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munity. The generated model has been used to uncover gaps and inconsistencies in

JETA’s fault knowledge, and as a result, has uncovered some novel faults not

encoded in JETA.

• The Diagnostic Remodeler software has been successfully re-used for a second

very different, but simpler problem, the automatic model acquisition of a coffee

maker full device component model from fault knowledge. The model again uncov-

ers some gaps and inconsistencies in the fault knowledge. The coffee maker appli-

cation demonstrates the generality of the algorithm and its potential wide

applicability across various application domains.

• In implementing the DR algorithm’s device independent knowledge, it was possible

to formulate generalized component descriptions which were successfully re-used

with minor modifications between the engine and the coffee maker domains. These

descriptions present a novel manner by which to describe component function

(what a component is designed to do), inputs, outputs, primary control variables

and behaviours. Behaviours are specifically represented as proportional, inversely

proportional, or piecewise linear, input-to-output behaviour as dictated by operat-

ing modes for the variable inputs and outputs of a component.

• Lastly, a thorough review of techniques relevant to diagnosis in Artificial Intelli-

gence [Abu-Hakima 94b] was completed to confirm that the DR algorithm con-

cepts are unique and have not been addressed in the related AI literature.

Final Conclusion

This paper addresses the difficult problem of automated model acquisition for diagno-

sis. The DR algorithm automates generation of component models with an explicit

representation of behaviour and function through the re-use of FBR knowledge and

background knowledge. For a small additional investment in background knowledge,

black box models for complex devices can be generated by DR through fault knowl-

edge re-use. DR forms a bridge between FBD and MBD knowledge to facilitate the

exploitation of knowledge in hybrid systems.
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system for a complex application requires 50% less (14% versus 28%), than for a sim-

pler application. This further justifies the hypothesis that DR works well in modelling

complex fault knowledge bases (such as that of the engine), whereas its use may not

be justified for simple fault bases. This use can also be qualified by the level of effort

required to encode the background knowledge. Admittedly however, formulating the

background knowledge required to model a simple device is far easier than that

required to model a complex device. This is supported by the fact that a domain expert

participated in ensuring that the engine background knowledge was accurate, whereas

no specialized expertise was required to formulate the background knowledge for the

coffee maker device. However, the resultant black box component models with

explicit descriptions of behaviour and function are far easier to understand than read-

ing the fault knowledge in a complex application.

One of the issues addressed by DR is what is the exact form of the automatically

acquired model when some or no background knowledge is used. If no background

knowledge is used, is the model much more than a causal rather than a component

behaviour model with explicit representation of function? The answer here is that a

minimum amount of device dependent knowledge is used to map the fault-based syn-

tax to more meaningful text as shown in the sample output for modelling JETA’s main

fuel system in DR step 4. If no device independent background knowledge (compo-

nent library knowledge) is used, then the extraction of gaps between the fault-based

encoded knowledge and a general one is not possible. Using no background knowl-

edge, it is possible to extract a component-to-component model with explicit paramet-

ric links representing connections in FBR knowledge. Extracting the directions and

relationships on these behavioural paths requires generalized device independent

background knowledge.

Contributions of the work on the DR algorithm

Five contributions have resulted from this work:

• The definition, implementation and testing of the generalized Diagnostic Remod-

eler algorithm which can acquire a component behaviour model with explicit func-

tion for a device or device subsystem.

• The Diagnostic Remodeler algorithm results (the black box component models)

can be used to validate, and uncover novel faults in the fault knowledge base. DR

has successfully generated a model that has been validated by a domain expert for

a complex real-world device. The input to DR-1 (the first DR phase), is the real-

world Jet Engine Troubleshooting Assistant (JETA) fault knowledge. The input to

DR-2 (the second DR phase), is device dependent and independent background

knowledge validated by an aircraft engine Expert at NRC’s Propulsion Laboratory.

The background knowledge includes explicit representation of inter-component

feedback and multiple component inputs and outputs, common in control prob-

lems, but not traditionally addressed in acquiring or using models in the AI com-



nent. At a higher level in the JETA hierarchy, the functional modes are related to

phases of engine operation. However, the current JETA fault knowledge does not

explicitly relate these component operational modes to the phases of engine operation.

Given the DR acquired component models, it would not be very difficult to add this

new layer of knowledge above the component symptom layer, and explicitly relate it

to the phases of engine operation.

Impact of Background Knowledge Vs. Fault Knowledge

Two types of background knowledge are needed to achieve the DR algorithm results:

device dependent background knowledge (DDBK) and device independent back-

ground knowledge (DIBK). DDBK provides glossary knowledge, mapping the fault-

based encoded name of the component to a meaningful symbolic name (this was nec-

essary for the engine application to decode JETA syntax, but was not used for the cof-

fee application which encoded meaningful text). The DDBK also represented any

component-specific modes of operation and respective I/O variables with a plus/minus

(+/-) sign indicating a direction for changes in value. DIBK is a form of a generic

component type description that gets instantiated according to the extracted model.

The generic component descriptions are designed to be placed in a design or model

library (e.g. a CAD/CAM library) so that they may be re-used for different devices.

Their description includes a function (the purpose or goal of the component, e.g. to

pump, to control, to filter, etc.), inputs, outputs, regulation inputs, and a behavioural

relation describing how the inputs change with respect to the outputs for particular

modes of operation (proportional, inverse proportional or piece-wise linear).

Often in software engineering, lines of code are used to compare metrics of various

programs. Similarly, the statistics comparing the ratios of background knowledge

(BK) to fault-based knowledge (FBK) used by DR can be examined. The total fault

knowledge used for the engine application is 3972 lines of code encoding 197 fault

nodes. Out of this fault knowledge, in modelling the Main Fuel System (MFS),

approximately 60 fault nodes are used. The average number of lines of code per node

is 20. Thus, the DR algorithm uses 1200 lines of JETA fault knowledge code, to model

the MFS components and connections. DR also uses 168 lines of code of total back-

ground knowledge, of which 101 is device dependent (DDBK) and 67 is device inde-

pendent (DIBK). Thus, the ratio of background knowledge to total fault knowledge is

only 4.23%, and to fault knowledge used by DR for modelling the MFS is 14%.

Similarly, for the coffee application, 330 lines of code or 29 fault nodes are used by

DR. The total number of lines of code of background knowledge used for modelling

the device are 91, of which 35 are device dependent and 56 are device independent.

Thus, the ratio of background, to total fault knowledge used by DR for modelling the

full coffee maker device is 28%.

It is interesting to note that as the application gets more complex (i.e. the engine appli-

cation), the ratio of total background knowledge to fault knowledge is smaller. What is

more significant is that the background knowledge used by DR for modelling a sub-



[function(water temperature heat control,regulates(heat+)),
input(water temperature heat control,heat+),
output(water temperature heat control,water+),
regulator(water temperature heat control,heat+),
behaviour(for(water temperature heat control),
behaviour_is_proportional(
[increase_in(heat+),increases(water+),decrease_in(heat+),decreases(water+)])),...

6 Discussion and Conclusions

Mapping fault-based knowledge (FBK) to model-based knowledge (MBK)

The DR algorithm makes the assumption that as one ascends a well-structured diag-

nostic hierarchy of FBK, one can extract component knowledge and behavioural

MBK. This is key in discovering the relation between the components and the various

layers of knowledge above them, thus identifying any gaps or inconsistencies. In the

engine fault knowledge, DR showed that a significant layer is missing in the FBK.

If one examines the knowledge extracted by DR, the lowest layer of knowledge (rep-

resented by the terminal nodes in Figure 4), is the component knowledge. The layer

above that knowledge is, as assumed by DR, symptomatic knowledge that maps

directly to component parameters. These parameters represent model behavioural

variables. Some minor inconsistencies (missing or extra parameters which implied

missing or extra links) were found in JETA at this level. However, the most significant

discovery is the layer of missing knowledge above the symptomatic knowledge for

components that have multiple functional modes in JETA.

Fig. 4. Missing Layers of knowledge in JETA

These are specifically control components (e.g. the Main Fuel Control, the Overspeed

Governor, etc.). These components have associated with them functional modes with

a different number of respective control variables. Thus, in a specific mode, a fault in

JETA may be manifested and it would be indicated by some variable. In another

mode, a completely different variable may be the indicator of a fault with the compo-
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JETA’s fault-based knowledge in the form of missing or extra links and one missing

component (specifically, the fuel tank) to be manually or automatically corrected.

5.2 DR Coffee Maker Results & Device Model

To test the generality of the DR algorithm and relax some of its assumptions, I gener-

ated a 30-node knowledge base for the diagnosis of a coffee maker (a very different

device than an aircraft engine). The coffee maker device had a variety of terminal

nodes (not only replace types). DR selected all terminal nodes and assumed that they

represented device components. Then, as before, parental nodes were used to identify

sibling nodes and connections between them. Only 3 of the node slots of the frames of

fault-based knowledge were used, the node name, the child node of and the child node

ranking slots. From these slots the 5 steps (with step 1 relaxed) of the DR algorithm

were used to generate the model in Figure 3.

Fig. 3. Coffee Maker device model as extracted by DR

A regulator, a switch, a heater, a holder and a filter were the device independent com-

ponent models added to the library for background knowledge. In addition, 10 expres-

sions that represented the device dependent background knowledge giving the type of

component and the input/output behaviour parameters were used by DR. Thus, it was

possible to successfully generate a component behaviour model for a full device

(rather than only a subsystem) with explicit function and behaviour descriptions for

each of the coffee maker components. To provide the reader with some detail, below
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Water
Reservoir

Plug

Switch

Water
Heating
Element

Coffee
Heating
Element

Coffee
Filter

Coffee
Grounds
Holder

Coffee
Pot

Water
Temperature
Control

Coffee
Drip

coffee+

power

power

heat+

water+
grounds

water+

coffee+

heat+power

heat+

power



[function(main_fuel_nozzles,flow_control(WF+)),
input(main_fuel_nozzles,flow(WF+)),
output(main_fuel_nozzles,flow(WF+)),
regulator(main_fuel_nozzles,regulation_control(N+)),
behaviour(main_fuel_nozzles,

behaviour_is_proportional(WF+,N+,
[increase_in(N+),increases(WF+),
decrease_in(N+),decreases(WF+)]))],

[[main_fuel_nozzles,
[[gap_for_mode,fuel_flow_control,

extracted,EGT,input,[N+,WF],output,[WF+]],
[gap_for_mode,fuel_flow_control,

extracted,N,input,[N+,WF],output,[WF+]],[]]]],

Note that EGT is exhaust gas temperature and is an inconsistent link. This implies that

there is an erroneous link in the fault-based knowledge. The parameters engine speed

(N) and fuel flow (Wf) are expected and the sign on N is missing as expected. The par-

tial view of the extracted MFS subsystem is shown in Figure 2.

Fig. 2. Main Fuel System model extracted by DR

Note that the main fuel pump and main fuel control filters extracted by DR were omit-

ted to simplify the diagram. Thus, DR succeeds in extracting the 7 components (Fig-

ure 2 shows 5 and excludes the 2 filters and shows a fuel tank) and their respective

connections in Phase 1. In the second phase the device dependent and device indepen-

dent background knowledge is used to derive the direction and relations between the

extracted parameters. Any gaps between JETA and the background knowledge are

highlighted (illustrated with dashed boxes in Figure 2) so that the fault-based knowl-

edge can be made consistent or modified. Thus, the algorithm has uncovered errors in
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that they represent faults directly on physical engine components. These physical

component fault nodes can be grouped into those affecting one of thirteen subsystems

by their nomenclature. One can follow the five steps of the DR algorithm to discover

the behavioural and functional component model for the main fuel system of the jet

engine.

Step 1: Identifies 9 replace nodes through the JETA node frame slot ‘node-type’.

Step 2: If one takes a specific subsystem, the MFS (Main Fuel System), one can extract names of

3 fuel system replacement nodes by pattern matching with the node nomenclature *N-MFS-XXX

(an internal representation used by the knowledge engineer to distinguish nodes):

1. main fuel control (MFC)
2. overspeed governor for MFC (OSG)
3. main fuel pump supplying MFC (MFP)

Step 3:Parents of replace nodes that connect sibling terminal nodes are extracted.

• MFC and MFP nodes share parent fuel flow loss

• OSG shares with MFC engine speed hang-up parent

• MFC shares fuel flow loss parent with fuel nozzles, FN

• pressurizing and drain valve (PDV) shares low fuel flow parent with FN

Step 4:A causal topological network can be the basis for hypothesized component-behaviour

relations. Sibling nodes are clustered based on shared parent links. Example DR output rela-

tions that form part of the network include:

[main_fuel_nozzles,is_a([nozzle,for,[fuel_flow_control]]),
and_is_connected_to(main_fuel_control),
with_connectivity_parameter([measured_rpm_engine_speed,single_spool_engine_speed,

weight_of_fuel_flow])],

[main_fuel_nozzles,is_a([nozzle,for,[fuel_flow_control]]),
and_is_connected_to(pressurizing_and_drain_valve),
with_connectivity_parameter(fuel_pump_inlet_pressure[])],

[[main_fuel_control,is_a([control,for,
[steady_speed_control,speed_cutback_control,
acceleration_fuel_limit_control,
deceleration_fuel_limit_control,
variable_geometry_scheduling,
proportional_speed_control,fru_fuel_selection]]),

and_is_connected_to(main_fuel_pump),
with_connectivity_parameter([weight_of_fuel_flow])],

Step 5: Step 4 output is matched against device independent/dependent background knowledge

and gaps identified. In the case of inconsistencies, in phase 1 of the DR algorithm parameters

which are not explicitly related to components through background knowledge may point to

inaccuracies that should be corrected. The complete component model for the main fuel nozzles

(FN) with the identified gaps is:

1.  The diagnostic hierarchy is sometimes referred to as a network since it includes relations that

are not directly inherited that allow the JETA reasoner to jump around between nodes thus

forming more of a network than a hierarchy.



et al. 88]. In addition, the inputs and the outputs of the component are made explicit.

In the case of a regulated component that has a control signal, a regulation parameter

is identified. Finally, the behaviour function that maps the inputs and outputs of the

component is described. In the case of a proportional relation (increasing input and

increasing output, or decreasing input and decreasing output) a behaviour is identified.

More complex components which have complex behavioural relations dependent on

specific modes are also tagged. In the case of the main fuel control with its 7 modes of

operation that reflect it as a component that has feedback, a piecewise linear behaviour

is extracted. This behaviour is a set of behaviours that represent each mode of MFC

operation as either proportional or inverse proportional.

For a pump, the device independent component model is:

component(pump,Pump_name,Fluid,Control,_,F,I,O,R,B):-
    F = function(Pump_name, delivers(Fluid)),
    I = input(Pump_name,fluid(Fluid)),
    O = output(Pump_name,fluid(Fluid)),
    R = regulator(Pump_name,Control),
    behaviour_proportional(Fluid,Control,Behaviour),
    B = behaviour(for(Pump_name),behaviour_is_proportional(Fluid,Control,Behaviour)).

For a filter (e.g. fuel or coffee filter) the device independent component model is:

component(filter,Filter_name,Fluid,Control,_,F,I,O,R,B):-
    F = function(Filter_name, filters(Fluid)),
    I = input(Filter_name,fluid(Fluid)),
    O = output(Filter_name,fluid(Fluid)),
    R = regulator(Filter_name,none),
    behaviour_proportional(Fluid,Control,Behaviour),
    B = behaviour(for(Filter_name),behaviour_is_proportional(Fluid,Control,Behaviour)).

A control component with variable number of inputs, outputs and control variables has piece-

wise-linear behaviour:

component(control,Name,Ins,Outs,Modes,F,I,O,R,B):-
    Outputs = [Main_Output|Outs],
    F = function(Control_name,controls(Main_Output)),
    I = input(Control_name,control(Inputs)),
    O = output(Control_name,control(Outputs)),
    R = regulator(Control_name,regulation_control(Inputs)),

typify(Inputs,Ouputs,Modes,Control_var_list,Behaviours_list),
    B = behaviour(Control_name,behaviour_is_piecewise_linear(Control_var_list,Behaviours_list)).

5 Results

5.1 DR Aircraft Engine Results &Device Model

An analysis of the JETA fault knowledge (~200 nodes represented as frames of 14

slots per frame) shows layers of knowledge represented as a directed network which

can be reduced to leaves of diagnostic trees. The topmost layer is an entry point to jet

engine faults and subsequent layers organize the faults into various branches. The sec-

ond layer is phases of engine operation and its branches lead to various symptomatic

nodes labelled as snags. These snags in turn are refinable down to repair and replace-

ment nodes which represent the terminal nodes of the diagnostic hierarchy1. If one

examines the knowledge encoded in these terminal nodes more closely one discovers



of the frame slots in a typical troubleshooting system to determine component connec-

tions. The slots used are the node name, the node type, the child node of, and the child

node ranking. Replace node types are the terminal nodes first identified for a specific

subsystem. The subsystem is identified through the node name itself. The child node

of is used to determine the parent of a terminal (component) node. The child node

ranking is used to determine the siblings of a terminal node. The parent node as men-

tioned earlier represents symptomatic or parametric knowledge between sibling

nodes.

4 DR-2 Background Knowledge

4.1 Device Dependent Background Knowledge

Device dependent background knowledge is used to identify the type of a component

(for example a pump, a filter, a control, a vessel, a source, etc.) and any specifics about

inputs or outputs related to operational modes. The traditional approach used in mod-

elling feedback in engineering, requires that both the modes of component operation,

and their respective Input/Output (I/O) parameters that act as behavioural control vari-

ables in a particular mode be explicitly identified [Abu-Hakima 94a].

Thus, for the main fuel control (MFC) component of JETA [Halasz et al. 92] device

dependent knowledge identifies that the MFC is a control with 7 fuel scheduling

modes that vary from acceleration to deceleration with a variety of speeds in between.

For each mode there are key parameters that represent component behaviours. They

include engine speed (N), pilot demanded speed (Nd), throttle position or power lever

angle (PLA), compressor inlet temperature (T2), fuel flow (Wf), compressor discharge

pressure (P3) and inlet guide vanes (IGV) which indicate air bleed valve positions. In

the excerpt of device dependent background knowledge below, each of the MFC

modes has a specific set of behaviours represented as lists of in-out behaviour pairs.

Below are both the general, and the MFC-specific expressions for device dependent

background knowledge.

%glossary(KB,Component,ProperName,[ComponentType,for,[Modes]], [InOutBehaviour Pairs]).

% main fuel control terms from JETA's Glossary Frames and J85 Control Parameters/Modes
glossary('JETA','MFC',main_fuel_control,
    [control,for,[steady_speed_control,speed_cutback_control,acceleration_fuel_limit_control,

deceleration_fuel_limit_control,variable_geometry_scheduling,
proportional_speed_control,fru_fuel_selection]],

     [[['N','PLA+'],['Nd+','WF/P3+']], [['N','T2_limit'],['Nd-']],[['N+','T2'],['WF/P3+']],
[['N-'],['WF/P3-','WF_min']],[['N','T2'],['IGV','bleed valve positions']],[['N','PLA'],['WF/P3']],
 [['WF/P3','P3'],['WF']]]).

4.2 Device Independent Background Knowledge

Device Independent Background Knowledge is the second type of background knowl-

edge input to DR-2 and forms a re-usable component library. For each of the compo-

nents the function of the component is first represented. Function here implies, the

purpose of the device component as defined by Sticklen and his colleagues [Sticklen



The objective of the DR algorithm is to discover and refine a component behavioural

model with explicit function. In the most general sense, the algorithm must identify

the components of the device, generate links between those components, and generate

hypotheses for the behaviour and function of the components. To achieve this, the DR

algorithm must perform five steps:

1. identify the terminal nodes in the diagnostic hierarchy

-these represent component nodes that have no child or sibling refinements

2. identify the component nodes in the diagnostic hierarchy related to the subsystem to be

modelled (if required)

-perform a pattern match with known name or its derivatives (possibly acronyms) that

match subsystem (a model can be constrained to the components of a subsystem rather

than a full device)

3. identify the parents and siblings of the nodes

-backtrack from terminal to parent nodes and tag

-tag shared parents of a node

-tag siblings of a parent

4. extract relations (behaviours) between sibling nodes

-cluster nodes related by parental nodes

-movement from the terminal nodes to parent node represents symptomatic information

(parameters)

5. match device model against background knowledge and output gaps for verification to

the developer

-map out the identified components of the subsystem

-relate the components through shared parameters

-match derived component model with device dependent knowledge to derive I/O parame-

ter behaviours

-match derived component model with library component model to extract function and

uncover gaps

3 DR’s Re-Use of Fault-Based Knowledge

To achieve the knowledge-rich modelling proposed as the output for DR, one requires

the use of a well-structured and explicit knowledge representation that can adequately

represent diagnostic causality. This is achieved by extracting a model of the connec-

tions between the components in the subsystem to be modelled. These connections are

further used to extract the variables (for example engine speed, fuel flow, temperature,

etc.) that typify the behaviour between components.

In typical troubleshooting systems, a network of frames is used since frames offer a

great deal of flexibility in constructing and reasoning about knowledge1. DR uses four

1.  This is standard in commercial systems such as the Carnegie Group’s TestbenchTM

FBD tool.



the functioning of a device rather than its actual behaviour, hence FBD cannot detect

novel faults. However, MBD can lead to a combinatorial explosion in producing a

diagnosis for complex systems (for example, an aircraft engine) and it does not easily

lend itself to causal explanation [Struss and Dressler 89]. DR is intended to address

the automated generation of a model of a device by the re-use of its fault knowledge.

This implies the automated generation of MBD knowledge from FBD knowledge.

2.1 DR Algorithm Steps

Two phases clearly divide the operation of the DR algorithm (Figure 1). In DR-1, an

existing well-structured knowledge base is used as input (see [Halasz et al. 92] for

JETA’s). Two types of background knowledge, device dependent and device indepen-

dent are used as inputs to DR-2. Device independent background knowledge is in a

component library and is general in nature. For example, it could describe a pump

which delivers some liquid from a source to a sink and needs a control signal (e.g.

pressure) to increase or decrease the flow of liquid. The pump library component

model also includes some knowledge about feedback control in moderating the flow

of a liquid to a source based on the level of the liquid at the sink. The device depen-

dent knowledge includes the specific details on the input and output (I/O) parameters

for different device control modes.

Fig. 1. Diagnostic Remodeler Phases: DR-1 and DR-2
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the behaviours of a device, it will not be able to adequately diagnose the device, let

alone discover novel faults.

My work is intended to form a bridge between the FBD and MBD communities.

Although the two communities are striving towards the same goal, mainly the efficient

and accurate diagnosis of devices, they have not closely examined or taken advantage

of their commonly shared problems. They share problems in knowledge acquisition

for diagnosis, be it fault or model knowledge. The researchers in the two camps need

to address common approaches for structuring, reasoning about, explaining and re-

using knowledge. MBD researchers have started to make use of fault hierarchies for

commonly observed problems so that they may reduce the computational complexity

of their approach (specifically, [Bizzari et al. 90; Dewberry and Carnes 90]).

One problem in bridging FBD and MBD, is the problem of relating, and possibly re-

using device fault knowledge as model knowledge. To address this problem, the Diag-

nostic Remodeler (DR) algorithm, the subject of this paper, has been formulated,

implemented, and tested [Abu-Hakima 94a; 93]. DR illustrates that well-structured

fault knowledge can be mapped and re-used, as model knowledge. DR addresses the

re-use of existing complex device fault knowledge in conjunction with background

knowledge for the generation of black box component models of a device. These com-

ponent models represent device structure, behaviour, and function and are typical of

models used in model-based reasoning [Nayak and Struss 94; Abu-Hanna et al. 92].

DR thus maintains two views for the diagnostic knowledge of a single device or sub-

system, a fault-based view, and a model-based one. These two views help illustrate

that fault and model knowledge for the same device are related, and given one view,

the second can be extracted. DR illustrates that the model view can be extracted from

the fault view in conjunction with background knowledge. Other MBD researchers

have shown that the fault view can be extracted by compiling diagnoses based on the

model view [Bizzari et al. 90; Meisner et al. 90; Althoff et al. 90]. Compilation can

form a hybrid MBD and FBD system that produces diagnoses in finite time [Meisner

et al. 90].

The remainder of the paper sections describe: in 2, the DR algorithm and its steps, in

3, DR’s re-use of fault knowledge, in 4, background knowledge input to DR, in 5,

results of DR’s application to an aircraft engine and a coffee maker, and in 6, an over-

all discussion and conclusion.

2 DR Algorithm

The de Kleer [de Kleer and Williams 87] approach to MBD represents a device and its

function as a set of components with behaviour. A device can be diagnosed by assum-

ing a faulty component and enumerating the behavioural states propagated as a result

by the remainder of the device [Davis 84; Hamscher and Struss 90; Struss 89]. This is

compared to the behaviour that a technician is observing in attempting to isolate a

problem. MBD can detect novel faults since the behaviour of the device is the basis of

its knowledge representation and reasoning. Fault-based diagnosis uses the faults in
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Abstract

The paper addresses the problem of automated model acquisition through the re-use of fault

knowledge. The Diagnostic Remodeler (DR) algorithm has been implemented for the auto-

mated generation of behavioural component models with an explicit representation of function

by re-using fault-based knowledge. DR re-uses as its first application the fault knowledge of the

Jet Engine Troubleshooting Assistant (JETA). DR extracts a model of the Main Fuel System

using real-world engine fault knowledge and two types of background knowledge as input:

device dependent and device independent background knowledge. To demonstrate DR’s gener-

ality, it has also been applied to a coffee maker fault knowledge base to extract the component

models of a full coffee device.

1 Introduction

Artificial Intelligence (AI) researchers in the model-based diagnosis (MBD) commu-

nity dismiss fault-based diagnostic (FBD) systems far too easily [van Soest 93, Abu-

Hanna 89]. Many MBD authors incorrectly assume that fault-based knowledge is still

represented and organized as a flat file of if-then production rules as it was in the days

of MYCIN [Clancey 86]. MYCIN was the earliest well-known fault-based diagnostic

system and it was implemented in the 1970’s. Much work has evolved and improved

on MYCIN’s main diagnostic themes. Today’s FBD systems recognize the need for

developing systems that explicitly separate the control from the data in reasoning.

This separation aids in tractable reasoning and in searching for diagnoses in finite time

[Chandrasekaran 86, Goel et al. 87]. This separation is also essential in justifying sys-

tem behaviour and in generating good explanations [Abu-Hakima and Oppacher 90].

Currently developed FBD systems address complex real-world problems, are highly

structured, and thus, their knowledge bases are very efficiently searched.

Despite these FBD strengths, MBD researchers repeatedly criticize fault-based sys-

tems as limited, and inadequate for troubleshooting novel faults. What is often forgot-

ten by the MBD supporters, are the number of implemented FBD systems that are in

successful daily use, as exemplified in the literature [Abu-Hakima 94b]. Furthermore,

MBD has been shown to be computationally expensive and intractable for complex

devices. MBD systems are additionally limited by the generation of models and their

accurate reflection of the systems they model. If a model does not correctly propagate


