by δ (xi − xj > δ). This definition is more
useful because in the worse case, the last measure will be onlyδ
smaller than the first measure. However, we are still not guaranteed
that the data does in fact increase at any point. Hence, we add the
constraint that we can find at least two successive measuresxk and
xl (l > k) such thatxl is greater thanxk by at leastδ (xl−xk ≥ δ).

To summarize, given some valueδ > 0, we say that a sequence
of measures isupward δ-monotoneif no two successive measures
decrease by as much asδ, and at least one pair of successive measures
increases by at leastδ. Similarly, we say that a set of measures is
downwardδ-monotoneif no two successive measures increase by as
much asδ, and at least two measures decrease by at leastδ.

Observe that the proposed definition for robust monotonicity
doesn’t depend on thex-axis metric (distance between measured
events), but only on the metric on the measured values. Linear
splines, on the other hand, would require metrics on both thex-axis
and the measured values, which is another argument for using our
simpler definition. Then again, with the proposed definition, it is pos-
sible to use thex-axis metric to eliminate segments that are too small,
but doing so does not complicate the algorithms and can be done at a
later stage.

This generalized definition of monotonicity was introduced in [2]
using δ−pairs: aδ−pair is a pair of successive data pointsxi, xj

(j > i) such that|xi − xj | ≥ δ, and for anyk such thati < k < j
then|xk − xi| < δ and|xk − xj | < δ (see Fig. 2). The direction of
a δ−pair isupward (positive) if xj > xi anddownward(negative)
if xi > xj . Notice thatδ−pairs having opposite directions cannot
overlap.

A sequence of successive measurementsxi, xi+1, . . ., xj is
δ−monotone if it contains at least oneδ−pair and all δ−pairs
have the same sign. We say that the measurements areupward
δ−monotone (positive) if allδ−pairs are positive anddownward
δ−monotone (negative) if allδ−pairs are negative. Aδ−structure
is a disjoint partition of the measurements intoδ−monotone sets of
alternating sign. For a given sequence of measurements, there may
be severalδ−structures: think of a curve going up, then flat, and then
down again – does the flat part of the curve belong to the first or last
segment? However, despite some degree of freedom in setting the
boundaries betweenδ−monotone segments, allδ−structures have
the same number of segments. Aδ−structure can be computed in
linear time (O(n)) and constant space (O(1)) by scanning sequen-

δ

δ

δ−pair

Figure 2. Example of aδ−pair: data points are circles; the arrows indicate
the size ofδ.

tially through the measurements, starting a new segment every time
we encounter aδ−pair having sign opposite to that of the current
segment.

3.2 Multidimensional Case

In a multidimensional case, we can fix all of the dimensions but
two and define monotonicity over the remaining two degrees of free-
dom using the above approach; a similar approach is used to define
monotone curves [1, 7, 10]. However, it may be preferable to look
at more general definitions of monotonicity over multidimensional
spaces [3–5, 11, 15, 20].

3.3 Choosing the Toleranceδ

As the next proposition shows,δ−monotonicity is robust under white
noise. As long asδ is chosen to be sufficiently larger than the noise
level, it is unlikely that we will detect spurious segments.

Proposition 1 Given a pair measured valuesx1 < x2 with
x2 − x2 ≥ δ, then for any tow independently drawn samples
epsilon1, epsilon2 from the normal distributionN(0, σ), the prob-
ability thatx1 + ε1 > x2 + ε2 is P (|N(0, 1)| > δ√

2σ
).

Proof. The proof relies on the fact that the subtraction or addition
of two normal distributions with varianceσ2 is a normal distribution
with variance2σ2 [16]. SinceN(0, σ)−N(0, σ) = N(0,

√
2σ), we

have

P (|N(0, σ)−N(0, σ)| > δ) = P (|N(0,
√

2σ)| > δ)

andP (|N(0,
√

2σ)| > δ) = P (|N(0, 1)| > δ√
2σ

).

Notice thatP (|N(0, 1)| > δ√
2σ

) goes down to zero exponentially
as the noise levelσ goes down, hence the robustness. For a more
general results, usingn samples, we would need to ask for the prob-
ability thatxn + εn > max{x1 + ε1, . . . , xn−1 + εn−1} or simply
εn > max{ε1, . . . , εn−1}. However,max{ε1, . . . , εn−1} is given
by the Gumbel Extreme Value Distribution. Detailed analysis is left
for a future paper.

One problem that arises when constructing a qualitative model
is the choice ofδ . If δ is chosen too small, then the resulting
δ−structure has many segments, not much noise resilience, and the
qualitative model becomes too complex; ifδ is chosen too large, then
theδ−structure does not capture the piecewise monotone behavior of
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the data upon which it is based, and the model is an oversimplifica-
tion.

When solving this problem, one may gain insight by consider-
ing the range ofδ−structures, asδ varies from 0 to∞. At scale
δ = 0, the δ−structure’sδ−monotone segments are exactly the
data’s (ordinary) monotone segments. For measurement sequenceF ,
let |F | = max F − min F . For δ > |F |, the δ−structure has no
alternating segments, i.e. all information aboutF has been lost. Asδ
moves upward within the interval0 ≤ δ ≤ |F |, the number of alter-
nating segments inF ’s δ−structure decreases monotonically. For a
givenδ, when theδ−structure hasN alternating segments, then there
existsε > 0 such that the(δ + ε)−structure hasN alternating seg-
ments, but this is not necessarily the case forF ’s (δ−ε)−structure. In
other words, the set of allδ for whichF ’s δ−structures have the same
number of alternating segments is a half-open interval, closed below
and open above. Thus, there is a leastδ for which F ’s δ−structure
has no more than any given number of alternating segments. Thisδ
is acritical delta for F . F has finitely many criticalδs; they consti-
tute the entire set from which one needs to pick when choosingδ for
construction of a qualitative model. The set of all critical deltas for
F can be computed in constant space with time proportional to the
square of the number of data points inF .

In other words, if we don’t know whichδ to choose, presumably
because we have no good estimate of our noise level, but we have
some idea of the expected number of segments, then we can adjust
δ so that we have at most the number of expected segments. This
method will work well if the noise does not have any significant spike
of an amplitude such that it creates false segments even for relatively
largeδs; hence it will work well if the noise is mostly white noise.

3.4 Joint δ−Structures

Suppose we have several sequences of measurementsF, G, H, . . .
over the same interval. For a givenδ, we haveδ−structures for each
one of those. Given several partitions of an interval, a joint a par-
tition is a partition such that its closure under unions contains all
sets of all partitions. We can find a joint partition simply by con-
sidering the closure of the sets under intersection. However, because
δ−structures are not unique, it is possible for different joint partitions
to contain different numbers of segments depending on the choice
of δ−structures. However, when considering all possible joint parti-
tions, there are joint partitions among them having a minimal num-
ber of segments. We say that a joint partition of theδ−structures is a
joint δ−structure if it contains this minimal number of segments. In
this sense, the number of segments in a jointδ−structure is indepen-
dent of the algorithm or specific implementation used. A linear time
algorithm to compute a jointδ−structure is obtained by simultane-
ously computingδ−structures for each of measurement sequences
such that segments end at the same sample whenever possible.

Based on the above analysis, we have developed two algorithms.
The first returns the initialδ−monotone segment, the second one
computes the remainingδ−monotone segments. Due to space con-
straints, they are omitted. Figure 1 illustrates the results of the two
algorithms on one function.

4 BUILDING FINITE RELATION
QUALITATIVE MODEL FOR DIAGNOSIS
USING δ-MONOTONE ANALYSIS

A qualitative model is a description of the system that covers all
physically possible situations and that is as concise as possible with

respect to the purpose of model-based problem solving. In this sec-
tion, we develop a method to abstract FDQ models from simulation
data for model-based diagnosis. Model-based diagnosis uses a model
of normal system operation, and infers the faulty components which
cause a discrepancy between the model’s predicted measurements
and those observed by sensors. The diagnosability of a fault is deter-
mined by the different projections of the faulty behavior and the nor-
mal behavior on the observable variables [8]. On one hand, a qualita-
tive model should be fine enough to distinguish the two behaviors. On
the other hand, the qualitative model should be abstracted enough to
include only the information relevant the diagnosis task context [17,
p.56]. As we know, a generic qualitative model for diagnosing all
faults in all contexts does not exist [18], since this would require in-
finite information. Therefore the solution is to design a method to
abstract a qualitative model for diagnosing a given set of faults in
given system contexts.

4.1 Model Abstraction based on Detectability
Analysis

Detectability analysis answers the question whether and under which
conditions a faulty and normal system behavior can be discrimi-
nated. Intuitively, a fault is discriminable when the faulty behavior
is disjoint from the normal behavior, and the discrepancy is pro-
jected on some observables. [8] categories the relations of the two
modes into three classes: non-discriminable (ND), deterministically
discriminable (DD) and possibly discriminable (PD). A fault is de-
terministically discriminable if the projection of the faulty mode on
some observables is disjoint with the projection of the normal mode
on the same set of observables:

SITDD : Proj{obs1,...,obsi}(Rr) ∩ Proj{obs1,...,obsi
}(Rf ) = φ

(1)
In (1), Rr andRw are the normal and faulty models respectively.
{obs1, . . . , obsi}is the set of observables sufficient to detect the
fault, a subset of the total collection of observables. Under certain
conditions, if there is at least one observable such that the projec-
tions of the two modes can be differentiated, the fault is detectable.

The model abstraction is a iteratively refining process. It starts
from no partition, i.e. the variables take values from the whole do-
mains. The abstracted model is the coarsest in this case. If detectabil-
ity is not satisfied, the domain of a character variable (as in [8]) is
split into two sub-intervals by a newly generated landmark. And the
other variables are partitioned accordingly. In this manner, a finer re-
lation is derived. The detectability analysis is executed for each sub-
division. This procedure continues recursively until detectability is
satisfied within at least one subdivision, or the partition is finer than
a preset threshold (cf. section. 4.5).

The character variables are those variables causing the greatest
changes to the observables. Special techniques are needed to iden-
tify character variables. The causal ordering algorithm [12] can be
used for this purpose. In this paper, the character variables are cho-
sen manually. The selection of the minimal observables to detect the
fault is the sensor placement problem. Though we can combine the
sensor placement analysis with the abstraction procedure, we prefer
to keep the problem simple and concentrate only on the modeling
issues in this paper.

4.2 Qualitative Relation onδ-Monotone Segments

Section 3 presented the concept ofδ-monotonicity. On aδ-monotone
segment, the qualitative relation is determined in the following way.
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Assume known relationvj = f(vi) , wherevi has two adjacent
landmarkslmvi

p andlmvi
p+1; the landmarks ofvj can be determined

by the bounding rectangle:

lm
vj

q+1 := max(f(vi)), lmvi
p < vi < lmvi

p+1 (2)

lm
vj
q := min(f(vi)), lmvi

p < vi < lmvi
p+1 (3)

For simulated measurements, the noise is so small that the simu-
lation data can be considered close enough to the true behavior of
the system; thus the above formulas are sound abstractions. How-
ever, when using actual sensor data, the true behaviors may be dis-
guised by the noise. Depending on the nature of the noise, different
treatments are adapted. If the noise is low-amplitude, we can use
the jointδ-structure to give the best estimation of the behavior from
several measurements(cf. section 3.4), i.e identify the largest scale
δ such that each measurement sequence’sδ-structure has the same
number of alternating segments; we then use the average value and
location of the corresponding segments’ respective endpoints. Large-
amplitude outliers need to be removed prior toδ-monotone analysis.

For the multiple dimensional case, the partition ofvi is executed
safely at segments such thatvi-vj is δ-monotone, wherei 6= j. This
condition gives the initial landmarks (cf. section 4.3).

4.3 Initial Landmarks

For a system with behaviorR(V), the partition ofvi is executed
safely using segments such that every pairvi-vj is δ-monotone,
wherei 6= j. If v1 is chosen as the character variable to be split,
the initial landmarks ofv1 are determined by the segments of all
v1-vj pairs. For each pair of variablesv1-vj , δ-monotonicity gives
landmarks forv1, {lmv1

p,{v1,vj}
}, the overall landmarks forv1 is the

union of the sets:
S := ∪{lmv1

p,{v1,vj}
} (4)

4.4 Parameter Changes

In order to cover all the behavior, we need to simulate situations when
some parameters change; for example, changes of external tempera-
ture. We get a group of curves in this case. These curves compose a
shape. For an FRQ model, the qualitative description of the shape is
similar to the description of a curve, i.e. we express the shape as the
bounding rectangle. Then only the two envelope curves (say, c1 and
c2) determine the corners of the bounding rectangle. Assume c1 and
c2 areδ-monotone at[lmi, lmi+1] for variablevi, the landmarks for
vj are calculated as:

lm
vj

q+1 := max(lm
vj ,c1

q+1 , lm
vj ,c2

q+1 )

lm
vj
q := min(lm

vj ,c1
q , lm

vj ,c2
q )

wherelm
vj ,c1

q+1 , lm
vj ,c2

q+1 , lm
vj ,c1
q , lm

vj ,c2
q are calculated as in section

4.2.

4.5 Algorithm of Qualitative Model Abstraction

Integrating our solutions to all the issues described above, we de-
signed the following algorithm to abstract the qualitative model (see
Algorithm 1). In the algorithm,p is a tree structure to record the
partitions of character variables. The nodes on one layer record the
partitions of one character variable. For example, assumev1 is the

first character variable, each node on the first layer has an interval
[lmv1

p , lmv1
p+1]. The partitions of the children are the sub-partitions

of their parent. For example, assume the parent[lmv1
p , lmv1

p+1] has
a node[lmv2

q , lmv2
q+1], at the child, the model is partitioned fist by

[lmv1
p , lmv1

p+1], then by[lmv2
q , lmv2

q+1]. The leaves of the tree are la-
beled by the detectability in the partitioned region: DD means deter-
ministic diagnosable and ND means none diagnosable. If any leaves
are labeled DD or the partition is finer than threshold, the algorithm
stops refining the relation, and computes the qualitative relations at
each partition. Adjacent ND partitions are combined to simplify the
results. Notice that the refining procedure separates the DD region
gradually; we do not see “possible diagnosable” situations during
the refinement. (There is no “possible diagnosability” here.) The pre-
processing of dynamic models is not included in the algorithm. For
simplicity, the algorithm does not include treatment for parameter
changes.

Algorithm 1 Qualitative Model Abstraction.
- Vchar: the set of character variables
- Vobs : the set of observables
- Rr, Rf : the simulated normal and faulty behaviors.
- p: a tree to record partition of character variables
- D: the threshold of minimum interval

for onevi ∈ Vchar do
calculate initial landmarks{lmv1

p } for vi

the intervals of adjacent landmarks{[lmvi
p , lmvi

p+1]} are added
to each leaf node ofp
for each leaf inp do

calculateProjvj (Rr), P rojvj (Rw), for ∀vj ∈ Vobs

if detectable at one partitionthen
label the node DD

else if|lmvi
p , lmvi

p+1| ≥ 2 ∗D then
mid = (lmvi

p + lmvi
p+1)/2

add[lmvi
p , mid], [mid, lmvi

p+1] to p
else

label the leaf ND
if at least one leaf is labeled DDthen

break loop
merge ND partitions
get qualitative relations for each partition

5 EXAMPLE

A simple Air Conditioning system has 3 components, Blower, Dis-
tribution and Cabin. Figure. 3 shows the model in Matlab/Simulink
environment.pi is pressure,fi is airflow rate,E is the electric power

Figure 3. A Simplified AC System with 3 Components.

driving the blower. The flow rate and pressure inside the system in-
crease when the blower begins to work; they reach a stable point if

5



E is unchanged. Assume the fault is a leak in the cabin, the fault is
simulated as the increase of volume. The transient procedure of the
fault scenario is slower than the normal case, but both reach the same
stable point. It is a dynamic fault. We consider the detectability of
the fault. Assume any pressure is measurable if necessary. Pressure
is chosen because normally pressure is easier to measure than flow
rate. Sincep0 andp3 are equal to outside air pressure, they have no
influence on detectability. The setVo = {p1, p2, dp2}, wheredp2
is the derivative ofp2 to describe system dynamics, is the variables
crucial for detectability.dp2 is so calledpseudo variablein [? ]. It
is a special treatment for dynamic faults when using state-based di-
agnosis technique. We draw the projections ofp1-p2 andp1-dp2 for
both right and faulty scenarios and find that the two modes are close
to each other at the projection ofp1-p2, but no so close at the pro-
jection ofp1-dp2. Obviouslyp1 can be chosen as the character vari-
able, and the discrepancy of the two modes can be observed atdp2.
Figure. 4 shows the results of using algorithm 1 on the relation of

Figure 4. the relation ofp1-dp2 and the partitions. The solid curve is the
right behavior and the dotted curve is the faulty behavior. The landmarks are
the horizontal and vertical lines.

p1-dp2. Except the rightmost and leftmost intervals ofp1, all other
intervals are Deterministic Diagnosable regions. The landmarks of
other variables are computed accordingly not described in this pa-
per). Comparing with the algorithms in [22], algorithm 1 gives less
landmarks, thus the qualitative model is more parsimonious.

6 CONCLUSION

The initial landmarks resulting fromδ−monotonicity analysis are
minimal, which makes the resulting model parsimonious. The parsi-
mony also relies on the selection of character variables, which is a
topic for further study. Our monotonicity analysis can also be used
for constructing other qualitative models since it is computationally
efficient while being reasonably simple and robust.
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