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ABSTRACT

This paper introduces a multi-objective optimization approach to
the problem of computing virtual reality spaces for the visual repre-
sentation of relational structures (e.g. databases), symbolic knowl-
edge and others, in the context of visual data mining and knowl-
edge discovery. Procedures based on evolutionary computation
are discussed. In particular, the NSGA-II algorithm is used as a
framework for an instance of this methodology; simultaneously
minimizing Sammon’s error for dissimilarity measures, and mean
cross-validation error on a k-nn pattern classifier. The proposed
approach is illustrated with an example from genomics (in particu-
lar, Alzheimer’s disease) by constructing virtual reality spaces re-
sulting from multi-objective optimization. Selected solutions along
the Pareto front approximation are used as nonlinearly transformed
features for new spaces that compromise similarity structure preser-
vation (from an unsupervised perspective) and class separability
(from a supervised pattern recognition perspective), simultaneously.
The possibility of spanning a range of solutions between these two
important goals, is a benefit for the knowledge discovery and data
understanding process. The quality of the set of discovered solu-
tions is superior to the ones obtained separately, from the point of
view of visual data mining.

Keywords

visual data mining, virtual reality spaces, multi-objective optimiza-
tion, genetic algorithms, NSGA-II algorithm, k-nn classification,
cross-validation error, similarity structure preservation, non-linear
mapping, Sammon error, Alzheimer disease, genomics

1. INTRODUCTION
Knowledge discovery is the non-trivial process of identifying
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valid, novel, potentially useful, and ultimately understandable pat-

terns in data [9], and the role of visualization techniques in the
knowledge discovery process is well known. Data and patterns are
concepts which should be considered in a broad sense. There are
different kinds of data (relational, graphical, symbolic, etc.), and
patterns of different kinds (geometrical, logical, etc.). The increas-
ing rates of data generation require the development of procedures
facilitating the understanding of the internal structure of data more
rapidly and intuitively. Moreover, the increasing complexity of the
data analysis procedures makes it more difficult for the user (not
necessarily a mathematician or data mining expert), to extract use-
ful information out of the results generated by the various tech-
niques. This makes graphical representation directly appealing.

Several reasons make Virtual Reality (VR) a suitable paradigm:
Virtual Reality is flexible, it allows the construction of different vir-
tual worlds representing the same underlying information, but with
a different look and feel. VR allows immersion, that is, the user
can navigate inside the data, interact with the objects in the world.
VR creates a living experience. The user is not merely a passive
observer but an actor in the world. VR is broad and deep. The user
may see the VR world as a whole, and/or concentrate the focus of
attention on specific details of the world. Of no less importance
is the fact that in order to interact with a Virtual World, no math-
ematical knowledge is required, and the user only needs minimal
computer skills. A virtual reality technique for visual data mining
on heterogeneous, imprecise and incomplete information systems
was introduced in [23, 24].

These VR spaces are obtained by transforming the original set
of attributes describing the objects, often defining a heterogeneous
high dimensional space, into another space of small dimension (typ-
ically 2-4) and intuitive metric (e.g. Euclidean). The operation
almost always involves a non-linear transformation of the set of
original attributes; implying some information loss. There are ba-
sically two kinds of spaces sought: i) spaces preserving the struc-
ture of the objects as determined by the original set of attributes
(one objective measure to minimize in order to achieve this goal
could be similarity information loss), and ii) spaces preserving the
distribution of an existing class or decision attribute defined over
the set of objects (one objective measure to minimize in order to
achieve this goal could be classification error). The complexity of
the data, the unknown adequacy of the set of descriptor attributes,
their relevance, noise, and many other factors imply that they do
not necessarily relate with sufficient accuracy to the class or deci-
sion attribute. Therefore, both kinds of spaces are usually conflict-
ing. They are also different from the point of view of the nonlinear



transformations defining them. This situation creates problems dur-
ing visualization, and confuses the human interpreter, because the
same set of objects has a different distribution over the two spaces.
Clearly, it would be much better to construct spaces where both cri-
teria could be simultaneously partially or fully satisfied which leads
to a multiobjective problem formulation.

Evolutionary multiobjective optimization (EMO) provides an al-
ternative to classical multiobjective optimization techniques due to
its population-based nature, which allows the creation of a set of
non-dominated solutions in a single run. Moreover, the presence
of noise in the data, the presence of large search spaces and other
factors make EMO an interesting approach which has proven to be
effective in other real world domains. We propose to introduce an
EMO approach in visual data mining using virtual reality.

The purpose of this paper is to explore the construction of high
quality VR spaces for visual data mining using a multi-objective
optimization technique; in particular, optimization based on genetic
algorithms. This approach provides both a solution for the previ-
ously discussed problem, and the possibility of obtaining a set of
spaces in which the different objectives are expressed in different
degrees, with the proviso that no other spaces could improve any of
the considered criteria individually (if spaces are constructed using
the solutions along the Pareto front). This strategy clearly repre-
sents a conceptual improvement in comparison with spaces com-
puted from the solutions obtained by single-objective optimization
algorithms in which the objective function is a weighted composi-
tion involving different criteria.

This approach is applied to a real world problem: namely, the
representation of a very high dimensional dataset from the domain
of genomics, consisting of microarray gene expression data from
samples of patients with and without Alzheimer’s disease.

2. VIRTUAL REALITY REPRESENTATION

OF RELATIONAL STRUCTURES
A virtual reality, visual, data mining technique extending the

concept of 3D modelling to relational structures was introduced
[23], [24], (see also http://www.hybridstrategies.com).
It is oriented to the understanding of large heterogeneous, incom-
plete and imprecise data, as well as symbolic knowledge. The no-
tion of data is not restricted to databases, but includes logical rela-
tions and other forms of both structured and non-structured knowl-
edge. In this approach, the data objects are considered as tuples
from a heterogeneous space [22].

Figure 1: An example of a heterogeneous database. Nominal,

ordinal, ratio, fuzzy, image, signal, graph, and document data

are mixed. The symbol ? denotes a missing value.

Different information sources are associated with the attributes,
relations and functions, and these sources are associated with the
nature of what is observed (e.g. point measurements, signals, doc-
uments, images, etc). They are described by mathematical sets
(of the appropriate kind) called source sets (Ψi), constructed ac-
cording to the nature of the information source to represent (e.g.
point measurements of continuous variables by subsets of the re-
als in the appropriate ranges, structural information by directed
graphs, etc). Source sets also account for incomplete informa-
tion. A heterogeneous domain is a Cartesian product of a collec-
tion of source sets: Ĥn = Ψ1 × · · · × Ψn , where n > 0 is
the number of information sources to consider. For example, in
a domain where objects are described by attributes like continu-
ous crisp quantities, discrete features, fuzzy features, time-series,
images, and graphs (missing values are allowed), they can be rep-
resented as Cartesian products of subsets of real numbers(R̂), nom-
inal (N̂ ) or ordinal sets(Ô), fuzzy sets(F̂ ), sets of images (Î), sets
of time series (Ŝ) and sets of graphs (Ĝ), respectively (all ex-
tended to allow missing values). The heterogeneous domain is
Ĥn = N̂nN × ÔnO × R̂nR × F̂ nF × ÎnI × ŜnS × ĜnG , where
nN is the number of nominal sets, nO of ordinal sets, nR of real-
valued sets , nF of fuzzy sets , nI of image-valued sets, nS of
time-series sets, and nG of graph-valued sets, respectively (n =
nN + nO + nR + nF + nI + nS + nG).

A virtual reality space is the tuple
Υ =< O, G, B,ℜm, go, l, gr, b, r >, where O is a relational
structure (O =< O, Γv >, O is a finite set of objects, and
Γv is a set of relations); G is a non-empty set of geometries

representing the different objects and relations; B is a non-empty
set of behaviors of the objects in the virtual world; ℜm ⊂ Rm is
a metric space of dimension m (euclidean or not) which will be
the actual virtual reality geometric space. The other elements are
mappings: go : O → G, l : O → ℜm, gr : Γv → G, b : O → B.

Of particular importance is the mapping l. If the objects are in
a heterogeneous space, l : Ĥn → ℜm. Several desiderata can
be considered for building a VR-space. One may be to preserve
one or more properties from the original space as much as possi-
ble (for example, the similarity structure of the data [4]). From
an unsupervised perspective, the role of l could be to maximize
some metric/non-metric structure preservation criteria [2], or min-
imize some measure of information loss. From a supervised point
of view l could be chosen as to emphasize some measure of class
separability over the objects in O [24].

2.1 Structure preservation: An unsupervised
perspective

As mentioned, l plays an important role in giving semantics to
the virtual world, and there are many ways in which such a mapping
can be defined. To a great extent it depends on which features from
the original information system need to be highlighted. In particu-
lar, internal structure is one of the most important ones to consider
and this is the case when the location and adjacency relationships
between the objects O in Υ should give an indication of the sim-

ilarity relationships [4] between the objects U in the original het-
erogeneous space Ĥn, as given by the set of attributes [22]. Other
interpretations about internal structure are related with the prop-
erties of the space w.r.t. the linear/non-linear separability of class
membership relations [13]. On the other hand, l can be constructed
to maximize some metric/non-metric structure preservation criteria
as has been done for decades in multidimensional scaling [14], [2],
or minimize some error measure of information loss [20]. For ex-
ample, if δij is a dissimilarity measure between any two i, j ∈ U
(i, j ∈ [1, N ], where N is the number of objects), and ζivjv is



another dissimilarity measure defined on objects iv, jv ∈ O from
Υ (iv = ξ(i), jv = ξ(j), they are in one-to-one correspondence).
Examples of error measures frequently used are:

S stress =

sP
i<j

(δ2
ij − ζ2

ij)
2P

i<j
δ4

ij

, (1)

Sammon error =
1P

i<j
δij

P
i<j

(δij − ζij)
2

δij

(2)

Quadratic Loss =
X
i<j

(δij − ζij)
2

(3)

Typically, classical algorithms have been used for directly opti-
mizing these measures, like Steepest descent, Conjugate gradient,
Fletcher-Reeves, Powell, Levenberg-Marquardt, and others. The l
mappings obtained using approaches of this kind are only implicit,
as no functional representations are found. Moreover, their use-
fulness is restricted to the final errors obtained in the optimization
process. However, explicit mappings can be obtained from these
solutions using neural network or genetic programming techniques.
An explicit l is useful for both practical and theoretical reasons.
On one hand, in dynamic data sets (e.g. systems being monitored
or data bases formed incrementally from continuous processes) an
explicit direct transform l will speed up the incremental update of
the virtual reality information system. On another hand, it can give
semantics to the attributes of the virtual reality space, thus acting
as a dimensionality reducer/new attributes constructor.
The possibilities derived from this approach are practically unlim-
ited, since the number of different similarity, dissimilarity and dis-
tance functions definable for the different kinds of source sets is
immense. Moreover, similarities and distances can be transformed
into dissimilarities according to a wide variety of schemes, thus
providing a rich framework where one can find appropriate mea-
sures able to detect interrelationships hidden in the data, better
suited to both its internal structure and external criteria. In par-
ticular, for heterogeneous data involving mixtures of nominal and
ratio variables, the Gower similarity measure [11] has proven to be
suitable.

The similarity between objects i and j is given by

Sij =

pX
k=1

sijk/

pX
k=1

wijk (4)

where the weight of the attribute (wijk) is set equal to 0 or 1 de-
pending on whether the comparison is considered valid for attribute
k. If vk(i), vk(j) are the values of attribute k for objects i and j
respectively, an invalid comparison occurs when at least one them
is missing. In this situation wijk is set to 0.

For quantitative attributes (like the ones of the datasets used in
the paper), the scores sijk are assigned as

sijk = 1− |vk(i)− vk(j)|/Rk

where Rk is the range of attribute k. For nominal attributes

sijk =

�
1 if vk(i) = vk(j)
0 otherwise

This measure can be easily extended for ordinal, interval, and
other kind of variables. Also, weighting schemes can be incorpo-
rated for considering differential importance of the descriptor vari-
ables.

2.2 Class Separability: A supervised
perspective

In the supervised case, a natural choice for representing the l
mapping is an NDA neural network [26], [16], [17], [12]. One
strong reason is the nature of the class relationships in complex,
high dimensional problems like gene expression data, where ob-
jects are described in terms of several thousands of genes, and
classes are often either only separable with nonlinear boundaries,
or not separable at all. Another is the generalization capability
of neural networks which allows the classification of new incom-
ing objects, and their immediate placement within the created VR
space. Of no less importance is that when learning the mapping,
the neural network hidden layers create new nonlinear features for
the mapped objects, such that they are separated into classes by
the output layer. However, these nonlinear features could be used
independently with other data mining algorithms. The typical ar-
chitecture of such networks is shown in Fig-2

Figure 2: Network Architecture in which the NDA network is

learned.
R

means nonlinear activation, / linear activation , and

Σ aggregation

This is a feedforward network with one or more hidden layers
where the number of input nodes is set to the number of features
of the data objects, and the number of neurons in the output layer
to be the number of pattern classes. The number of neurons in the
last hidden layer is m; the dimensionality of the projected space
(for a VR space this is typically 3). From the input layer to the
last hidden layer, the network implements a nonlinear projection
from the original n-dimensional space to an m-dimensional space.
If the entire network can correctly classify a linearly-nonseparable
data set, this projection actually converts the linearly-nonseparable
data to separable data. The backpropagation learning algorithm is
used to train the feedforward network with two hidden layers in
a collection of epochs, such that in each, all the patterns in the
training data set are seen once, in a random order.

This classical approach to building NDA networks suffers from
the well known problem of local extrema entrapment. The con-
struction of NDA networks can be done by using hybrid stochastic-
deterministic feed forward networks (SD-FFNN). The SD-FFNN
is a hybrid model where training is based on a combination of sim-
ulated annealing with conjugate gradient [18], which improves the
likelihood of finding good extrema while containing enough deter-
minism. Simulated annealing provides global search capabilities
and conjugate gradient improved local search, reducing the risk of
entrapment, and resulting in neuron weights with better properties
than what is found by the inherent steepest descent implied by pure
backpropagation. Alternatively, networks based on evolutionary al-



gorithms can be used, or for instance, particle swarm optimization
combined with classical optimization techniques [21].

2.3 The multi­objective approach: A hybrid
perspective

It should be clear that a space with new features that satisfacto-
rily preserves the similarity structure does not necessarily guaran-
tee the maximization of class separability, since it results from the
solution of an unsupervised problem (i.e. the decision attribute is
not considered). Moreover, the relationship between the original
descriptor variables and the class membership (expressed by the
decision attribute) may be partial, total or poor. On the other hand,
if classification is all that matters, then a set of nonlinear features
may be found that successfully or acceptably classify the data, but
at the cost of distorting the space considerably with respect to the
one compliant with the similarity structure. In this case, the kind
and amount of nonlinearity and distortion introduced may be so
large that the data vector distribution in the two spaces may bear no
resemblance at all. This makes the visual data mining process very
difficult as the data objects have to be represented in two very dif-
ferent spaces, with different properties. In other words, the above
discussed goals are usually in conflict and satisfying them sepa-
rately, complicates the knowledge discovery process.

Therefore, the following is a very relevant question within the
knowledge discovery process using visual data mining: “Are there
alternative low dimensional feature spaces (possibly computed by
non-linear transformations of the original descriptor variables), in
which the class structure can be resolved as much as possible, while
distorting the original similarity structure as little as possible?”.

A multi-objective optimization approach to the problem of find-
ing suitable nonlinear transformations for the representation of re-
lational structures brings a new perspective to the problem.

2.3.1 Objective functions

In order to establish a formulation of the problem based on multi-
objective optimization, a set of objective functions has to be spec-
ified, representing the corresponding criteria that must be simulta-
neouly satisfied by the solution. The minimization of a measure
of similarity information loss between the original and the trans-
formed spaces and a classification error measure over the objects
in the new space can be used in a first approximation. Clearly,
more requirements can be imposed on the solution by adding the
corresponding objective functions. Following a principle of parsi-
mony this paper will consider the use of only two criteria, namely,
Sammon’s error (Eq-2) for the unsupervised case and mean cross-
validated classification error with a k-nearest neighbour pattern
recognizer for the supervised case.

Let X be a set of N data records xi, for i ∈ [1, N ], on p in-
dependent variables and a discrete dependent variable y (i.e. the
class variable) with m possible values, s.t. yq = {1, 2, ..., m}, q ∈
[1, m]. The i-th data record is a vector←−x i which takes a value xij

on the j-th independent variable. The k-nearest neighbor approach
searches a set of training data records T (i.e., data records with
known values for y) to find the k-nearest data records to←−x i. The

proximity (or similarity) of←−x i to a member
←−
t k of T is defined by

a distance (or similarity) calculated over the independent variables
and can be defined by using a variety of measures. In the present
case a normalized Euclidean distance is chosen:

d←−x←−t =

vuut(1/p)

pX
j=1

(xij − tkj)2 (5)

Let Si be a set containing the k-nearest neighbors in T to ←−x i,

where k ∈ [1, N ] is predefined . Then the predicted value of y
for←−x i, ŷi, is given by the value of yq with the highest frequency
within Si, if such frequency is unique. Otherwise, the predicted
value is undefined. This classical non-parametric pattern recogni-
tion classifier has been defined elsewhere [8], [10]. For each of the
data objects in X there is a classification error w.r.t. the training set
T if the predicted class variable does not coincide with its expected
value for the corresponding object, or if the object is unclassifiable.
The classification error associated with X w.r.t. T is the mean of
the classification errors of the objects in X .

3. MULTI­OBJECTIVE OPTIMIZATION

USING GENETIC ALGORITHMS
An evolutionary algorithm constructs a population of individu-

als, which evolve through time until stopping criteria is satisfied. At
any particular time, the current population of individuals represent
the current solutions to the input problem, with the final population
representing the algorithm’s resulting output solutions.

The genetic algorithm [1] is a particular evolutionary algorithm
that permits particular sequences of operations on individuals of the
current population in order to construct the next population in the
series of evolving populations. The genetic algorithm requires each
individual to have one measure of its fitness, which enables the ge-
netic algorithm to select the fittest individuals for inclusion in the
next population. For example, one operation is that of mating two
individuals (parents) with the hope that useful pieces of genetic in-
formation contained within the chromosomes may be combined in
such a way that child individuals (those individuals in the new pop-
ulation) may be fitter than their parents. Another genetic algorithm
operation is that of mutation, whereby one individual is selected
from the current population, and its chromosome representation is
modified in some manner (e.g. probabilistically) in order to con-
struct a new individual in the next population.

An enhancement to the traditional evolutionary algorithm, is to
allow an individual to have more than one measure of fitness within
a population. One way in which such an enhancement may be ap-
plied, is through the use of, for example, a weighted sum of more
than one fitness value [3]. Multi-objective optimization, however,
offers another possible way for enabling such an enhancement. In
the latter case, the problem arises for the evolutionary algorithm
to select individuals for inclusion in the next population, because
a set of individuals contained in one population exhibits a Pareto
Front[19] of best current individuals, rather than a single best in-
dividual. Most [3] multi-objective algorithms use the concept of
dominance.

A solution
↼

x(1) is said to dominate [3] a solution
↼

x(2) for a set

of m objective functions < f1(
↼

x), f2(
↼

x), ..., fm(
↼

x) > if

1.
↼

x(1) is not worse than
↼

x(2) over all objectives.

For example, f3(
↼

x(1)) ≤ f3(
↼

x(2)) if f3(
↼

x) is a minimiza-
tion objective.

2.
↼

x(1) is strictly better than
↼

x(2) in at least one objective. For

example, f6(
↼

x(1)) > f6(
↼

x(2)) if f6(
↼

x) is a maximization
objective.

One particular algorithm for multi-objective optimization is the
elitist non-dominated sorting genetic algorithm (NSGA-II) [7], [6],
[5], [3]. It has the features that it i) uses elitism, ii) uses an
explicit diversity preserving mechanism, and iii) emphasizes the
non-dominated solutions. The procedure is as follows: i) Cre-
ate the child population using the usual genetic algorithm oper-
ations. ii) Combine parent and child populations into a merged



population. iii) Sort the merged population according to the
non-domination principle. iv) Identify a set of fronts in the
merged population (̥i, i = 1, 2, ...). v) Add all complete fronts
̥i, for i = 1, 2, ..., k − 1 to the next population. vi) There may
now be a front, ̥k, that does not completely fit into the next pop-
ulation. So select individuals that are maximally separated from
each other from the front ̥k according to a crowding distance op-
erator. vii) The next population has now been constructed, so con-
tinue with the genetic algorithm operations.

3.1 Implementation
The PGAPack library [15] is a general-purpose, data structure

neutral, parallel genetic algorithm library. It is intended to provide
most capabilities desired in a genetic algorithm library, in an
integrated, seamless, and portable manner. Key features that are
in PGAPack V1.0 include: i) Callable from Fortran or C, ii) Runs
on uniprocessors, parallel computers, and workstation networks,
iii) Binary-, integer-, real-, and character-valued native data types,
iv) Full extensibility to support custom operators and new data
types, v) Easy-to-use interface for novice and application users,
vi) Multiple levels of access for expert users, vii) Parameterized
population replacement, viii) Multiple crossover, mutation, and
selection operators, ix) Easy integration of hill-climbing heuris-
tics, x) Extensive debugging facilities, xi) Large set of example
problems, and xii) Detailed users guide. The PGAPack library
(http://www-fp.mcs.anl.gov/CCST/research/
reports pre1998/comp bio/stalk/pgapack.html

was extended to include Revision 1.1 (10 June 2005) of the
NSGA-II algorithm, http://www.iitk.ac.in/kangal/

codes.shtml, written in C with constraint handling.

4. APPLICATION TO ALZHEIMER’S

DISEASE (GENOMIC DATA)
Alzheimer’s disease (AD) is an incurable chronic, progressive,

debilitating condition which, along with other neurodegenerative
diseases, represents the largest area of unmet need in modern medi-
cine. Progress in understanding these diseases is hampered by their
complexity, but there is now renewed hope that genomics technolo-
gies, particularly gene expression profiling, can have an impact.
Genome-wide expression profiling of thousands of genes provides
rich datasets that can be mined to extract information on the genes
that best characterize the disease state [25]. A total of 4 clinically
diagnosed AD patients and 5 ”normal” patients of similar age were
used in this study, comprising 12 AD and 11 normal samples, for a
total of 23 samples. Each is characterized by a collection of 9600
attributes describing expression intensities of a corresponding num-
ber of genes. Details can be found in [25].

Each sample is a vector in a 9600 space, and therefore, direct
inspection of the structure of this data, and of the relationship be-
tween the descriptor variables (the genes) and the type of sample
(normal or Alzheimer), is impossible. Moreover, within the collec-
tion of genes there is a mixture of potentially relevant genes with
others which are irrelevant, noisy, etc.

The need of simultaneously finding a visual representation (3D)
respecting (as much as possible) the set of object interrelationships
as defined by the 9600 original attributes, and the construction of
a new feature space effectively differentiating the two classes of
objects present, makes this problem suitable for a multi-objective
optimization approach.

4.1 Experimental Settings
In the present case, there is a sample of N = 23 objects in a

9600-dimensional space (9600 genes describe each sample). All of

the attributes (the gene expression intensity values) are real-valued.
Therefore, the original domain is homogeneous, actually a particu-
lar case of the heterogeneous domains according to the formalism
introduced in Section 2. Ĥn = R̂nR , where n = nR = 9600. In
the virtual reality space Υ, m = 3, and if continuous 3D spaces (for
example, with Euclidean metric) are targeted, l : ℜ9600 → ℜ3. The
result of the mapping l is an image of that set of original samples
but in a 3-dimensional space. Accordingly, the number of attributes
of the objects in the new space is M = m = 3. If the image set can
be constructed (i.e. a set of N = 23 vectors of dimension M = 3),
the ζij terms in the error measures described by Eqs. 1, 2, 3 can be
evaluated for any pair of objects i, j. In particular, if Sammon error
is chosen as an error measure (Eq. 2) and if an image is found such
that this measure is minimized, then an implicit representation of
the mapping l is obtained.

This problem can be described by a GA where each linear real-
valued chromosome in the population represents a candidate image
of the set of N objects in the VR space, with the chromosome ele-
ments being the coordinates of the objects in the VR space (a total
of N ·M = 23 · 3 = 69 ). The decoding scheme is simply de-
composing the chromosome into chunks of M elements, such that
the i-th chunk stands for the coordinates of the image of the corre-
sponding object in the original sample (Fig-3). Thus, each chromo-
some represents the result of an implicit mapping l : ℜ9600 → ℜ3.

If the three attributes of the VR space are denoted as X, Y, Z,
their relation with those of the original space is given by:

X = ϕx(v1, v2, · · · , v9600)

Y = ϕy(v1, v2, · · · , v9600)

Z = ϕz(v1, v2, · · · , v9600)

where {v1, v2, · · · , v9600} are the original variables and
ϕx, ϕy, ϕz are the non-linear functions of the original variables
defining the mapping l. Note that in this approach the explicit form
of l is neither obtained nor needed. However, there are applications
where an explicit l is required (they are developed elsewhere).

The collection of parameters describing the application of the
NSGA-II algorithm is shown in Table-1.

It should be observed that a modest population size and number
of generations were used, with a relatively high mutation probabil-
ity in order to enable richer genetic diversity. Randomization of the
set of data objects was applied in order to reduce the bias in the
composition of the cross-validated folds by providing a more even
class distribution between successive training and test subsets. The
number of folds was set in consideration of the sample size.

4.2 Results
The set of non-dominated solutions obtained by the NSGA-II

algorithm is shown in the scatter plot of Fig-4, where the horizon-
tal axis is the mean cross-validated knn error and the vertical axis
the Sammon error. The approximate location of the Pareto front
is defined by the convex polygon joining the solutions provided by
chromosomes 0, 3, 2, 4, 1. Chromosome 0 defines a space with a
perfect resolution of the supervised problem in terms of the Nor-
mal and Alzheimer classes (knn error = 0), but at the cost of a
severe distortion of the space. Whereas, chromosome 1 approxi-
mates a pure unsupervised solution (with low Sammon error). Its
classification error is large indicating that few non-linear features
preserving the similarity structure lacks classification power. This
may be due to the large amount of attribute noise, redundancy, and
irrelevancy within the set of 9600 original genes.

Clearly, it is impossible to represent virtual reality spaces on a
static medium. However, a composition of snapshots of the VR
spaces using the solutions along the Pareto front approximation



Table 1: Experimental settings for computing the pareto-

optimal solution approximations by the multi-objective genetic

algorithm (PGAPack extended by NSGA-II).

population size 100
number of generations 200
chromosome length 69
ga seed 4001
objective functions should be minimized
chromosome data representation real
crossover probability 0.8
crossover type uniform (prob. 0.6)
mutation probability 0.4
mutation type gaussian
selection type tournament
tournament probability 0.6
perform mutation and crossover yes
population initialization random, bounded
lower bound for initialization 0
upper bound for initialization 7
fitness values raw objective values
stopping criteria maximum iterations
restart ga during execution no
parallel populations no

number of objectives 2
number of constraints 0

pre-computed diss. matrix Gower dissimilarity
evaluation functions mean cross-validated error

Sammon error
cross-validation (c.v.) 5 folds
randomize before c.v. yes
knn seed -101
k nearest neighbors 3
non-linear mapping measure Sammon
dimension of the new space 3

is shown in Fig-5.a-5.e. For comparison Fig-5.f corresponds to
an unsupervised single-objective solution obtained with determin-
istic optimization (Newton’s method) using Sammon’s error (Eq-
2), Gower’s similarity in the original space (Eq-4), and normalized
Euclidean metric in the new space (Eq-5) was obtained in [25]. The
error obtained was 0.1034 after 335 iterations. The error of this sin-
gle objective solution is much better than the equivalent obtained
with the multi-objective approach, but it should be considered that
the reduced number of generations (in the latter case) as well as the
modest population size, considerably reduces the search space.

A solution satisfying classification error as much as possible (ac-
tually with 0-error) is shown in Fig-5.a where both classes are not
only completely separated, but linearly separated. If this space
is compared with the MO solution most oriented towards simi-
larity preservation (Fig-5.e) or with the pure single-objective so-
lution of Fig-5.f, it is possible to see that according to the origi-
nal variables, the two classes are not linearly separable. In fact,
the Alzheimer class is surrounded by elements from the Normal
class. In Fig-5.c, patterns from both Fig-5.a and Fig-5.e-f can be
identified. The two classes are still separable (but less sharply, in
this case by a nonlinear boundary), and also the Alzheimer class
is closer and more mixed with the Normal class. If the spaces of
Figs e and f (particularly the last one) represents an approximation
to the ’natural’ distribution of the data in the original 9600 dimen-
sional space (a reasonable assumption supported by the low Sam-
mon error of Fig-5.f, the distortion required for the space to achieve

classification error =0 is large, as evidenced by Fig-5.a. Clearly,
Fig-5.c shows a space less distorted and closer to that of Fig-5.f,
but where the two classes are still clearly distinguishable. That is
why visually, that space represents a compromise solution between
the two goals and a tradeoff between the two objective functions. It
should be remembered that the class information is not used at all
for computing the space of Fig-5.f. Chromosome 2, according to
Fig-4 and Fig-5.c, can be considered to be the best multi-objective
compromised solution in which both error criteria are simultane-
ously as low as possible. It shows a reasonable class discrimina-
tion with a non-large similarity structure distortion, which is a very
meaningful result.

Figure 3: Multi-objective chromosome representation.

5. CONCLUSIONS
A multi-objective optimization approach was introduced for the

problem of computing virtual reality spaces in the context of visual
data mining and knowledge discovery applied to relational struc-
tures (e.g. databases). The multi-objective procedure was based
on NSGA-II using two objective functions representative of unsu-
pervised and supervised criteria (mean cross-validated knn error as
a measure of missclassification, and Sammon error as a measure
of similarity structure loss). This methodology was applied to the
analysis of high dimensional genomic data collected in the frame-
work of Alzheimer’s disease research.

A Pareto front approximation was recognizable from within the
solutions provided by the final population. Selected solutions from
along that approximation were used for the construction of a se-
quence of visualizations showing the progression from spaces with
complete class separation and poor similarity preservation to spaces
with reversed characteristics. A solution with a reasonable compro-
mise between the two criteria was identified and clearly contained
properties of both extreme solution spaces. This is the first inves-
tigation of virtual reality space construction using multi-objective
optimization with genetic algorithms applied a specific real-world
problem. Thus, these research results, although preliminary, showed
large potential and further investigation is required.



Figure 4: Set of 100 multiobjective solutions. Those along the

Pareto front approximation progressively span the extremes

between minimum classification error and minimum dissimi-

larity loss. The errors for the two objective functions are shown

in parenthesis.
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(a) Chromosome 0 (knn-error = 0) (b) Chromosome 3

(c) Chromosome 2 (d) Chromosome 4

(e) Chromosome 1 (f) Walker et. al. 2004 (Sammon error = 0.1034)

Figure 5: Snapshots of vr-spaces computed with different solutions along the Pareto front approximation progressively spanning the

extremes (minimum classification error; minimum dissimilarity loss). Light spheres = normal samples, dark spheres = Alzheimer

samples.


