
Publisher’s version / Version de l'éditeur:

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez
pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the
first page of the publication for their contact information.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

Proceedings of the 2004 IEEE/WIC/ACM International Conference on Web
Intelligence (WI'04), 2004

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

NRC Publications Archive Record / Notice des Archives des publications du CNRC :
https://nrc-publications.canada.ca/eng/view/object/?id=a2218779-9039-4882-a4ae-8376e0c2e4e8

https://publications-cnrc.canada.ca/fra/voir/objet/?id=a2218779-9039-4882-a4ae-8376e0c2e4e8

NRC Publications Archive
Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. /
La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version
acceptée du manuscrit ou la version de l’éditeur.

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

The Abstract Syntax of RuleML - Towards a General Web Rule

Language Framework
Wagner, G.; Antoniou, G.; Tabet, S.; Boley, Harold

National Research
Council Canada

Institute for
Information Technology

Conseil national
de recherches Canada

Institut de technologie
de l'information

The Abstract Syntax of RuleML - Towards a
General Web Rule Language Framework *

Wagner, G., Antoniou, G., Tabet, S., and Boley, H.
September 2004

* published in the Proceedings of the 2004 IEEE/WIC/ACM International
Conference on Web Intelligence (WI'04). Beijing, China. September 20-24,
2004. pp. 628-631. NRC 48059.

Copyright 2004 by
National Research Council of Canada

Permission is granted to quote short excerpts and to reproduce figures and tables
from this report, provided that the source of such material is fully acknowledged.

The Abstract Syntax of RuleML –
Towards a General Web Rule Language Framework

Gerd Wagner1, Grigoris Antoniou2, Said Tabet3, and Harold Boley3,4

1Dept. TechnologyManagement, Eindhoven University of Technology, The Netherlands
2Institue of Computer Science, FORTH, Greece

3Co-chair of the RuleML Initiative, http://www.ruleml.org
 4National Research Council, Fredericton, NB, Canada

G.Wagner@tm.tue.nl
Abstract

This paper discusses the approach taken by the Rule
Markup Language (RuleML) Initiative towards a general
Web rule language framework and relates it to the MDA
and UML by the Object Management Group (OMG). It
also presents the abstract syntax of RuleML 0.85 as a
MOF/UML model and considers the possibility to
integrate RuleML with OCL and Action Semantics.

1. Introduction
The Model Driven Architecture (MDA)1 is a frame-

work for software development defined by the OMG.
MDA can be regarded as an evolutionary approach to
bringing models as first-class citizens into the software
engineering process. It is based on a fundamental
distinction between three different modeling levels: the
level of semi-formal (computation-independent) business
domain modeling, the level of platform-independent
logical design modeling, and the level of platform-
specific implementation modeling.

Rule markup languages will be the vehicle for using
rules on the Web and in other distributed systems. They
allow deploying, executing, publishing and communi-
cating rules on the Web. They are also converging
towards a lingua franca for exchanging rules between
different systems and tools.

In a narrow sense, a rule markup language is a
concrete (XML-based) rule syntax for the Web. In a
broader sense, it should have an abstract syntax as a
common basis for defining various concrete sublanguages
serving different purposes. The goal of RuleML is to
permit reusability and interchange at a higher level,
similar to the idea behind MDA. Instead of creating yet
another rule language, RuleML has offered a family of
modular sublanguages on top of a shared data model that
can be leveraged by existing and future language
instantiations ([2] [1]).

In the present paper we consider rules at three different
abstraction levels:
1. At the business domain level, rules are statements

that express (certain parts of) a business/domain policy

1See http://www.omg.org/cgi-bin/doc?mda-guide.

(e.g., defining terms of the domain language or
defining/constraining domain operations) in a declar-
ative manner, typically using a natural language or a
visual language. Examples are:

(R1) “The driver of a rental car must be at least 25
years old”

(R2) “A gold customer is a customer with more than
$1Million on deposit”

(R3) “An investment is exempt from tax on profit if
the stocks have been bought more than a year ago”

(R4) “When a share price drops by more than 5% and
the investment is exempt from tax on profit, then sell
it”
R1 is an integrity rule, R2 and R3 are derivation rules,
and R4 is a reaction rule (see below for explanations
of these rule categories). These appear to be the major
semantic categories of business rules. Actually, many
business rules appear to be reaction rules, which
specify policies for real-world business behavior.

2. At the platform-independent level, rules are formal
statements, expressed in some formalism or
computational paradigm, which can be directly
mapped to executable statements of a software
platform. Rule languages used at this level are
SQL:1999, OCL 2.0, and ISO Prolog. Remarkably,
SQL provides operational constructs for all three
business rule categories mentioned above:
checks/assertions operationalize a notion of constraint
rules, views operationalize a notion of derivation rules,
and triggers operationalize a notion of reaction rules.

3. At the platform-specific level, rules are statements in
a specific executable language, such as Oracle 10g
views, Jess 3.4, XSB 2.6 Prolog, or the Microsoft
Outlook 6 Rule Wizard.

Generally, rules are self-contained knowledge units that
involve some form of reasoning. They may, for instance,
specify
− static or dynamic integrity constraints
− derivations (e.g. for defining derived concepts),
− reactions (for specifying the reactive behavior of a

system in response to events)

Proc. of the 2004 IEEE/WIC/ACM International Conference on Web Intelligence (WI'04), September 20-24, 2004. IEEE Computer Society Press, 2004.

Rule

DerivationRule ReactionRuleIntegrityRule

SQL:1999
Assertion

ProductionRuleECARule

SQL:1999 Trigger

SQL:1999 View

OCL 2.0 Invariant

XSB 2.6 Prolog
Rule Jess 3.4 Rule

ECAPRule TransformationRule

XSL 1.0 Rule

CIM

PIM

MS Outlook 6 Rule

PSM
Oracle 10g
SQL View

ILOG JRule

Figure 1: Rule concepts and rule expressions at different levels of abstraction.

Given the linguistic richness and the complex dynamics
of business domains, it should be clear that any specific
mathematical account of rules, such as classical logic
Horn clauses, must be viewed as a limited descriptive
theory that captures just a certain fragment of the entire
conceptual space of rules, and not as the only definitive,
normative account. Rather, we need a pluralistic approach
to the heterogeneous conceptual space of rules. Therefore,
in RuleML, a family of rule languages capturing the most
important types of rules is being defined. While these
languages come with a recommended formal semantics,
some of their rule bases may be marked to have a variant
acceptable semantics. This will accommodate various
formalisms based on non-standard logics, supporting
temporal, fuzzy, defeasible, and other forms of reasoning.

In this paper, we discuss the abstract syntax of the
Rule Markup Language (RuleML). The abstract syntax of
a language can be defined with the help of a MOF/UML
model, as recommended by the OMG, or it can be defined
with the help of a suitably general grammar definition
language such as the EBNF formalism used in the
definition of the abstract syntax of OWL and SWRL.
Figure 4 shows the syntax of abstract derivation rules in
the form of a MOF/UML model. The different ‘parts’ of
RuleML rules and their relationships are defined in MOF
without specifying any concrete symbols for their
serialization. In particular, the abstract syntax specifies
the major role parts of rules and their semantic categories.
The concrete syntactic ordering is left undefined; e.g.,
there is no bias towards a prefix notation (such as in Jess)
or an infix notation (such as in RDF).

2. Categorizing Rules
The main categories of rules considered in RuleML are

derivation rules, integrity rules (constraints), reaction
rules, production rules and transformation rules, as
depicted in Figure 1. We consider the concepts of
derivation rules, integrity constraints, and reaction rules
to be meaningful both as (computation-independent)
business rule categories and as (platform-independent)
computational rule categories, whereas the concepts of
production rules and transformation rules appear to be
only meaningful as computational rule categories.

Notice that those categories whose name is in italics,
such as DerivationRule, refer to an abstract concept of
rule, while the others (with non-italicized names), such as
“SQL:1999 View”, refer to rule concepts of concrete
languages such as SQL:1999.

The main link between the different types of rules is
the notion of a LogicalFormula or of a LogicalSentence,
one of which being used in all of them. Traditionally,
logical formulas are expressed in a language based on a
predicate logic signature. However, OCL is the language
of choice for expressing logical formulas referring to the
state of a system whose structure is defined by a UML
class model.

3. Integrity Rules
Integrity rules, also known as (integrity) constraints,

consist of a logical sentence (in some logical language
such as predicate logic or temporal logic). They express
assertions that must hold in all evolving states and state
transition histories of the discrete dynamic system for
which they are defined.

Rule R1 from the introduction is an example of a static
constraint. An example of a dynamic constraint rule is:
“The confirmation of a rental reservation must lead to an
allocation of a car of the requested car group for the
requested date prior to that date”.

Conjunction

AtomicFormula StrongNegation Disjunction

WeakNegation

*

2..*

*

2..*

*

1

*

1

QF-Formula

Well-known languages for expressing constraints are
SQL and OCL. In logic programming, rules with empty
heads (also called “denials”) corresponding to the
negation of the conjunction of all body atoms are
sometimes used as constraints. It is an important issue for
RuleML whether to add a direct notion of constraints in
future versions Figure 3: Quantifier-free formulas with weak and strong

negation. The enforcement of constraints can be implemented
with the help of ECA rules whose event condition refers
to state changes that would violate the constraint and
whose action would be an alert or some kind of repair
action. In a DBMS, the implementation of constraint rules
by means of triggers is normally more efficient than their
implementation by means of declarative assertions.

Intuitively speaking, weak negation captures the absence
of positive information, while strong negation captures
the presence of explicit negative information. Under the
preferential model semantics of minimal/stable models,
weak negation captures the computational concept of
negation-as-failure (or closed-world negation).

4. Derivation Rules
Derivation rules, in general, consist of one or more

conditions and one or more conclusions2, which are both
roles played by expressions of the type LogicalFormula. *

Conclusion

1

*

Condition

1..*

ruleml:DerivationRule

PL-Atom

QF-PL-Formula

QF-Formula

DerivationRule

*

Conclusion

1..*

*

Condition

1..*

LogicalFormula

Figure 2: The general format of derivation rules.

Figure 4: RuleML 0.85 derivation rules: there are one to
many conditions, each being a quantifier-free predicate
logic formula, and there is exactly one conclusion, being
a predicate logic atom.

For specific types of derivation rules, such as definite
Horn clauses or normal logic programs, the types of
condition and conclusion are specifically restricted. In
RuleML 0.85, conditions are quantifier-free logical
formulas with weak and strong negation, called QF-
Formula in Figure 3. More precisely, they are quantifier-
free predicate logic formulas with weak and strong
negation, called QF-PL-Formula in Figure 4 (the QF-PL-
Formula class specializes the abstract class QF-Formula,
which admits also of other kinds of atoms such as OCL or
OWL atoms, by restricting it to predicate logic atoms).

In RuleML 0.85, a derivation rule has exactly one
conclusion, which takes the form of a predicate logic
atom, called PL-Atom in Figure 4 and Figure 5.

The rules R2 and R3 from the introduction are
examples of derivation rules.

5. Reaction Rules
Reaction rules are the second important type of rule in

RuleML. Integrity and transformation rules have not
received as much attention as derivation and reaction
rules. Reaction rules are considered to be the most
important type of business rule in [3]. They consist of a
mandatory triggering event term, an optional condition,
and a triggered action term or a post-condition (or both),
which are roles of type EventTerm, LogicalFormula,
ActionTerm, and LogicalFormula, respectively, as shown
in Figure 6.

The distinction between weak and strong negation,
although well-established in extended logic programs,
may be not familiar to people trained in classical logic.

2 Notice that we don’t consider rules with no condition or no
conclusion. These expressions are better not called “rules”, but
“facts” and “denial constraints”.

*

1

PL-Term

*
1..*

{ordered}

IndividualConstant

Variable

Predicate

«enumeration»
BuiltInPredicate

FunctionTerm

PL-Atom

DomainPredicate

Functor
1

*

1..*
{ordered}

*

Figure 5: The abstract syntax of predicate logic atoms.

While the condition of a reaction rule is, exactly like

the condition of a derivation rule, a quantifier-free
formula, the post-condition is restricted to a conjunction
of possibly negated atoms.

Action and event terms may be composite and
specified in different ways. For instance, the UML Action
Semantics could be used to specify triggered actions in a
platform-independent manner.

There are basically two types of reaction rules: those
that do not have a post-condition, which are the well-
known Event-Condition-Action (ECA) rules, and those
that do have a post-condition, which we call ECAP rules.

ReactionRule

*

Condition 0..1

EventTerm

*

TriggeringEvent1

*

PostCondition 0..1

ActionTerm

*

TriggeredAction0..1

CAN-Formula

{OR}

QF-Formula

Figure 6: The general format of reaction rules.

The post-condition of a reaction rule is either an atomic
formula, a negation of an atomic formula or a conjunction
of these. This is called a CAN-Formula in Figure 7. Such

a definite formula specifies an update in a declarative
way.

CAN-Formula

AtomicFormula

Atomic Weak
Negation

Atomic Strong
Negation

1

*

1

*

DNF-Conjunct

1..*
*

Figure 7: A CAN-Formula corresponds to a disjunctive
normal form conjunct, that is, it is a conjunction of possi-
bly (weakly or strongly) negated atomic formulas.

6. Production Rules
Production rules consist of a condition and an action

term. They have become popular as a widely used
technique to implement ‘expert systems’ in the 1980s.
However, in contrast to (e.g. Prolog) derivation rules, the
production rule paradigm lacks a precise theoretical
foundation and does not have a formal semantics. This
problem is partly due to the fact that the semantic
categories of events and conditions in the left-hand-side,
and of actions and effects in the right-hand-side of a rule,
are mixed up.

7. Conclusion and Future work
As we are exploring the integration of RuleML with

the business rules effort at OMG, we are investigating the
use of OCL for expressing atomic sentences in RuleML
conditions and the OMG Actions Semantics for
expressing actions in RuleML production and reaction
rules.

References
[1] Boley, H.: The Rule Markup Language: RDF-XML
Data Model, XML Schema Hierarchy, and XSL
Transformations, Invited Talk, INAP2001, Tokyo,
Springer-Verlag, LNCS 2543, 5-22, 2003.

[2] Boley, H., Tabet, S., Wagner G.: Design Rationale of
RuleML: A Markup Language for Semantic Web Rules.
International Semantic Web Working Symposium
(SWWS), June 2001, Stanford, USA.

[3] Taveter K., Wagner, G.: Agent-Oriented Enterprise
Modeling Based on Business Rules. In Proc. of 20th Int.
Conf. on Conceptual Modeling (ER2001), Springer-
Verlag, LNCS 2224, pp. 527–540, 2001.

