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Thermal Performance of  

Concrete Masonry Walls in Fire 

REFERENCE: Harmathy, T. Z., "Thermal Performance of Concrete Ma- 
sonry Walls in Fire," Fire Test Performance, ASTM STP 464, American 
Society for Testing and Materials, 1970, pp. 209-243. 

ABSTRACT: Eleven liunclred eighty computer calculations have been per- 
formed to study the hcnt flow in fire through concrete masonry unit walls. 
They covered wide ranges of the foul geometric variables, and four con- 
cretes which could bc regarded as "limiting materials" in the normal weight 
and lighhveight groups. It was possible to express the thermal fire endur- 
ances of the masonry units in dry condition with the aid of three empirical 
equations. TIiesc equations can be uscd to estimate the fire endurance from 
the geometric variables and mnterinl propcrties only in the case of concretes 
made with chen~ically stable aggregates. Their real ~isefulness lies in show- 
ing the way to economicnl design and, as extrapolation formulas, in eutend- 
ing test information to geometr~es and materials not covered by fire tests. 

KEY WORDS: co~llputer prcdiction, concrete, design criteria, walls, fire 
endurancc, lightweiglit co~lcrcte, masonry units, masonry walls, thermal 
performance, thermal properties, evaluation, tests 

Nomenclature 

Notations 

a Web thickness, ft 
A Empirical constant 
b Web spacing, f t  
B Empirical constant 
c Specific heat at constant pressure, Btu/lb R 
C Surface of cavity 
e Error 
E "Exposed" surface 
F Function 

1 Research officer, Fire Research Section, Division of Building Research, National 
Research Council of Canada, Ottawa 7, Ont., Canada. 
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Coefficient of heat transfer; without subscript: that on the un- 
exposed side, Btu/h ft" 

= 1, 2,3, . . . 
Thermal conductivity, Btx/h ft R 
Face shell thickness, ft 
Over-all thickness, ft 
Empirical constant 
Length of masonry unit, ft 
Distance along the outwardly directed normal vector, ft 
- - 1, 2,3, . . . 
Number of webs in a masonry unit; number of surface elements 

along the cavity; number of data in error estimation 
Empirical constant 
Empirical constant 
= 1,2,3, . . . 
= 1,2,3,. . . 
Region containing all interior points 
Time, h 
Temperature, R (if not stated otherwise) 
"Unexposed" surface 
Coordinate, f t  
Coordinate, ft 

Greek Letters 

P Empirical constant, Btu/h ft2 R5I4 
A Increment or difference 

A Mesh width, ft 
E Emissivity of surface, dimensionless 
K Thcrmal diff usivity, ft2/h 
h Equivalent thickness, ft 

P Density, lb/ft3 
w Stefan-Boltzmann constant, 0.1713 X 10W8 Btu/h ft2 R4 

r Thermal fire endurance, h 
7 Thermal fire endurance of solid unit, h - 
7 Thermal fire endurance of double-layer configuration, h 

Szibscripts 

a For the case of change in a 

a Absolute 

av Average 
c Computed 
c Pertaining to a point for which x = cA(/fl 
d Pertaining to a point for which x = &(/fl 
e Estimated with the aid of the formulas 
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E 

f 
i 

k 
1 
1 
L 
max 
0 

T 

S 

160 
250 

On the "exposed side 
Of the "furnace" 
Of the surface at x = 0 
Of the k-th surface element 
Of the 1-th surface element 
For the case of change in 1 
Of the surface at x = L 
Maximum 
At t = 0; of the surroundings on the "unexposed" side 
Pertaining to a point for which x = r A t f i  
Pertaining to a point for which y = s A t G  
Based on 160 F rise in temperature 
Based on 250 F rise in temperature 

Superscripts 

i ~t t = j ~t 
0 A t t = O  
0 Denoting a known fire endurance value and all infonnation per- 

taining to this value 

Concrete masonry units are undoubtedly among the most popular 

simple components of modem buildings. Because of their great im- 
portance in the design of industrial, commercial, and residential build- 
ings, during the past few decades there has been an intensive investiga- 
tion into their behavior both in normal service and under unusual cir- 
cumstances, especially during fire exposure. Because meeting certain 
requirements with respect to their thermal insulation, dimensional sta- 

bility, and weathering characteristics rarely presents great practical 
problems, nowadays probably more money is spent on obtaining infor- 
mation on their fire endurance characteristics than on all of their other 

design aspects combined. 

Because of the great expenses involved in fire tests of building ele- 
ments, it is quite natural that over the years certain shortcut methodq 
have evolved which make possible the extension of experimental fire 
endurance information to supposedly similar concrete masonry unit 
constructions. Unfortunately, most of these methods have been based on 
rather superficial conclusions obtained usually from log-log plots repre- 
senting scattered experimental data, without respect to some fundamental 
similarity requirements. Therefore, they may result in completely errone- 
ous conclusions. 

To obtain a large amount of information about the thermal perfom- 

ance of concrete masonry units in fire under a number of strictly main- 

tained similarity conditions, well over a thousand computations were 
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performed. In these numerical studies the complex geometry of the units 

and the true nature of the temperature depcndence of the thermal 

properties of the material were taken into account, and great care was 

exercised to simulate the proper mechanisms of heat transport to the 

last detail. 

The primary purpose of these studies was to determine the effect of 
certain variables or groups of variables, concerning partly the material 

and partly the geometry of the units, on their thermal performance in 

firc. Because of the well-known difficulties connected with the standard 

firc testing procedure, the fire endurance values reported here do not 

necessarily correspond to the true interpretation of ASTM Methods of 

Fire Tests of Building Construction and Materials ( E  1.19-67); never- 

theless, under certain conditions the semiempirical fornlulas developed 

in this paper may prove useful for the "cstimation" of the "standard" fire 

endurance of concrete masonry unit walls. 

Thermal Properties of Concrete 

The large differences in the thermal properties of various concretes, 

unfortunately, are still often disregarded in connection with fire en- 

durance problems. Many research workers are satisfied with dividing all 

8% by vol moisture 

" 5  

- I 

" 5  - 
c -. 8 %  by vo i  mo~sture 

= I 0  
4% 

d . 

(a)  Concrete 1 (quartz aggregate). 

(b)  Concrete 2 (nnorthosite aggregate). 

FIG. 1-Thermal properties of two normal u;eight concretes. 
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concretes into two groups: ( 1 )  the normal weight and (2 )  the light- 
weight group. Those engaged in more refined research work sometimes 
further divide the normal weight concretes into "siliceous" and "calcare- 
ous" groups. 

The Boulder Canyon Report [112 was the first to call attention to the 
large differences that may exist in the thermal properties of normal 
weight concretes; differences of similar magnitude also exist in the light- 
weight group. This problem is complicated further by the fact that both 
the thermal conductivity, k ,  and the "volume specific heat," that is, the 
p c product, may undergo substantial changes with a rise of temperature. 
Because of the lack of physicochemical stability of concrete, the "normal" 
property changes that occur in any solid material upon heating are sup- 
plemented by other changes, often much more substantial, brought about 
by the evolving decomposition, transition, and other reactions. 

To be able to draw conclusions that are applicable to larger groups of 
concretes, it is necessary to study the thermal performance of at least 
those concretes which represent, with respect to their insulating charac- 
teristics, the two limiting cases in the groups considered. In the computer 
studies carried out in this laboratory, four concretes, two normal weight 
and two lightweight, were examined. The k versus T and p c versus T 
relations for these four concretes (hereafter referred to as Concretes 1, 
2, 3, and 4 )  were derived in Ref 2 from experimental data with the aid 
of some theoretical considerations; these relations are reproduced in 
Figs. 1 and 2. The room-temperature values of k ,  p c, and K for these 
concretes at 0 percent moisture are listed in Table 1. 

In Figs. 1 and 2 the k versus T and p c versus T curves pertaining to 
4 and 8 percent (by volume) moisture also are shown. The effect of 
moisture on the the,mal fire endurance of building elements, however, 
is fairly well known [3, 4, 51. It has been decided, therefore, that the 
present fire endurance studies would relate to dry masonry units only, 
and any correction for the presence of moisture would be left to the 
reader. It must be borne in mind, therefore, that, before applying the 
formulas of this paper to  any experimental fire endurance values, these 

values.must be converted to  co~respond' to  dry condition, and after the 
application of the formulas the effect of nzoisture should be taken into 

account, as described in  Ref5 3, 4, and 5. The usual procedure is illus- 
trated in a numerical example in the section "Utilization of the Results." 

Concretes 1 to 4 were conceived to represent the poorest and best 
concretes in the normal weight and lightweight groups, respectively, 
from a fire endurance point of view. As seen from Fig. 3, all experimental 

2 The italic numbers in brackets refer to the list of references appended to this 
paper. 
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(a) Concrete 3 ("expanded shale A" aggregate). 

(b) Concrete 4 ("expanded shale B" aggregate). 

FIG. 2-Thermal properties of two lightweight concretes. 

TABLE 1-Some thermul properties of Concretes 1 and 2 (normal weight) and 

Concretes 3 and 4 (lightweight) at room temperature, in dry condition. 

Concrete Btu/h ft R Btu/ft3 R ftz/h 

1 ................ 1.491 26.10 0.05713 

2 ................ 0.718 26.80 0.02679 
3 ................ 0.317 16.35 0.01939 

4 ................ 0.159 13.45 0.01182 

thermal conductivity values obtained in this laboratory for normal weight 
concretes in dry condition (0 percent moisture) fall between the values 
for Concretes 1 and 2. The thermal conductivities of a number of light- 
weight concretes also are seen to fall between those for Concretes 3 and 
4, although some exhibited conductivities slightly higher than Concrete 
4. (For further details see Ref 2.) 

The conventional grouping of the normal weight concretes did not 
seem to be entirely justifiable. The thermal conductivity of "siliceous" 
concretes is not necessarily higher than that of "calcareous" concretes. 
This finding is understandable from the well-known fact that, in addition 
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FIG. 3-Thermal cotdttctioity of various concretes (full lines: Concretes 1 to 4). 

to the mineralogical composition, the degree of crystallinity of natural 

rocks is also an important factor in thcir thermal conductivity. 

The problem of whether knowledge of the pcrformance in fire of some 

concretes enables one to draw conclusions concerning thc performance 

of other concretes, is a fundamental one and must bc resolved before 

any generalized statement can be made. To illustrate the essence of this 

FIG. 4-illustration to shoto the quasi-congruence of the k versus T relations for 
concretes. 
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problem, attention is directed to curve X in Fig. 4 which is assumed to 

repregent the k versus T relation for a particular Concrete X. Because 

curve X is in no way related to the curves representing the two "limiting 

concretes" ( that  is, Concretes 1 and 2 )  in the normal weight group, one 

cannot expect that thc performance of Concrete X in fire can be pre- 

dicted, by interpolation or by some other means, from the fire per- 

formance data available for the limiting concretes. If it is found that the 

k versus T and p c versus 7' relations for various concretes can assume 

entirely diverse courses, tlierc ~vould be no other way to obtain thermal 

performance information for any concrete masonry unit but by scparate 

tests or by separate numerical analyscs based on rather laborious experi- 

mental investigations. 

The  condition of the extensibility to othcr concretes, of experimental 

results or rcsults obtained by numerical nnalyscs is, therefore, that the 

k versus T and p c versus 7' relations for all concretes within a certain 

group must form a quasi-congruous systcm; in other words, that these 

relations must fit into families of nonintcrsccting curves. 

There is sufficient evidence to claim that the quasi-congruence of the k 
versus T rclations is satisfied, at  least roughly, in both the normal \veigllt 

and lightweight groups. For rcasons discussed in Refs 2, 6, and 7, con- 

crctes that exliibit high thermal conductivities at room tempcrature (that 

is, those made with highly ciystalline aggregates) can be expected to 

exhibit lowcr conductivity valucs at elcvatecl tcmperaturcs, and those 
exhibiting low conductivities a t  room tempcrature (that is, those made 

with amorphous or Ilighly porous aggregates) most probabIy will slightly 

incrcase thcir conductivities with thc incrcasc of temperaturc. 

Tlle most likely forms of the k vci-sus T curves for various concretes in 

both the normal weight and lightweight groups are sho~vn in dottccl lincs 

in Fig. 4. Although thcre may be a few odd exceptions to this pattern of 

variation, it is entirely inconceivable that any concrete could exhibit 

such an incongruous curve as curve X. 
The quasi-congrucnce of thc p c vcrsus T curves for curves for Con- 

cretes 1 to 4 is obvious from Figs. 1 and 2. I t  must be  cmphasizecl, how- 

ever, that, as shosvn in Rcf 2, in tliese concretes the aggregates were 

regarded as ph~~sicocl~emically more or less stable constituents. The only 

aggrcgate of imperfect stability was the quartz in Concrete 1. The rela- 

tively small heat of the a-P transformation, however, was taken into 

account in thc development of thc p c versus T curve. 

Unfortunately, recent thcrmomogravimetric studies indicated that 

many so-called "calcareous" (and  also some "siliccous") aggregates, used 

especially in normal ~ v e i g l ~ t  concrete masonry units, unclergo substantial 

decomposition upon heating. In  extreme cases, some "calcareous" aggre- 

gates may exhibit more than 50 percent weight loss a t  1650 F. Because 
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the heat of decomposition of inorganic inaterials is usually between 1500 
and 2000 Btu/lb weight loss, the average value of the p c product for 
strongly decon~posing aggregates in the 75 to 1650 F temperature range 
may beconle twice or three timcs higher (consequently, the thermal dif- 

fusivity K bccomes lower by a factor of two or three) than that for stable 
 aggregate^.^ There is expcrimental evidence that the fire endurance of 
masonry units made with such decomposing aggregates may be twice 
as high as reported in this paper. 

Obviously, the use of some empirical formulas introduced in this 
paper must be restricted to the calculation of the thermal fire endurances 
of masonry units made with nondecomposing aggregates. For reasons 
to be discussed later, it seems permissible, however, to use without re- 
striction the procedure described in the section "Utilization of the Re- 
sults" to find the fire endurance of a masonry unit if the fire endurance 
of another unit of different geometry but the same material is known. 

Besides justifying the extensibility of certain experimental or theo- 
retical results to materials not covered in the studies, the quasi- 
congruences of the k versus T and p c versus T relations also offer an 
important convenience which will be used in subsequent discussions. If 
such congruences exist, it is immaterial whether one uses the average 

values of k and p c, or their values at  any particular temperature in 
developing empirical relationships related to the process of heat trans- 
port. As a rule, it is most convenient to use the room temperature values 

of these properties. 

Geometry of Masonry Units 

Much care was taken to ensurc that all geometric variables within 
sufficiently large domains would be covered in the numerical studies. 
Figure 5a shows that for conventional concrete lnasonry units there are 

four geometric variables: 

Overall thickness L 
Face shell thickness I 
Web thickness a 
Web spacing b 

I t  seemed convenient to group these variables as follows: 

I a b-a  
L , -  - -  

L' I '  L-22 

The values used in the computer studies are given in the column and 
row headings of Table 2. 

3 Figures 1-a2 and 1-b2 show that the average value of the p c product is about 
40 Btu/ft3 R in the case of aggregates of high physicochemical stability. 
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FIG. 5-illustration to show (a) the geometry of a masonry rrnit and (b) arrangement 
of the principal portion of the unit on the diagonal mesh. 

The ranges of the variables were wide enough to cover all practical 

cases. In addition, a number of hypothetical cases were examined, such 
as the masonry units without webs. These "double-layer units" and the 

solid units are obviously tlle two limiting cases with regard to the geome- 

try of the units. 

Heat Transport Through the Units 

As mentioned earlier, efforts have been made to carefully simulate in 

the conlputer studies the true nlechanisms of heat transport. When 

simulating the "standard fire exposure," however, some difficulties arose 

in connection wisth the interpretation of a few vague terms in ASTM 

Methods E 119. 
The "furnace temperature" is one such term. The transmission of heat 

from the burning fuel to the surface of the fire test specimen is a very 

complicated process. In it, the average of the temperature readings 

obtained from tlle "standard" furnace thermocouples rarely have any 

special significance. Nevertheless, as this "furnace temperature" is the 

only information available from inside the furnace, there is no choice 

but to refer the heat transfer coefficient at the exposed side of the test 

specimen to this temperature, no matter what the actual mechanism of 

heat transfer may be. 

After evaluating a large number of temperature measurements taken 

from the exposed surface of different test specimens, it was found that 
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TABLE 2-Results of computer calcu2ations concerning the thermal fire endurance of 

concrete masonry units in dry conditions for solid tinits ancl for 

(b - a)/(L - 21) = 0.25. 

(Upper number: 160 F themla1 fire endurance, h; 

lower number: 250 F thermal fire endurance, h). 
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T A B L E  2-(Continued) Restrlts o f  comptrter calctrlations coi~certiing the thermal fire 

endurance of coilcrete masonry units ill clry conclitions for ( b  - a ) / ( L  - 21) = 0.50. 

(Upper number: 160 F t hem~a l  fire endurance, h; 

lower number: 250 F thermal fire endurance, 11). 
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TABLE 2-(Continued) Results of computer calc~rkotions concerning the thermal fire 

endurance of concrete masonry units in dry conditions where (b - a)/(L - 21) = 1. 

(Upper number: 160 F thenl~al fire endurance, h; 

lower number: 250 F thermal fire endurance, h). 
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TABLE 2-(Continued) Results of computer calcrtlations concerning the thermal fire 

endurance of concrete masonry units in clry conditions for (b - a)/(L - 21) = 2 and 4. 

(Upper number: 160 F thermal fire endurance, h; 
lower number: 250 F thermal fire endurance, h). 
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TABLE 2-(Continued) Results of computer calcrilntions conceri~ing the thermal fire 

cncluratlcc of concrete nlclsorlry t~nits in clry cor~clitions for 

(b - a)/ (L - 71) = 4 ancl double layer. 

(Upper number: 160 F thcrmal fire enclurance, 11; 

lower number: -750 F thermal fire endurance, 11). 

( ~ - ~ I / ( L - Z L ) ~  4 1 double-laver I 
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the conditions during a fire endurance test can be approximated by 

taking a "standard fire cxposurc" to be equivalent to the transmission of 

radiant llcat to the spccimcn surface from a black body whose tempera- 
ture varics according to the prescribed furnace temperature versus time 

culve of ASTlI Methods E 119. ( I t  must be emphasized that acccpting 
this model does not imply that radiant heat transmission is the only 
effective transport mechanism. Kevcrtheless, one need not be overly 
pedantic about the actual values of lzE, since if llE > 15 Btu/h ft' R, the 

heat flow into thc specitnen is gcnerally controllcd not by laE but by the 
thermal concluctivity of the specimen (scc, for example, Ref 8). 

To facilitate the computcr cnlculations the standard furnacc tcmpera- 

ture versus time curve of ASTM Methods E 119 was replaced by the 
following analytical expression: 

T, = 530 + 1350 [I - exp( - 3.79553t"2)] + 306.74t"~----------( 1) 

This is only slightly different from the function developed by the Centre 

Scientifique et Technique clu BAtiment [9], and it approximates the 
standard furnace temperature curve within + 11 R in the 15-min to 
8-11 interval. ( I n  special studies this "standard" curve can be replaced 

by a more realistic fire exposure curve.) 

According to the above adopted model for heat transport to the ex- 

posed surface (surface E in Fig. 5a)  and with the aid of the Stefan- 
Boltzmann law and the Fourier law one obtains 

Within the solid (region S )  the heat is transferred essentially by two- 
dimensional heat concluction, described by the well-known equation 

At the so-called "unexposed surface" ( surface U ) ,  that is, the surface 
away from the fire, thc heat transport takes place to nonreflecting sur- 
roundings of constant tcmperature, partly by radiation and partly by 
free convcction. The radiant lieat trans~nission is again calculable from 
the Stcfan-Boltzmann Inn.. Thc convcctivc contribution can be described 
satisfactorily 1357 an empirical esprcssion givcn by ~~IcAdams [ lo] .  There- 
fore, tlle cotnbined convective-radiant heat transport can be written: 

Along the surface of the cavity (surface C in Fig. 5a) ,  the primary 

heat transport mechanism is radiant hcnt interchange between gray sur- 
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face elements (see Ref 10 for the definition of gray surfaces). Again, 

some heat is bansferred by free convection. By using the method de- 

scribed by Gebhart [ll] for calculating the radiation exchange and the 

previously mentioned empirical formula by McAdams, the following N 

equations are obtained: 

where the subscripts 1 and k refer to the surface elements of the cavity 

(that is, to the elements of surface C ) ,  n is a distance along thc out- 

wardly directed normal vector to the 1-th surface element, and Bl, are 

the absorption factors for which 

T,,, the average temperature of air inside the cavity, is expressed as 

Although E in Eqs 2, 4, and 5, strictly speaking, is a material and 

temperature-dependent quantity, it is sufficiently accurate to treat it as 

a constant in the present studies and to take E = 0.9. For vertical surfaces 

p = 0.27 [lo].  

The initial condition is 

........................... T = To in S and along E, U ,  and C ( 8 )  

To was always chosen as 530 R (70 F).  

The finite-difference equivalents of Eqs. 2 to 5, which were actually 

utilized in the computer studies, are introduced in Appendix I. 

Results of Computer Calculations 

The computed "thermal fire endurance" values for the various masonry 

units are listed in Table 2. (There are certain indications that the thermal 

fire endurance values for 1/L = 0.1 are somewhat low; this is probably 

due to the crudeness of the network selected.) 

The interpretation of the point of thermal failure in a computer simu- 

lation of standard fire tests is not quite straightforward. According to 

ASTM Methods E 119, failure occurs when the average temperature of 

the surface opposite to the fire exposure (the "unexposed surface") ex- 

ceeds the initial temperature by 250 F. The standard prescribes, however, 
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that the temperature readings should be taken from under 6-in.-square, 
0.4-in.-thick asbestos pads of a specified density. The temperature read- 

ings thus ob.tained, the so-called "standard surface temperatures," are 

considerably higher than the true temperature of the unexposed surface. 

Because the heat flow pattern in the vicinity of the asbestos pads is 

three dimensional and may be substantially different from the prevailing 

pattern, it is difficult to correlate the standard surface temperature with 

the true surface temperature, especially in such a transient process as 

a simulated fire exposure. 

In connection with a series of tests undertaken to study the effect of 

moisture on the fire endurance [3] simultaneous measurements were 

taken of the true surface temperature and the standard surface tempera- 

ture. I t  was found that at the time of "standard failure" (that is, when 

the standard surface temperature reached initial temperature plus 250 

F) the true surface temperature was, on an average, only 160 F above 

the initial value. This finding was based on badly spreading data which 

did not permit a definite conclusion as to whether the material properties 

had any influence on this 90 F temperature difference. On the basis of 

theoretical considerations it is believed, however, that at least within 

the usual ranges of variation of the material properties this iduence  is 

not too significant. 

Each box in Table 2 contains two numbers. The upper number is the 

time in which the true temperature of the unexposed surface rises 160 F 

above the initial value. According to the previously described findings 

this time probably is comparable to the thermal fire endurance derivable 

from standard fire tests. It will be referred to as the "160 F thermal fire 

endurance," and will be denoted by 7160. The lower number represents 

the time that the true surface temperature attains a level 250 F higher 

than the initial temperature. This will be referred to as the "250 F 

thermal fire endurance," and will be denoted by 7250. In general, the 

tern1 "thermal fire endurance" (without temperature denotation) should 

be interpreted as the 160 F thermal fire endurance. 

The method of using Table 2 for finding fire endurance values by in- 

terpolation will be discussed later in the section "Utilization of the 

Results." 

These computer studies have made available not only the thermal fire 

endurance of the various concrete masonry units but also their entire 

temperature history in a standard fire exposure. This information may 

be utilized in a number of ways, for example in the calculation of the 

stress-strain history of these products in fire. 

Figure 6 shows the temperature distribution in one particular masonry 

unit at the time of its 160 F thermal failure and is given here as an 

example. I t  is impossible to publish this kind of information for all 1180 

computed cases, but it can be made available upon request. 
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hlaterial: Concrete 4 ,  L = 0.667 f t ,  (b - a) / (L  - 21) = 1, 1/L = 0.167, all = 0.5. 

FIG. 6-Temperattire distribution in a masonry unit at the time of its tl~ermal 
failure (rxo = 3.1 1 11). 

Theoretical Considerations 

I t  has becn shown [S] that thc temperature history on the x = L sur- 

face of a solicl wall which on the x = O side is suddenly exposed to a 

constant tcinpcrature Ti, can be expressed as follows: 

provided that the  heat transfer cocfficicnt on the side x = 0 is much 

larger than lz. Since at the tiinc of thermal failure (that is, when t equals 

either TIGO or TOSO), TL - To = constant (either 160 or 250 R ) ,  the 

time of firc endurance of solid walls can be cxprcssed from a relationship 

of the following form: 

I t  was assumed here that T,, k, 12, and K are all constants. I n  reality 

they arc dcpendent clircctly or indirectly on time. Since the functions 

T , ( t )  and h ( t )  are detcrn~inecl by the test procedure, it seems reasonable 

to regard k and K in Eqs 9 or 10 as the only truc variables (apart  from 

the geomctric variable L ) .  Further~norc, one may attempt to use the 

room temperature valucs of thcse matcricll propcrtics' in the diinension- 

less groups K ?/L2 and l[!,/k, and take care of all inaccuracies due to the 
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simplifying assumptions by introclucing T as an additional variable. In 
this way one obtains the expression 

An examination of thc thermal fire endurance values obtained from the 
computer runs indicated that Eq  11 coulcl be simplified further as 

and, furthermore, that the right-hand side of this equation could be 
approximated as a power procluct, 

Because of thc several simplifying assumptions used, one can expect 
that at a certain set of valucs for A, nz, and n, the validity of this equa- 

tion has to be restricted to groups of materials as characterized by 
certain ranges of the two material properties k and K. 

By graphically corrclating thc conlputer results, the A, nz, and n con- 
stants have been evaluatecl and are listed in Table 3. In this table the 
average error, the averagc absolute error, and maximum error made 
by using Eq 13 also are given. (see Appendix I1 for the definition of 
these errors ) . 

The solid concrcte unit represents a limiting case among masonry 
units. Another limiting case is a hypothetical masonry unit for which 
a/L = 0; that is, which consists of two parallel layers of identical thick- 
ness, 1. Thc heat flow ppattcrn in this so called "doublc-layer configura- 
tion" is also one dimensional and, as pointcd out elsewherc (Refs 12 

and 1 3 ) ,  thc heat flus is practically independent of the distance between 
thc solid layers. 

The hcat transmission process herc is more complicated than in the 

case of solid masonry units. Another hcat transfer coefficient enters the 
problem: that clcscribing the radiant and convective heat transfer be- 

tween the two solid layers. This heat transfer coefficient, however, is 
determined also by the tcst procedure, and thus can be dismissed as a 
true variable. I t  seems logical, therefore, to attempt to find the relation 

bctwecn 7, that is, the fire endurance of this double-layer configuration, 
and the material and geonletric variables in the following form: 

4 The permissibility of this practice in the case of concretes made with aggregates 
of high chemical stability was discussed at  the end of the section "Thermal Properties 
of Concrete." 
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TABLE 3-Constants in Eqs 13 and 14. 

Upper numbers (in each box): for calculating 71m (in dry condition). 

Lower number (in each box): for calculating T?X (in dry condition). 

For Normal Weight For Lightweight 
Concretes Concretes 

0.718 < k < 1.491 0.159 < k < 0.317 

Eq Constant 0.027 < K < 0.057 0.012 < K < 0.019 

0.092 0.152 
(13) ....----....------------------- A 0.138 0.210 

Errors committed by using Eq 13: 
(1) for the calculation of YIG.,: ex,. = -0.35%, (e.),, = 2.0470, e,,,,, = -8.91%; 
(2) for the calculation of ii?;,,: e : , ~  = +1.85%, (ea)ny = 4.01%, en,,, = +10.10%. 

"The validity of Eq 14 is restricted to the calculation of fire endurance Tlw 2 0.7 h 
or 5 2 ~  2 1.0 h. 

Errors committed by using Eq  14: 
(1) for the calculation of e,,, = +2.58%, (e.),, = 4.38%, em,, = +15.34%; 
(2) for the calculation of 5 2 ~ :  C:,V = +3.74%, (e.).* = 5.39%, em,, = +15.27%. 

An analysis of the computer results indicated at least a partial success. 
The values of B, p, and q to be used in various cases of practical interest 
are listed in Table 3. Unfortunately, owing to the numerous simplifying 
assumptions used, Eq  14 yields consistently low values when estimating 
lower fire endurance values. Its use, therefore, must be restricted to 
- 

Tloo > 0.7 11 or > 1.0 11. 

The errors committed by using E q  14 are given also in Table 3. 

According to Table 3, the formulas for the 160 and 250 F fire en- 
durances are very similar; consequently, one may venture to conclude 
that the thermal fire endurances obtained from standard fire tests can 
also be described by an equation of essentially the same form. 
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With the introduction of the variable 1/L, Eq 14 may be written in 
the following foim: 

To find a suitable formula for the calculation of the fire endurance of 
hollow masonry units of conventional shapes it seemed worthwhile to 
explore the applicability of the following simple assumptions: 

1. Hollow masonry units may be regarded as consisting of solid and 
double-layer sections, the relative magnitudes of which are5 

a a 
- and 1 - - 
b b 

respectively. 

2. The fire endurance of hollow masonry units is a function of four 
variables only; of two geometric variables, a/b  and ( 1  - a / b ) ,  and of 
two fire endurance values pertaining to the solid and double-layer sec- 
tions, 5 and 7. 

From among the several expressions examined the following was 
selected for its simplicity: 

The limitation imposed on the validity of this equation is not entirely a 
result of the restrictions concerning Eq 14, and the limitation should be 
respected even if 7 is obtained by experiment. 

The errors committed by using Eq 15, with values of and ? from 
Eqs 13 and 14, for the calculation of the 160 F thermal fire endurances 
are listed in Table 4. It is seen that there is reasonable accuracy for 
the ranges 1 < ( b  - a ) / (  L - 21) < 2 and 0.167 < l / L  < 0.333, which 
represent geometries most commonly met in practice. For lower values 
of ( b  - a ) / ( L  - 21) or of 1/L or of both, the thermal fire endurance 
values obtained with the use of Eqs 13, 14, and 15 are generally lower 
than the computed values. The accuracy may be somewhat improved 
by using more complicated expressions instead of Eq 15. I t  must be 
kept in mind, however, that the ultimate accuracy is still subject to the 
previously described two assun~ptions. 

Utilization of the Results 

The primary purpose of these studies was not to produce 'hrediction" 

5 In practice, concrete masonry units are made generally with two different web 
spacings. b should, therefore, be interpreted as h l / N  where M = length of the 
masonry unit, N = number of full webs. 
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TABLE 4-Errors conltnittctl by rrsirlg Eq 15 with oolrres of -i clntl ? froin Erls 13 

and 14, for tlte ccrlcttlutiot~ of tlte I G O  F t11o.1)1(11 fire er~d~rrclnce (in dry corltlition). 

Average crror: uppcr nurnl~cr; average absolutc crror: middle number; 

masimum crror: lo\vcr n~umber. 

Table values: percent 

(b - tl)/L - 21) 

11 L Double 
Solid 0.25 0.5 1 2 4 Layer 

Solid ........ -0.35 
2.04 

-8.9 

Not applicable. 

* No results available. 

formulas but to find basic rulcs for tlie correct dcsigii of concretc ma- 

sonry units. 

For some time i t  Iias bccn commoli practice to corrclatc tllc firc cn- 

durancc of concretc masonry units wit11 tlicir "cqui\;alent tliickncsscs." 

The equivalent thickness is defincd as 

For the two limiting configurations, that is, for solid units and double- 

layer configumtions, X = L and X = 21, rcspcctively. 

In Fig. 7 the 160 F tlicrinal fire cnd~~railccs for tlicsc two limiting 

configurations arc plottecl against X for Concl-etcs 1 to 1, bascd on thc 

computer results listed in Table 2. As cspcctcd, at identic~ll \lalues of A 

the doublc-layer co i~ f i~~ ra t i ons  arc sccn to oll'cr substailtially higlicr firc 

endurances tllan tlie solid units, cspccially in tllc group of norinal \vciglit 

concretes. The ecluivalent tliickiicss is, therefore, not a satisfactory cor- 

relating factor. 
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FIG. 7-The 7 1 6 0  O ~ T S L I S  A plot for solid masonry units and double-layer configura- 
tions made from Concretes 1 to 4. 

TABLE 5-Values of ( L  - 21) and 1/L, at tchich, for a giaen L, hollotu and solid 

masonry units offer identical perforrncinces. 

( L  - 21) upper number 

L/L lower numbcr 

( L  - 21) (upper values) and 
Concrete l / L  (lower values) at  
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Anothcr intcrcsting coilcl~ision that one may draw from thc curves in 
Fig. 7 is that at a given valuc of the overall thickness, L, it is possible 
to include in the masonry unit air cavities up to a certain thickness, and 
thus to reduce its wcight and save on the cost of material without any 
loss in the fire endurance of the unit. The values of the air layer thick- 
ness, ( L  - 2 l ) ,  at which hollow and solid units offer identical perform- 
ances, are obtained from Fig. 7 as the differences in the values of h for 
solid and double layer configuration. In Table 5 these values of ( L  - 21) 

and the corresponding values of l / L  are listed for Concretes 1 to 4. 
By expressing the total incremcnt of .i. with the aid of Eqs 13, 14, and 

15 and eliminating (.i./?) from the resulting cxpression with the aid of 
Eq 15, finally the following formula is obtained: 

This formula may be utilized eithcr dircctly as an extrapolation formula, 
or indirectly as a starting point from which useful design principles may 

be derived. 
The latter use of Eq 17 is illustrated by examining the following rather 

typical problem: when attempting to improve the performance of con- 
crete masonry units in fire without changing their overall thickness, L, 

is it more economical to increase the web thickness, a, or the face shell 

thickness, l? 

To answer this Eq 17 is applied to the folloiving two cases. First case: 

the face shell thickness is increased by Al, while Aa = Ab = AL = Ak 

= AK = 0. The resulting increment in AT is then 

Second case: the web thickness is increased by An, while Ab = AL = 
A2 = Ak = AK = 0. For this case 
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The question is now \vhich is larger,  AT)^ or ( A T ) ,  under the condition 
that 

a ( L  - 28) = 2 ~ c ( b  - a )  .................................. (20) 

that is, that identical amounts of material are used to increase a and 1. 
Combining Eqs 15, 18, 19, and 20 one finds that an increase in the 

face shell thickness is more advantageous as long as 

A closer examination will show that this condition always is fulfilled; 
therefore, it is always more advantageous to increase the face shell 
thickness than the web thickness. 

In a similar way the effect of any set of changes in the six variables 
(a,  .h, 7, L, k, K )  can be comparcd with that of any other set of changes. 
In practice one ncecl not always try to develop general criteria, such as 
inequality [21]. I t  is easier to coillpare the numerical values of A r per- 
taining to various specified sets of changes. As an example, the following 
problem will be examined: 

A wall built of light\veight concrete masonry units (made from Con- 
crete 3 )  yielded 1.63 11 fire endurance, when tested at 5.5 percent by 
volume moisture content (in equilibrium with 70 percent relative humid- 
ity).  Using the methocl described in Refs 4 and 5 the thermal fire en- 
durance of this wall in dry condition is T = 1.22 11. The information 
concerning the masonry units is as fol lo~vs:~ 

The manufacturer would like to have the fire endurance increased to 

2.0 h, without changing the overall sizes of the units and with a mini- 
mum increase in their \veights. He considers a 7 percent weight increase 
permissible, and wonders whether he should increase correspondingly 

the face shell thickness to 0.12472 ft or the web thickness to 0.13833 ft. 
To use Eq 17 and any of its applied forms, for example, Eqs 18 and 

0 The asterisk is used hereafter to denote values of the fire endurance (from experi- 
ments or from Table 2) and all information pertaining to these known values. 
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19, one has first to find thc valuc of 7:::, for \vl~ich gcncrally thcrc is 110 

experimental result availablc. I t  can bc calculatcd with thc aid of the 

following equations : 

where 

Equation 2'2 is a rearranged forin of E q  15, and E q  23 is obtained by 

dividing E q  14 by E q  13. 

It  may be noted that, since ) 1)  - m and q - ~2 j in E q  23 me very 

small numbers, cvcn estimatcd valt~cs' of k and K chnnot yield serious 

errors in thc calculation of 7':'. For tbc same rcuson, onc may apply this 

calculation procedure even if it is kno\vn that thc concretc was made 

with decomposing aggregates. In  such cascs it is advisable to use rela- 

tively low, estimated values for K. 

With the information givcn earlicr it is found that ?::: = 5.S911. Then, 

using Eqs 1s and 19 onc finally obtains that ( A T ) ,  = 0.26 11 and 

(A T) ,  = 0.0s h. (These results confirm the conclusion previously ar- 

rived at, according to which it is more advantagcous to increase the face 

shell thickness than tllc web thickness.) Thus, by increasing tho face 

shell thickness to 0.12472 ft the ncw value of thc fire endurance becomes 

1.22 + 0.96 = 1-48 h in dry condition and (aftcr applying the method 

described in Refs 4 and 5) 1.97 11 at 5.5 perccnt by volume moisture 

content (\v\ihich represents the "standard" amount of moisture for this 

kind of light\vcight concretc). I t  is seen now that with a mere 7 percent 

increase in weight, it is not possible to increase the fire endurance of 
the units to 2.0 h. 

In  this example it also was shown how one can utilize E q  17 directly 

as an extrapolation formula. It  must be  emphasizcd, ho\vever, that in 

a strict sense neither E q  17 nor any of its applied forms (such as Eqs 

18 and 19)  is valid when A T/T, Aa/n, etc. are larger than about 0.1. 

There remains some doubt, therefore, about the accuracy of the numeri- 

cal results reached above. 

The general procedure used to calculatc the fire endurance of a 

masonry unit, if the fire endurance of another masonly unit of the same 

material but of different geometry is known, is as follows: 

Step I-Using Eqs 22 and 23 calculatc ~j': ' ,  then again using E q  23 cal- 

culate 7':. (As mentioned earlier, these arc values col-responding to the 

geometry and material to which 7::: relates.) If 7::' happens to relate to 
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a solid unit, then T" T':', and only 7':: neecls to be calculated with the 

aid of E q  23. 

Step 2-With the aid of the following two equations (obtainccl from Eqs 

13 and 14, respectively ) 

calculate T and 7 corresponcling to the ncw geometry. If there is no 

change in the material, the tcrrns in the squase brackcts are naturally 

equal to 1. 

Step 3-Finally, again using E q  15, calculate T for the new geometry. 

Since the nlaterial properties do not cnter this calculation procedure, 

one may expect that it is applicable to any kind of concrete irrespective 

of whether the aggregates arc chcrnically stable or are liable to undergo 

decomposition reactions. 

With this more accuratc calculation procedure onc finds that, by in- 

creasing the face shell thickness of the m'lsonry unit discussed in the 

examplc from 0.11111 to 0.12472 ft, the fire endurance of the dry 

masonry units increases from 1.22 to 1.49 11 or, at 5.5 percent moisture, 

from 1.63 to 1.98 11, which still falls somcwhat short of the requirement. 

I t  may be useful to illustrate the calculatioll procedure through an- 

other cxample. 

A manufacturer intends to introduce three kinds of new masonry units 

all made from the same lightweight concrete. One of them, Unit 1, is 

'1 solid unit. The following information is available: 

Unit 1 Unit 2 Unit 3 

L ft ........................................ 0.30417 0.47083 0.47500 
1 ft .......................................... . . .  0.12833 0.19792 
a f t  ......................................... . . .  0.15486 0.14514 
b f t  ...................................... . . .  0.44375 0.44375 

\ J 

kBtu/h ft R .........................- 0.242 
p lb/ft3 ..................... 75.5 
c B tu/lb R ............................ 0.199 

K ftZ/h .................................... 0.0161 

Of the three units only No. 3 has been subjected to standard fire test. 

The test yielded 4.05-11 fire endurance at 6.5 percent (by  volume) 

moisture content. With thc aid of the nomogram in Ref 4 the fire en- 
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durance in dry condition is obtained as 3.1.3 h. Question: What fire 
endurances can the manufacturer expect for Units 1 and 2? 

From Eq 23 for a lightweight concrete 

and thus from Eq 22 

and again from E q  23 

For Unit 1 (solid unit!) the fire endurance in dry condition is now 
obtained by using E q  24: 

For Unit 2, using first Eq  24, 

then using E q  25 

Finally the fire endurance in dry condition is calculated with the aid of 
Eq 15: 

These values ( T  = 1.14 and 1.73) have to be corrected according to 
Ref 4 to take the beneficial effect of moisture (usually about 6 percent 
by volume for this type of materials) into account. 

Essentially the same procedure can be used to find, with the aid of 
the information given in Table 2, the fire endurance for masonry units 
of geometries and material properties different from those covered in 
Table 2. In such calculations T" means some tabulated value. There is 

no need here to execute the calculations described in Step 1, because 
the values of 7"; and 7" corresponding to T" also are listed in Table 2. 
(They are found in the same row as r':'; 7':' in the column "Solid," and 7" 
under the "Double Layer" heading, in the column of the appropriate 
value of 1/L.) When the fire endurance of a masonry unit made from 
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a concrete different from those dealt with in Table 2 is sought, the terms 
in the square brackets in Eqs 24 and 25 are not equal to 1. 

This procedure of using information in Table 2 to develop new thermal 

fire endurance information, is applicable only if the masonry unit is 
made from a concrete of chemically stable aggregates. 

Conclusions 

There have been 1180 computer calculations performed. They covered 
large ranges of the four geometric variables, a, b, 1, and L (Table 2 )  
and four different concretes which can be regarded as "limiting cases" 
in the normal weight and lightweight groups (see Figs. 1 and 2 ) .  Special 
effort was made to simulate in the computer program the true mechan- 

isms of heat' transport in dry concretes in every detail. 

I t  was possible to express the thermal fire endurances of the masonry 
units, which is probably the most important information deduced from 
the computer calculations (Table 2),  with the aid of three empirical 

equations (Eqs 13, 14, and 15). These equations yield the 160 and 
250 F fire endurances in & y  condition of "solid units," "double-layer 
configurations," and conventional hollow units, respectively, as functions 

of two inaterial properties at room temperature, k and K, and four geo- 

metric variables, a, b, 1, and L. 

In applying these folmulas to the prediction of fire endurance from 
known values of k, K, a, b, I ,  and L some caution must be exercised for 

the following two reasons: 

( a )  The relation between the actual temperature of the unexposed 

surface, (which is obtained from the computations) and the temperature 

under asbestos pad covers (which is obtained from standard fire en- 
durance tests) is not known accurately. From a large number of tests 

it appears, however, that the temperature of thermal failure can be 

interpreted approximately as a 160 F rise in the true temperature of the 
unexposed surface above the initial level. 

( b )  The thernlal properties of Concretes 1 to 4, which were used in 

all computations, are typical of concretes that are made with aggregates 
of high physicochemical stabilitye7 Some more recent investigations re- 

vealed that it is customary to use, especially in normal weight masonry 

units, physi~ochemically highly unstable aggregates. Units made with 

decomposing aggregates may have thermal fire endurances up to twice 
as high as those made with stable aggregates. 

7 The enthalpy change acconlpanying the a-0 quartz transformation was taken 
into account when calculating the p c versus T relation for Concrete 1. In general, 
concretes that do not show more than 5 percent weight loss when heated from 221 
to 1600 F can be regarded as made with pl~ysicochemicall~ stable aggregates. 
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The formulas derived probably will prove most useful when applied 

to studies concerning the economy of masonry unit design, or in the 

prediction of the performance in fire of masonry units from the per- 

formance of other units of different geometry but made from the same 

or just slightly different material. 

As an example of the first of these applications, it has been shown that 

the fire endurance increases more rapidly by adding material to the face 

shell rather than to  the web of masbnry units. 

By rearrangement of the formulas (see Eqs 22 to 25) special expres- 

sions have been obtained which can be used to extrapolate to the per- 

formance of masonry units from some known fire endurance information 

(from standard fire tests or from Table 2 ) .  All procedures described 

relate to dry masonry units. The way of finding the fire endurance in 

dry condition from experimental fire endurance data, and of correcting 

the fire endurance for any moisture level, has been described elsewhere 

( see Refs 3 , 4 ,  and 5 ) . 
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APPENDIX I 

Numerical Procedure 

The first step in preparing the computer program for numerical studies is 
to choose a network of points at which the variation of temperature is to be 
examined. From practical consideration a diagonal mesh has been selected 
(see Fig. 5 b )  with equal mesh widths, A [, in both directions. In an x-y co- 
ordinate system a point p,,, has the coordinates x = T A [/fland y = s  A ~fi. 
Figure 5b makes it clear that only those points of the x-y plane are defined 
for which (r + s) is an even number. 

Since the planes AB and CD (see Fig. 5a)  are planes of symmetry, it is 
possible to study that portion of the masonry unit which lies between these 
two planes, instead of the whole unit. Figure 5b shows how this portion of 
the unit is arranged over the diagonal mesh. Naturally, the A [ dimension 
has to be selected to fit the dimensions of the unit. 

Convenient expressions for the numerical studies can be obtained either by 
mechanically replacing all derivatives in Eqs 2 to 5  by their finite difference 
equivalents (see, for example, Refs 11 or 1 4 ) ,  or by writing heat balance equa- 
tions for a few typical network points (see, for example, Refs 15 or 1 3 ) .  In 
the present work the second procedure was chosen. 
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The heat balance for some point P,,, inside the solid (that is, in the region 
S )  can be expressed as follows: 

This equation is the difference equation that in numerical studies replaces 
Eq 3. Since the thermal conductivity and volume specific heal of the material 
are functions of the temperature, their values, as a rule, vary along the net- 
work. In Eq 26 

in other words, k!,, means the value of k at the temperature that prevails at 
the point P,, , at t = j ~ t .  

Equation 26 can be rearranged into the form 

............................................ for region S .-. (29) 

With this e,pression, T;;t,', that is, the temperature at x = r~ [I&, y = S A C /  

fi and at t  = ( j + l )  At,  can bc calculated if the ternpcratures T:,,, T<,-1)- ( , - I ) ,  

T { , + ~ ) , ( , - ~ ) ,  T{ , - l ) ,  ( , + I ) ,  and T{ ,+ l ) , ( ,+ l ) ,  (that is, the temperatures at the points 

Pro,,  P(,- l , , ( ,- l) ,  P(,+l) ,  ( , - I ) ,  P(,- l) ,  (,+I) and P(,+l) ,  ( ,+I) at t  = j At) are known. 

With similar reasoning the follo\ving equations can be obtained: 

for boundary E ............................................. (30) 
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for boundary U ( 3 1 )  

At 
T<;' = Ti, ,  f i ( k j r - 1 ) , ( 8 - 1 )  + k ! , s ) ( T j r - l ) , ( 8 - l )  - T : , 8 )  

+ (kfr-1). ( ,+l )  + e*,) ( ~ : : ~ - l ) , ( s + l )  - T;,8) 

+ 4 p ~  5 I Ti,  - T:,, 1 ' I 4  (Ti,  - Ti,=) 

for boundary C ,  .- ...--.-----. ( 3 2 )  

for boundary C, ( 3 3 )  

for boundary C ( 3 4 )  

Here again, the index k refers to the network points all along the boundaries 
C,, C,, and C, on both sides of the symmetry line AB in Fig. 5b, and T., has 
been defined by Eq  7. The absorption factors, (B,,,),, have been determined 
for the selected cavity shapes (see values of ( b  - a ) / ( L  - 21) in Table 2 )  
in a way described by Gebhart [ I l l .  

Equation 30 is the difference equation that replaces Eq  2 in the numerical 
work; Eq  31 replaces Eq  4,  and Eqs 32, 33, and 34 replace E q  5. 
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Equations 29 to 34 must be supplemented by the following equations: 

T , ,  = 0 if r + s is odd (35) 

T,, (, -1) = T,, (,+I) ................................................... (36) 

T,, ( d - 1 )  = Tr,(d+l) ............................. (37) 

Equation 35 follows from the fact that only those points of the x-y plane are 
defined for which (r  + s)  is an even number. Equations 36 and 37 represent 
the conditions of symmetry about the planes AB and CD, respectively (for 
which y = c A yfl and y = d A respectively). 
The initial condition is 

T:,, = T o  for any point such that ( r  + s)  is even .................. (38) 

The regions of applicability of Eqs 29 to 34 have to be defined among the 
input information (by specifying the points that make up the various regions). 
With these six equations and the two auxiliary equations, Eqs 36 and 37, it 
is then possible to calculate the temperature at any point in the region S or 
in the boundaries E, U ,  C,, C2, and C, for t = (i  + 1 )  ~ t ,  if the temperatures 
at all these points are known for t = i ~ t .  Thus with a set of values for T,",, 
defined in the initial conditions, one can follow the temperature history of 
the solid by repeated application of the equations. 

In the numerical solution of parabolic differential equations this technique 
is called forward difference or explicit scheme (Refs 14 and 16) to indicate 
that while all space derivatives are expressed at the time level t = i ~ t ,  the 
time derivative refers forward to the t = ( i  + 1)  ~t level (see the last term 
in Eq 26. The values of T::' at all network points thus can be calculated with 
the aid of explicit expressions. It is known that the solutions yielded by this 
scheme are not stable for all selections of A [ and At. To ensure that any 
error existing in the solution at some time level will not be amplified in the 
subsequent calculations, a stability criterion has to be satisfied which, for a 
selected value of A [ limits the maximum value of At. 

In all of the cases studied the criterion of stability seemed to be the most 
restrictive along the surface E. 

APPENDIX I I  
Definition of Errors 

The equation defining the errors in thermal fire endurances, referred to in 
the section "Results of Computer Calculations," are as follows: 

Average error: 
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Maximum error: 

(7. - 7c)max 
emax = - .-. - -. . . . . . . . . . . . . . . -. - - - -. . -. - - - - -. - - -. . . . . . 

70 

(41)  
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