
Publisher’s version / Version de l'éditeur:

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez

la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous
n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the
first page of the publication for their contact information.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

2nd IFAC Conference on Analysis and Design of Hybrid Systems [Proceedings],
2006

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

NRC Publications Archive Record / Notice des Archives des publications du CNRC :
https://nrc-publications.canada.ca/eng/view/object/?id=b4689f3b-f0f5-466e-90ce-1c2834448876

https://publications-cnrc.canada.ca/fra/voir/objet/?id=b4689f3b-f0f5-466e-90ce-1c2834448876

NRC Publications Archive
Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version.
/ La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version
acceptée du manuscrit ou la version de l’éditeur.

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Hybrid system control using an on-line discrete event supervisory

strategy
Millan, J.; O'Young, S.

HYBRID SYSTEM CONTROL USING AN

ON-LINE DISCRETE EVENT SUPERVISORY

STRATEGY

James Millan �, Siu O�Young ��.

� Institute for Ocean Technology, National Research

Council, St.John�s, NL, Canada
��Memorial University of Newfoundland, St.John�s, NL,

Canada

Abstract: This paper describes a technique for synthesizing controllers for hybrid
plants. Our modeling framework allows for the e¢cient online construction of
limited lookahead discrete abstractions of the nonlinear continuous dynamics of
the plant model. Discrete event supervisory controller synthesis techniques are
used to construct a controller based on a DES speci�cation and the abstracted
plant model. The controller is advanced in a moving horizon approach. The
modeling framework, synthesis techniques and the on-line computational strategy
are discussed. A simple illustrative example is presented in detail and a realistic
industrial application is outlined.

Keywords: Discrete-Event Systems, Control, Hybrid Systems, On-line Control,
Supervisory Control

1. INTRODUCTION

Theoretical developments in the area of hybrid
system control have yet to lead to the wide-
spread solution of any practical industrial prob-
lems. While hybrid system modeling is recognized
clearly as being central to future control develop-
ment, the intractability of computations, coupled
with a steep learning curve for control system
designers, have acted as a barrier to the adoption
of hybrid system theory by industry.

A variety of software tools are available for both
hybrid system analysis and veri�cation such as
HyTech (T.A.Henzinger et al. 1997), and Check-
Mate (Chutinan and Krogh 2003). In veri�cation
problems, the controller is assumed to be given.
Thus, the controller synthesis is a manual process
that relies upon the domain knowledge and in-
tuition of the designer. A MATLAB toolbox for
simulation and control synthesis for mixed logi-

cal dynamical (MLD) hybrid systems in discrete
time is available (Torrisi and Bemporad 2004).
In the case of simulation tools such as MATLAB
State�ow, the controller design is tested under a
variety of conditions to evaluate its safety and
correctness. Due to the ad-hoc choice of the test
conditions, this technique may miss the particular
combination of conditions that leads to design
failure. With hybrid veri�cation tools, the com-
putational burden of an exhaustive reachability
requires the use of simpli�ed continuous dynam-
ical models. Due to these limitations, the ad-hoc
simulation technique is the accepted industry so-
lution, which leaves two problems unsolved: How
does the designer take a speci�cation and produce
the design? And, how can the resulting design be
veri�ed to be correct?

This work attempts to answer both of these ques-
tions, by seeking a solution that is familiar to sys-
tem designers, automates the controller synthesis,

and veri�es the resulting controller design. The
approach is to harness the power of industrially
proven system modeling (simulation tools). The
nonlinear continuous models are wrapped in a
discrete abstraction layer that is based on event
detection. The discrete abstraction combined with
a DES speci�cation in a limited horizon reachabil-
ity computation, produces a discrete event (DE)
controller that is, within this limited space and
time, locally safe. Furthermore, a reduction in
computational complexity is achieved by exploit-
ing a lazy (just-in-time) synchronous composition
of the speci�cation and plant models at design
time. This scheme is implemented as an online
computation, in order for the controller operation
to be extended into an in�nite time horizon.

Limited lookahead (LL) supervisory control has
been extensively studied in a DES setting by
(Chung et al. 1992). In (Raisch and O�Young
1998), discrete abstractions based on the trun-
cated time history of discrete-time LTI continu-
ous models were used to synthesize DES super-
visory controllers. Others, (Su et al. 2003) and
(Abdelwahed et al. 2005), have also used discrete
abstractions of switched continuous systems in a
LL framework to e¤ect control over hybrid sys-
tems. Similar to our work is (Stursberg 2004),
in which the nonlinear continuous dynamics are
retained as embedded simulations, and a graph
search algorithm has been described for optimal
hybrid control. Our approach di¤ers in that we do
not limit switching to discrete time intervals and
controller graph pruning is done in a maximally
permissive sense with respect to safety as is com-
monly done in optimal DES supervisory control
(Ramadge and Wonham 1987).

Although the discrete event controller size is expo-
nential in lookahead horizon, our computational
approach can signi�cantly reduce the complex-
ity of computing a controller, provided that the
speci�cation is su¢ciently restrictive, since many
trajectories are eliminated during the reachability
sweep. On the other hand, an overly restrictive
speci�cation may lead to the failure of the online
synthesis to �nd a suitable control solution within
the lookahead horizon.

This paper is organized as follows: section 2 de-
velops the continuous system modeling and the
associated discrete event abstraction technique;
section 3 develops a switched continuous model
that provides a means of switching between ab-
stractions of continuous model simulations; sec-
tion 4 develops controller synthesis in this hybrid
framework; and �nally in section 5 presents an
illustrative controller design process.

2. CONTINUOUS SYSTEM ABSTRACTION

It is desirable to utilize a natural and expres-
sive continuous modeling framework, overlaying
it with a discrete event, input/output (I/O)
interface. This approach has been adopted by
(Koutsoukos et al. 2000). For now, we will con-
sider the output aspects of the interface, or the
conversion of the continuous dynamics to that of
discrete event dynamics.

Let the continuous dynamics of a system be de-
scribed by a nonlinear ordinary di¤erential equa-
tion (ODE),

_x(t) = f(x; t) (1)

For now, the dynamics described by equation
1 will serve as a placeholder for the complex
continuous dynamics that may be produced by
industrial/commercial simulation packages. A so-
lution x of the system modeled by equation 1 on a
time interval [t0; t1] and for some initial condition
is a solution to an initial value problem (IVP).
We now de�ne the continuous system model with
abstraction framework, as follows:

De�nition 1. Let a continuous system model (CSM),
s, be de�ned as a triple s = (f;	; x0); where:

f is a Lipschitz-continuous ordinary di¤erential
equation, _x = f(x; t);

	 is a �nite set of partitioning functionals, 	 =
fFi : Rn ! R; 1 � i � Ng; where each Fi is a
continuously di¤erentiable functional,

x0 is the initial condition, x(t0).

The set of functionals 	, establishes an equiva-
lency, for x1; x2 2 Rn :

x1 � px2 () sign(Fi(x1))� sign(Fi(x2)) = 1;
1� i � N
The state space of the CSM is partitioned into
a �nite quotient set, X of equivalence classes Qj
(referred to as regions):

X = Rn= �p= fQj � Rng

A state transition occurs when a continuous
trajectory of the CSM crosses the hypersurface
N (F) = fx 2 Rn : F (x) = 0g; that lies between
adjacent regions. For example, a trajectory x on
the time interval [t0; t1], such that x(t0) 2 Q1
and x(t1) 2 Q2, the state transition from Q1 to
Q2 is notationally indicated as Q1 ; Q2. The
CSM communicates with outside discrete event
processes via output events � 2 �out that are
uniquely associated with these state transitions.
Note that the transition direction is important,
that is Q1 ; Q2 6= Q2 ; Q1. For any CSM si,
it can be shown that a unique trajectory xi exists
for a �nite time interval and that this trajectory
will generate a �nite number of output events.

3. SWITCHED CONTINUOUS MODEL

In (Koutsoukos et al. 2000), input symbols to
the continuous abstraction are translated into
actuator actions, or sampled inputs (similar to
a D/A converter). In this work, we have chosen
to have each input event �i 2 �in map to the
selection (or choice) of a CSM si from a set
of available continuous system models F . Thus,
control is achieved by switching amongst a set of
continuous systems that represent either di¤erent
operating modes of a system or di¤erent systems
(hot swapping).

De�nition 2. Let a switched continuous model
(SCM) be de�ned as an automaton-like triple
G = (F ;�; s0), where:

F is an in�nite set of CSMs each with its own
discrete abstraction, as in de�nition 1,

� is the enabled system function, which embod-
ies an implementation speci�c selection mech-
anism. Let s0 2 F be the currently selected
model, and let A = fa � F : 1 � jaj < 1g be
the set of non-empty �nite subsets of F , then
� : F ! A.

s0 is the initial continuous system model.

3.1 SCM Execution

An execution v of a SCM is a set of sequentially
selected CSM, v = fs0; s1; : : : s� : : :g starting with
the initial model s0. The point in the execution
at which the execution changes from one system
to another is known as a choice point. The term
choice refers to the ability of the controller at
this point to in�uence the future dynamics of
the system, by the selection of the next CSM.
In this framework, the choice points occur on
some predictable (not necessarily regular) timed
schedule, that is governed by a universal timebase.
These choice points will be associated with the
tick (output) event. Additionally, choice points
occur whenever an output event is generated by
a CSM, so that the controller is able to respond
asynchronously to modeled events as they occur.
Note that this theoretical modeling framework of
the SCM allows both time and state-dependent
switching. Because each CSM si has its own par-
titioning set 	i, and dynamics fi, in the most
general case, then our framework admits both
partitioning and dynamics changes within a re-
gion, due to time dependent switching. This is
analogous to the operation of industrial control
systems in which a synchronous control cycle is
augmented by interrupt-driven control.

0
{ }s

0
s

1
s

2
s

3
s

0
t

0
t tδ+ 0

t t+ ∆
0

t k t+ ∆

Fig. 1. Reachable continuous system models.

3.2 Prediction

Predicting the future execution of an SCM G =
(F ;�; s0) consists of extending simulations (solu-
tions) for each of the continuous system models,
creating new choice points, and again extending
the simulations. Thus, the set of future enabled
CSMs SR, can be computed in either a depth
or breadth-�rst reachability. This is the set of
CSMs reachable from s0, or the set of all future
executions v of G that originate with s0 (�gure
1). The choice points are identi�ed by the nodes
of the graph and the edges are the selected con-
tinuous system models. To ensure �niteness of set
SR, it is computed for a limited time lookahead,
which can be measured by an integer number
p; p 6= 1, of tick events. Also, the number of
choices (branches at any choice point) is �nite and
is bounded above by r de�ned as the maximum
j�(si)j ;8si. If the number of asynchronous events
within one tick is bounded above by q, 1 � q <
1, (a non-zeno condition on the execution) then
it can be shown that SR is �nite and has bounds
as follows:

pq + 1 � jSRj �
rpq+1 � 1
r � 1 ; r > 1 (2)

3.3 Discrete Event Equivalent

The set of si 2 SR uniquely and concisely de-
scribes both the future continuous and discrete
event dynamics of the SCM in dense time. Thus,
the SCM is capable of generating a language (with
timing) that consists of a �nite number of �nite
length strings. Examining �gure 1, at any choice
point, there are a �nite number of choices of
CSM. Each choice (or branch) corresponds to a
continuous simulation with event detection and
each simulation has an associated discrete event
equivalent transition de�ned as follows.

De�nition 3. Let G = (F ;�; s0) be a SCM and let
sa 2 F , sa = (f;	; x0) be a CSM. Let xa 2 Rn
be a solution to the IVP posed by sa on a time
interval t 2 [t0; t1) then let the DE equivalent
transition be �a = (q0; ��; �� ; q1). Where q0 =
(xa(t0); t0); q1 = (xa(t1); t1) 2 Rn � R are timed
continuous states, the endpoints of the solution
xa, and �� 2 �in and �� 2 �out are discrete
events.

The input event �� is the selection mechanism or
guard event for the transition. The output event
�� occurs as a result of the transition of the
continuous solution into another state.(crossing a
hypersurface), or as a result of reaching the end
of the designated simulation time interval, �t; in
which case the output event is tick. Thus, the
input event can be seen as initiating the occur-
rence of the output event. The set of transitions
TR; corresponding to the set of reachable CSMs
SR, forms a DE transition structure similar to a
Mealy implementation of a �nite state automaton.
The transition structure TR also gives rise to a
language L(G) based on the output events of the
transitions � i 2 TR. Each string ui 2 L(G) such
that p � juij � pq < 1, represents the discrete
event behaviour of a particular future execution
vi of the SCM out to the time horizon p�t in
the future. The set TR (and likewise SR) is valid
for the current state and time only, and must be
recomputed (propagated) from control point to
control point as the online control is exercised.
Clearly, the language L(G) is also valid only for
the current state and time as well.

4. CONTROLLER SYNTHESIS

Having established a framework that allows the
discrete abstraction of a continuous model to co-
exist with discrete event models, we will look at
the controller synthesis including the computa-
tional model.

4.1 Control

The previous section (3.3) outlined how a limited
horizon DE representation of the SCM dynamics
can be constructed. Let P be a switched contin-
uous model of a plant. And at any point in time
and space, there exists a LL plant language where
each string ui 2 L(P) is a discrete abstraction
of a possible controlled execution in the future
(out to some lookahead horizon). The decision of
which execution to use must be made based on
our knowledge of the plant dynamics represented
by this LL model language. A speci�cation can
be used to partially implement this decision. Let
S be a DE automaton model of a speci�cation,
such that K = L(S), the legal language. From
a DES perspective, we wish to remove from L(P)
any strings that may carry the system to an illegal
state. In its simplest form, this can be achieved by
taking the reachable part of synchronous product
of the plant and speci�cation, P k S. Then, by en-
suring that only strings that can carry the system
to the LL horizon remain in L(P k S), we are left
with a nonblocking controller. This problem was
studied extensively by (Chung et al. 1992).

It should be noted that there is a possibility
that no control solution exists, that is the pruned
L(P k S) = ;, known as a run-time block. While
this is a serious problem for an online controller,
it is possible to handle it gracefully through the
use of special states that represent safe, but non-
useful states of the system; essentially an emer-
gency shutdown system, which is consistent with
industrial practice (Millan 2006a).

If L(P k S) 6= ;, then the remaining strings
represent the legal traces available to the system.
The choice of which particular event (or CSM)
that will be selected to advance the system is
left to another process or a person (in the event
of human in the loop control), to make the �nal
decision. This is the nature of an underspeci�ed
system for which control must be implemented
(Dietrich et al. 2002).

4.2 Complexity

The philosophy of the computational and model-
ing framework is to compute the controller in an
e¢cient manner, that allows for real-time compu-
tation. The DE behaviour of a SCM on a �nite
lookahead horizon is �nite, and so it is therefore
computable. Unfortunately, the number of states
required to represent this language is bounded
above by an expression that is exponential in the
event lookahead horizon (see equation 2). How-
ever, the number of states is bounded below by a
linear expression, implying that a range of poten-

tially sub-exponential complexity computations
exist.

The controller state complexity is reduced from
the unconstrained plant size by the inclusion of
the speci�cation S, at design time (which is also
runtime). This is because many unsafe traces are
invalidated in the joint behaviour of the plant
and speci�cation due to the requirement for syn-
chronization on common events. The extent to
which the state complexity will be reduced by
the inclusion of the speci�cation is di¢cult to
predict, since it is dependent on the plant and
speci�cation models as well as the state and time
of the execution. This reduction in complexity due
to the inclusion of a speci�cation has been noted
for validation of hybrid control systems (Stursberg
et al. 2003).

The controller graph represents the set of Such a
controller merely disables unsafe transitions. As
was stated earlier some sort of decision mecha-
nism is still required to choose the actual event
(actuation) that will be used to send the system
forward in time. We will assume that this decision
mechanism is implemented by either another con-
troller module, or possibly even a human in the
loop (HIL). In any case, the system will �nd itself
at a new state, and the controller will have to be
recomputed before the next decision is taken.

4.3 Encapsulation of Simulation Tools

Suppose there exists a simulation tool that, given
an initial condition and some parameters, pro-
duces a numerical solution for a particular sys-
tem model. Then without loss of generality, this
is comparable to the ODE solver of the IVP of
equation 1. Indeed, our only stipulations on the
simulation tool are, given a set of parameters: a) it
always produces an output (solution existence), b)
the output is repeatable for the same parameters
(solution uniqueness) and c) the solution is com-
puted in less time than it takes the actual system
to execute (real-time implementation). Whether
the latter requirement (c) is met, hinges on the
extent to which the speci�cation limits the legal
trajectories of the plant. If the simulation tool
meets each of the above requirements, then with
suitable wrapper functions (object methods), an
SCM can be built around it, and an online hybrid
controller is feasible.

Based on the computation structure outlined
here, an experimental software package that com-
putes DE controllers for hybrid systems, called
HySynth has been developed. HySynth was
developed as a MATLAB class structure to enable
developers to leverage the high-level simulation
capabilities of the MATLAB environment.

h

miq

moq

21
20

5
4

1
V

2
V

Fig. 2. Tank control schematic, V1 and V2 are
control valves.

5. EXAMPLES

5.1 Tank Control

In this example, a SCM will represent the model
of the tank, which has predominantly continuous
dynamics, and a �nite state machine will model
the speci�cation. Together, the speci�cation and
plant models will be used to form a DES controller
that can be propagated to enforce the desired
behaviour of the tank. In �gure 2, the tank has
both a �ll and drain pipe, which can be controlled
independently. If there is turbulent �ow from the
tank, then the liquid level dynamics are described
by the di¤erential equation �A _h = qmi � qmo,
where h is the liquid level, � is the density of
the liquid, and A is the cross sectional area of
the tank. The liquid mass �ow into the tank is
qmi. Assuming turbulent �ow from the tank, and
choosing appropriate values, the resulting nonlin-
ear relation _h = qmi �

p
h applies when the tank

is draining . If the tank can be switched between
�lling only, draining only, and simultaneously �ll-
ing and draining. there are three di¤erent CSM
dynamics.

f1 : _h = qmi, �lling only

f2 : _h = �
p
h draining only

f3 : _h = qmi �
p
h, both �lling and draining

Each continuous system model si 2 F will contain
one of these dynamics. The family of continuous
system models F will be in�nite if the initial
condition, h0 2 R is inherited from the preceding
CSM. Table 1 de�nes a common set of partitioning
functionals, shared by all CSMs, and associates a
set of output events with them. The speci�cation
will be designed so that the tank �lls to the over�ll
mark (21) after one tick, draining it back through
the over�ll 2 mark (20), again after one tick,
repeating this cycle ad in�nitum. The �nite state
machine that represents this speci�cation is given
in �gure 3. This example was coded in HySynth,
and the tank was given an initial level of h = 20.

Table 1. Functionals with related output
events for the tank control example.

Functional Alarm Output Events

F1(h) = h� 21 over�ll 1 of1+; of1�

F2(h) = h� 20 over�ll 2 of2+; of2�

F3(h) = h� 5 under�ll 1 uf1+; uf1�

F4(h) = h� 4 under�ll 2 uf2+; uf2�

1of
+2of

−

tick

tick

Fig. 3. The tank controller speci�cation.

Using an event horizon lookahead of 15 events,
a controller was synthesized repeatedly, propa-
gating the solution by simulation and random
selection of controller action. The evolution of the
controller structure is illustrated in �gure 4(a)-
(c); each of the subgraphs in the �gure represents
the controller at successive time steps. The states
are tiny dots connected by edges and the initial
state of the graph, i.e. the current state of the
controlled system, is indicated by the larger dot.
An arrow marks the same state in (a)-(c) and is
used to illustrate the growth of the graph ends
as the horizon is extended. Any path from the
initial state to the end of a branch is 15 events,
and represents a safe nonblocking execution of the
plant. The past path of the system is indicated
by the light line as the initial state moves along.
In (b), a choice between the upper and lower left-
hand branches must be made. In (c) the lower left-
hand branch has been discarded through a choice
made by a runtime choice mechanism.

For this example, the number of controller states
varied from 51 to 231 over 40 iterations of con-
troller synthesis. Clearly, from equation 2, without
the speci�cation, the plant would have a theoreti-
cal upper limit of over 21 million states (equation
2, r = 3 and pq = 15). In this example, the inclu-
sion of the speci�cation at design time has dra-
matically reduced the computational (state) com-
plexity of the controller. Based on the empirical
results of this example, �gure 5 clearly illustrates
the dramatic improvement in state complexity as
a function of lookahead that can be achieved.
The upper line is the theoretical state size of the
unconstrained plant, while the lower line is a �t
through the mean of empirically derived data.

5.2 Oil O­oading

Figure 6 illustrates a control problem that in-
spired the control techniques that have been de-
veloped by the authors. In the o¤shore oil indus-

10 12 14 16 18 20 22
10

0

10
2

10
4

10
6

10
8

10
10

10
12

Lookahead Horizon (events)

S
ta

te
s

Control ler

P lant

Fig. 5. Comparative complexity of controller and
unspeci�ed plant model.

ESD2

92 m

ESD1

83 m

ESD0

70 m 0 m

Fig. 6. The o­oading of oil from a production
vessel (at right) to a shuttle tanker (at left).

try, oil is produced and stored by one vessel, and
then transferred to a second vessel that takes it
to shore. The goal is to encode the complex and
extensive operations manual for this o­oading
task as a DE speci�cation which will be used to
enforce a safe subset of operations for a HIL con-
trol. In (Millan and O�Young 2000), the authors
developed a simpli�ed version of this problem as
a linear hybrid automaton and veri�ed an ad hoc
emergency shutdown controller. HySynth has
since been used successfully to synthesize a con-
troller for this problem with a complex nonlinear
continuous dynamics (Millan 2006b).

6. CONCLUSION

In this paper a switched continuous modeling
framework was described that allows generalized
nonlinear continuous models to be included seam-
lessly in a discrete event supervisory control syn-
thesis process. Control is e¤ected by switching
between multiple continuous models that may
represent either di¤ering operating modes of a
system, control inputs or di¤ering systems. Con-
troller nonblocking is identi�ed as the existence
of at least one complete string (one that carries
the system to the lookahead horizon) in the con-
troller language. A signi�cant reduction in compu-
tational complexity is achieved by the inclusion of
the speci�cation at design time. An experimental
software tool (HySynth) designed for the MAT-
LAB environment, allows for a high level com-

(a) (b) (c)

Fig. 4. Propagation of the controller through three updates.

mand interface, coupled with the native MATLAB
simulation tools.

Future work will consist of improving the software
to allow for enhancing design �exibility and im-
provements in e¢ciency. As of now, the control
scheme has only been tested in simulation. It
would be desirable to put it to a real-world test.
Future areas of particular interest are developing
techniques to deal with unmodeled e¤ects such as
disturbance, and modeling errors.

REFERENCES

Abdelwahed, S., R. Su and S. Neema (2005). A
feasible lookahead control for systems with
�nite control set. In: Proceedings of the 2005
IEEE Conference on Control Applications.
IEEE. pp. 663�668.

Chung, S., S. Lafortune and F. Lin (1992). Lim-
ited lookahead policies in supervisory control
of discrete event systems. IEEE Transactions
on Automatic Control 37(12), 1921�1935.

Chutinan, A and B. H. Krogh (2003). Computa-
tional techniques for hybrid system veri�ca-
tion. IEEE Transactions on Automatic Con-
trol 48(1), 64�75.

Dietrich, P., R. Malik, W.M. Wonham and B.A.
Brandin (2002). Implementation considera-
tions in supervisory control. Synthesis and
control of discrete event systems pp. 185�201.

Koutsoukos, X.D., P.J. Antsaklis, J.A. Stiver and
M.D. Lemmon (2000). Supervisory control of
hybrid systems. In: Proceedings of the IEEE.
pp. 1026�1048. IEEE.

Millan, J. P. (2006a). On-line supervisory con-
trol of hybrid systems using embedded sim-
ulations. In: Proceedings of the 8th Interna-
tional Workshop on Discrete Event Systems

WODES06.

Millan, J. P. (2006b). Online Discrete Event Con-
trol of Hybrid Systems. PhD thesis. Memorial
University of Newfoundland. Expected July
2006.

Millan, James and Siu O�Young (2000). Hybrid
modeling of tandem dynamically positioned
vessels. In: Proceedings of the 39th IEEE Con-
ference on Decision and Control.

Raisch, J. and S.D. O�Young (1998). Discrete ap-
proximation and supervisory control of con-
tinuous systems. IEEE Transactions on Au-
tomatic Control 43(4), 569�573.

Ramadge, P.J. and W.M. Wonham (1987). Su-
pervisory control of a class of discrete event
processes. SIAM Journal on Control Opti-

mization 25(1), 206�230.
Stursberg, O. (2004). A graph search algorithm

for optimal control of hybrid systems. In:
Proceedings of the 43rd IEEE Conference on

Decision and Control. pp. 1412�1417.
Stursberg, O., A. Fehnker, Z. Han and B. H.

Krogh (2003). Speci�cation-guided analysis
of hybrid systems using a hierarchy of valida-
tion methods. In: IFAC Conference on Analy-
sis and Design of Hybrid Systems. IFAC.

Su, R., S. Abdelwahed, G. Karsai and G. Biswas
(2003). Discrete abstraction and supervisory
control for switching systems. In: IEEE In-

ternational Conference on Systems, Man, and

Cybernetics. Vol. 1. IEEE. pp. 415�421.
T.A.Henzinger, P. Ho and H. Wong-Toi (1997).

HyTech: A model checker for hybrid sys-
tems. Software Tools for Technology Transfer
1, 110�122.

Torrisi, F.D. and A. Bemporad (2004). HYSDEL
- a tool for generating computational hybrid
models. IEEE Transactions on Control Sys-
tems Technology 12(2), 235�249.

