| hd |

NRC Publications Archive
Archives des publications du CNRC

Representing Textual Requirements as Graphical Natural Language for
UML Diagram Generation
llieva, M.G.; Boley, Harold

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. /
La version de cette publication peut étre I'une des suivantes : la version prépublication de I'auteur, la version
acceptée du manuscrit ou la version de I'éditeur.

Publisher’s version / Version de I'éditeur:

Proceedings of the 20th International Conference on Software Engineering and
Knowledge Engineering (SEKE'08), July 1-3, 2008, Redwood City, California,
USA, 2008

NRC Publications Archive Record / Notice des Archives des publications du CNRC :
https://nrc-publications.canada.ca/eng/view/object/?id=9196cec9-41d6-40ed-98ca-783140e5031b
https://publications-cnrc.canada.ca/fra/voir/objet/?id=9196cec9-41d6-40ed-98ca-783140e5031b

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at
https://nrc-publications.canada.ca/eng/copyright
READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

L’accés a ce site Web et I'utilisation de son contenu sont assujettis aux conditions présentées dans le site
https://publications-cnrc.canada.ca/fra/droits
LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

Questions? Contact the NRC Publications Archive team at
PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the
first page of the publication for their contact information.

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la
premiére page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez
pas a les repérer, communiquez avec nous a PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

 Ld

National Research Conseil national de
Council Canada recherches Canada Canada

I* National Research Conseil national
Council Canada de recherches Canada

Institute for Institut de technologie
Information Technology de l'information

NC-CN\NC

Representing Textual Requirements As
Graphical Natural Language For UML
Diagram *

llieva, M.G., Boley, H.
July 2008

* published in the Proceedings of the 20" International Conference on
Software Engineering and Knowledge Engineering (SEKE’08). Redwood
City, California, USA. July 1-3, 2008. NRC 50380.

Copyright 2008 by
National Research Council of Canada

Permission is granted to quote short excerpts and to reproduce figures and tables
from this report, provided that the source of such material is fully acknowledged.

Canada

REPRESENTING TEXTUAL REQUIREMENTS AS
GRAPHICAL NATURAL LANGUAGE FOR UML DIAGRAM GENERATION

Magda G. Ilieva
Dept. of Computer Science and Software Engineering
Concordia University, Montreal, Canada
magda AT cse.concordia.ca

ABSTRACT

Since the establishment of the Unified Modeling Language
(UML) as a standard graphical notation for representing knowl-
edge, new ideas have emerged about tools that can automatically
extract knowledge from text and represent it with UML diagrams.
As the targeted representation of knowledge is in a graphical nota-
tion, we propose to also represent Natural Language (NI} and the
knowledge it carries in a common graphica! form, and then trans-
late this Graphical NL (GNL) into anothet graphical form (UML).

KEY WORDS
Knowledge representation, Knowledge reformulation, NLP, Se-
mantic Networks, UML, SE modelling

1. INTRODUCTION

Knowledge can be represented in variety of forms, in Soft-
ware Engineering (SE), for example, perhaps the most
common way of representing knowledge is with diagrams.
This way of representation fits the understanding of a wide
range of users. Graphical representation is done with self-
explanatory shapes, it is semi-formal, and is suitable for
subseguent formal processing into program code, This type
of knowledge representation is easy to understand and
widespread in information technology.

Quite often knowledge is exiracted from text. Texts are
written in Natural Language (NL), which is the universal
method for representing knowledge. As the targeted model
of knowledge exfracted from text employs a graphical lan-
guage, UML for example [12], why not also represent the
source text itself graphically? We can then match the two
graph models — UML and Graphical NL (GNL) [14] —and
discover analogies as well as simplify translation. This arti-
cle is organized as follows. After a review of related work,
we explain the main principles of Graphical NI. Then, the
use of GNL is demonstrated with a study case. In the fourth
part analogies are presented between the two ways of
graphical representation of knowledge — GNL and UML.,
These analogies are used for deriving rules for the auto-
matic translation of textual user requirements into SE graph
models. We conclude with an evaluation and comparison of
the proposed GNL and other graphical representations for

NL.and knowledge.

2. RELATED WORK

The importance of automatic franslation of software User
Requirements (URs) from text to SE diagrams is evident
from the continuing emergence of new theories and appli-
cations in this domain. In brief, the purpose of those appli-
cations is to automate user requirements analysis and to
speed up the phase of software design.

Harold Boley
Institute for Information Technology
National Research Council Canada, Fredericton, NB
harold boley AT nre.ge.ca

Mainly, two types of expertise have to be united in order to
develop technology for translating textual URs into SE dia-
grams: linguistic engineering and software engineering.
Often, those two types of competence are applied in order
to represent or reformulate knowledge during several
stages. Reformulation congists of distinguishing and re-
structuring the initial natural language represented knowl-
edge of humans in order to obtain formal language
represented knowledge for computers, The first phase is
Language Modeling (LM), which manages linguistic ob-
jects (texts, sentences, words, etc.) and their relations. The
second phase, Knowledge Modeling (KM), defines con-
cepts and relations, which are important for problem solv-
ing. Subsequent reformulation of knowledge, Intermediate
Knowledge Modeling (IKM), is needed in order to obtain a
form appropriate for mapping into a final SE model. Draw-
ing those phases together (Figl),we can use them as a
frame for reviewing existing projects.
TEXT Kmi;leiga Ge Di&;&ﬁl
Langraze Modal(L50) 3 Knovleéze ModslN) 9 Tntarmedints K3 Finad 38 Model (U0 i)
Figl. Concepiual schema summarizing approaches

For example, in [7] LM is syntax patierns of restricted NL;
KM consists of eight conceptual graphical patterns pro-
posed for representing linguistic patterns extracted from
text. Object Model (OM) and Behavior Model (BM), de-
signed to capture the static and dynamic nature of require-
ments, setve as IKM (Intermediate Knowledge Model)
from which the target OO diagram is derived. In a similar
way, in [5], LM is restricted NL with particular syntax pat-
terns; KM represents the types of data, operations over
them and relations between them; for IKM a tree data struc-
ture is proposed, having three types of nodes: data, func-
tionality and context. The authors in [6] consider KM as
three types of graphs representing three types of knowledge
for activity (emitted, absorbed and internal) extracted from
restricted NL, namely, use case scenario specifications.
Another example can be found in [4], where the few syntax
constructs (LM} derived from the controlled language are
grouped into relations (KM) that are subsequently repre-
sented as a conceptual lattice — an abstraction of a use case
diagram. All of the above cited approaches obtain only one
final graph model.

Other researchers focus on processing unrestricted NL, An
example can be found in [1], where NL is modeled with a
functional grammar, KM is presented as a Conceptual Pro-
totyping Language, and two groups of graphs (IKM) are
obtained — one for static knowledge and one for dynamic
knowledge.

Another example can be found in [2, 3] where Case Gram-
mar serves a8 LM while KM is presented as General Con-
ceptual Model. Two TKMs are used for designing two
target SE graph models: conceptual graphs - for obtaining
activity diagrams and semantic networks - for supporting
(0 class diagrams.

A main point of correspondence between all theories is that
they treat KM separately from LM. This separation limits
the application of theories: they process specific types of
knowledge applied to specific texts and receive one final
graph model. Our approach differs here by offering a
common graphical representation simultaneously of NL
and the knowledge (both general and domain specific) in-
cluded in if. After building the diagram of the text, we
commpare it with the diagram of the target SE graph model
built by a human expert. Based on the discovered analogies
between the two diagrams, we then define rules for transla-
tion of one graph into the other, This approach will make
our methodology applicable to various texts, diverse
knowledge and different target SE models, Qur technology
has fewer processing phases, which can increase its effi-
ciency,

3. GRAPHICAL REPRESENTATION OF NL

Table structuring of an unrestricted NL: The graph rep-
resentation of both language and knowledge in one unit is
based on the graphical representation of relations between
concepts. In order fo represent text graphically we structure
unrestricted NL into a table representation {TR). TR is de-
seribed in [8,9], but for convenience we are poing to dis-
cuss here one brief example from a case study: "In @ road
traffic pricing system, drivers of authorized vehicles are
charged at toll gates automatically. The gates are placed at
special lanes called green lines. A driver has to install a
device (a gizmo) in his/her vehicle.”

Structuring the text into a table is nothing but arranging it
into three main columns — Su{bject), Pr(edicate) and
Ob(ject), as also used in RDF. We obtain information for
syntax structures and atiached phrases when we process the
text with one of the available POS taggers/chunkers [17].
Here is the outcome we pot from the cited tagger:

1) In/IN ([/DT road/NN traffic/NN 1) pricing/VBG ([system/NN
D/, ([drivers/NNS) offIN ([authorized/IT vehicle/NN) <:
are/VBP charged/VBN :>at/IN ([tool/NN gates/NNS 1) auto-
matically/RB./,

2) ([The/DT gates/NNS])<:are/VYBP placed/VBN:>at/IN ([spe-
cial/]7 lanes/NNS])<: called/YBD :>([green/JJ lines/NNS D)./,

3) ([A/DT driver/NN J)}<: has/VBZ to/TQ install/VB :>({ a/DT
device/NN 1) (/(a/FW gizmo/FW)) in/IN his/PRP$ #/CC ([
her/PRPS vehicle/NN 1)./.

Tags for the syntax category of words, attached phrases and
" gets of rules are used in order to arrange the text into TR
(shown in Tab 1). Su and Ob columns are noun phrases, Pr
is a verb phrase.

Looking at TR, we can outline the following advantages:

i) TR is convenient for automatic processing: a) representa-
tion in another semi-formal notation, for example XML,
and then, e.g., in SVG; b) fast access for storing and re-
trieving information; ¢) unlimited, expandable space with

new rows for storing extra text and new columns for storing
diverse syntactic and semantic information required for
automatic text processing. We thus use TR as a knowledge
base supporting text analysis.

A sublPre Su Pr) Ob Past

® | se banj verb adverb conj
1 In a road traffic

1 pricing system .
3 kirivers of autho-jare auto- fat toll gates

rized vehicles |charged [matically

5 1 [Fhe gafes are placed lat special lanes
2 called reen lines

3 A driver has to device (a gizmo)

install in his/her vehicle

Tab.1. Structuring text into a table

i) The roles of phrases in sentences and relations between
them are easy to explore. At the top-level of text structures
we have a sequence of predicative relations.

iii) The relations in the next structural level are clearly dis-
tinguished — in each of the three components (Su, Pr, Ob).
These relations can be summarized as: prepositional, noun-
noun(s) modifier, adjective-noun modifier, verb-adverb.

iv) TR can be used as verification for the correctness of the
tagging..

Basic building blocks of GNL: Table structuring helps us
to reveal that NL can be represented graphically as ordered
triplets (conecept] relation concepf). In order to define
such a triplet we have to define its members:

Concepts are noun phrases which can be simple (consist of
one noun) or complex (main noun with modifiers — adjec-
tive(s) or noun(s)). For example, sensor is a simple concept
and toll gate sensor a complex one, Complex concepts con-
sist of more than one noun, connected with a relation (im-
plicit has). The interpretation of “toll gate sensor” is:
toll has a gate which has a sensor.

Relation can be: predicative, prepositional, is_a, has a.

. Predicative relation is defined as two concepts connected
with a verb, for example: A driver installs a device;

. Prepositional relation is defined as two concepts. con-
nected with preposition. For example, gizino in vehicle,

. Attributive (“noun is adjective” or “adjective noun). For
example, ‘lare is green’ or ‘green lane',

. Compositional relation could, in turn, fall into one of the
following types:)

- Noun-noun modifiers (folf gate sensor),

- Key-word/Enumerative structure (fypes of fool gate:
single, entry, exit); (services: deposit, withdraw, transfer,
get balance).

- Possessive (bank's client);

In summary, all relations can be represented with a triplet,
i.e. through Su, R, Ob. In a predicative relation R is a verb;
in a prepositional relation R is a preposition; in an attribu-
tive relation R is equal to #5 &; in a compositional relation R
is one of the following: has a, colon (3), key-words (fypes
af, kind of, consist of, include, ...).

Besides members, a relation has a direction.

Direction signifies where the relation points. Predicative
relations can have two directions: straight — from Su to Ob,
which is represented through active voice, and reverse —
from Ob to Su, represented through passive voice. In GNL

we represent a predicative relation through its straight di-
rection, i.e. when we turn passive voice into active. The
direction of a prepositional relation, too, does not match the
order in which it is encountered in the prepositional phrase,
which is from Ieft to right, word after word. For example,
“A to B” and “A from B* are two different directions, Or,
the phrase “from A to B via C”, does not mean to place
them in order A,B,C but A,C,B. The attributive relations
also have direction — for example, “green lanes” and “lanes
are green” are the same relation represented with reversed
directions. Opposite direction does nof change the meaning
of such relations, but it can change the importance of mem-
bers when changing their positions. Normally, the most
important member comes in the first position and becomes
the head of the relation, This fact is used in some heuristics
to discover empty positions in triplets (discussed in [14]).
During the process of restructuring the text into triplets
some of the positions within a triplet may stay empty.
Empty positions mean that thefr content is implicitly known
from the context, or it is not important at this moment, or
the sentence is not syntactically correct. For example, fhe
gate is placed at a special lane, after changing the verb into
active voice verb (straight direction), means that (Someone)
(place) (the gate at a special lane). The position of Su
(Someone) is left empty. It can remain empty until the ana-
lyst fills it or untii we apply heuristics for discovering and
filling it

Graphical glue among triplets: In the previous section we
discussed the decomposition of text into basic triplets,
Their detailed graphical representation can be seen in [14].
In brief, a concept (noun} is represented as a solid oval; an
attribute (adjective), as a dashed oval; a predicate, as a di-
rected solid arc which connects related concepts; and a
preposition, as a directed dashed arc which connects related
congepts,

Now, we will explain how fo graphically synthesize the
diagram of an entire text from these basic triplets. In order
to form a text representation, triplets are joined upon the
relations between them. Relations are categorized upon the
reason/result relationship between concepfs/triplets. Tab 2
summatizes and gives examples of the different categories:

Concept-concept Relation - Relation

2

- Concept

e PG

_ c) digr

Tab 2. Examples of relation types between tripeté

The graph of a simple predicative relation, i.e. the ordered
triplet Su, Pr, Ob, is represented as in Tab 2a). In Tab. 2b) a
complex implicative relation between two relations is
shown, representing the following text: If a vehicle passes
through a green line, the system turns on a green light.
Two simple predicative relations are connected into one

complex, implicative relation via a directed arc connecting
the predicative arcs of the simple sentences. At the start of
the connecting arc there is a small diamond, which indi-
cates the condition of an implication. Tab. 2¢) shows an
example (taken from [11]) of a simple (eats) relation at the
end of a complex epistemic (believes) relation, which itself
is at the end of another complex epistemic (thinks) relation:
Sue thinks that Bob believes that the dog eats a bone. Three
different relations are aggregated with a relative pronoun
{that), which defines the direction and connections between
them: Sue thinks = Boh believes D the dog eais a bone.
Tab. 2d) shows an example of a resultant relation (framed
as a box): Sensor reads gizmo. Read info is stored by the
system and used to debit account. Both sentences have to
be agpregated because the concept “read info” in the sec-
ond sentence is the result of the activity “read” from the
previous sentence. In the second sentence we have three
simple predicative relations {sfore, use and debif) which
form a complex sentence. We represent them as connected
relations.

This was a summary of the principles which stand at the
basis of graphic representation of text. The most important
part of our methodology is to restructure the text in the
form of basic triplets — relations, which would be subse-
quently represented in a unified graphic manner. In order to
structure the text as basic triples we use technologies such
as POS taggers, parsers, and chunkers. We write the basic
building blocks (triplets: Su, Pr, Ob) into a table representa-
tion (TR), which helps us in further automated processing:
i) turning the passive voice into active; ii) defining the heu-
ristics and algorithms for filling out the empty positions of
the triplets; iil) making it easier to resolve an anaphora and
ellipsis. In [8,9] we described the stages of text analysis for
the tabular representation of text. The Graphical Natural
Language with which the text is made into a Semantic
Network (SN) is deseribed in [14]. Different aspects and
applications of these TRs and SNs are described in [151.

4. CASE STUDY ON MODEL DISCOVERY

The objective of graphical NL is to represent concepts in a
compact objeci-centered manner, i.e. to attach to each con-
cept all relations in which it participates. This way we ob-
tain a structured diagram of an enfire text which shows the
exact place and role of each concept, group of concepts,
and connection between them. Fig. 2 illustrates a graphical
representation of short text taken from {13]. Let us examine
part of the diagram in order to explain how to read graphi-
cal symbols. We focus our aftention on ‘vehicle’.

Vehicle is a concept (noun) and as such if is represented
inside an oval. Vehicle has two atiributes — authorized and
non-authorized (each attribute is represented inside a
dashed oval). Vehicle participates in two predicative rela-
tions (drawn as solid lines) and three prepositional relations
(dashed lines). The predicative relation that starts from non-
authorized vehicle is labeled pass. It directs activity fo-
wards green lane and this activity is conditional (inside a
diamond). If the condition is met, the implicative arrow that
goes out of the diamond leads to one complex relation con-
sisting of two simple relations connected conjunctively

(double circle): System turns on yellow light and camera
takes a photo. Photo has a ‘pin® with a number inside,
which is compressed information about the photo (listed in
a legend) and explains what photo’s role and features are.
The graph which is obtained after processing the text has a
lot of similarities with UML models. In order to show these
similarities, we observe a part of the graphically repre-
sented text.

SRS p LE
Bk ROTIRE KDY
1 viblels danlln

H
H
i
i

#

pamamT .

o

Fig.2. dapﬂlcal representé’l_t'igﬁwg-’f fext— Semantic Network

Domain model discovery: By a slight rearrangement of
the shapes in a Semantic Nefwork (SN) and ignoring the
predicative relations, we notice that we can directly obtain
a domain model (DM) from our GNL, as shown in Fig.3.

By analysis of the linguistic structure and DM structures,
we come fo defining the following rules for translation of
SN into DM. Since DM is a static model and represents a
hierarchical structuring of concepts, the following language
structures are important for its generation: noun-noun at-
fachment; adjective-noun attachment; prepositional attach-
ment; key-word attachment. We use the term ‘attachment’
(rather than a phrase), to express the analogical relations
that exist in NL and DM. We are interested in the static
prepositions within prepositional attachments — the ones
expressing place and possession. Key-word attachments are
important for their representation of structural relations. For
exarnple: consist of, involve, type of, part of has a, cte.

vericed U " s

o -,

. »wauiwi” ¥ ‘wxﬁwﬂz@& 3

-~ ¥

2 Stroctess telerions i Samantie Napwed

) Dorrin hisdal
Fig.3. Mapping Semantic Netwotk to Domain Model

Having defined which linguistic structures we have to
translafe into DM, we still have the knowledge engineering
effort of the translation: extracting certain linguistic struc-
tures from the text, representing them in the nested format

(see formula 4.1), defining operations over nested struc-
tures, simplifying, regrouping, and visualizing, The tech-
nology is described in detail in [16].

Object oriented (00) model discovery: The concepts in
the target model have properties and behavior, The first is a
static characteristic while the second is dynamic. By ana-
lyzing our SN we notice that, apart from the structural rela-
tions (static), the nodes also have communicative relations
(they ‘send” and ‘accept’ predicative arcs). According to
the number and type of predicative relations in which the
different nodes of SN enter, they can be characterized as
active and passive. The active nodes are candidates for ob-
jects in the OO model. By comparing in this way the pecu-
liarities of the two graphic models — SN and OO diagrams,
shown in Fig.4, we arrive ai defining heuristics and rules
for the translation of SN into OO diagrams. In general: (i)
The domain model can serve as a structural basis for_orga-
nizing the OO model. (ii) The nodes that are distinguished
with attribute(s) / adjective(s) are candidates for parent
nodes with instances. For example, instances of vehicle are
authorized vehicle and non-authorized vehicle.

#y Epttaieed

Fig.4, Mapping Semantic Netwotk to Object Oriented Model

(iif) All predicative arcs which come out of “object nodes”
are represented as methods, For example, dispiay and furn
on come from system and are represented as system meth-
ods; (iv) Terminal nodes — those that do not send predica-
tive arcs — are regrouped as part of methods or data types.
For example, amount, photo, green light, yellow light, are
attached to the methods and represented as: displyAmount,
takePhoto, turnLightOn. (v) Simplifying and regrouping,
conceived for DM [16], can be applied to OOM. For exam-
ple, two methods *“turn on green light’ and “turn on yellow
light can be represented as one method with an argument
thus:

turnOnLight (lightType (green, yellow)). -4
We regroup the two adjectives of light into one abstract
group, namely lightType; (v) the common methods of a
node’s instances are lifted fo the parent node. For example,
passLane is a method of authorized as well as of non-
authorized vehicle and that’s why we lift this method from
instances to the parent node Vehicle. The same lifting tech-
nique is applicable for properties. The OO model is de-
secribed in detail in [8].

Use Case Path (UCP) model discovery: Another type of
model, which is important for the representation of the dy-
namics of a system, is derived from tracking different ac-
tivities. The SN gives us a basis to arrange groups of
concepts, as working nodes in which different actions are
being executed. In our example from Fig.2 such structures
of conecepts (after their spatial arrangement guided by the
prepositions for place with which they are connected) are as

shown in Fig.5: vehicle has driver and gizmo; green lane in
which tofl gate and sensor are placed;, RTP System. If we
write down the executable activities in the so-defined
nodes, and we connect them with directed arcs in the order
in which we read them in the text, we will obtain the dia-
gram in Fig.5. In order to succeed in building this diagram,
we change the point of view by considering triplets of the
form ‘actor-action-result’. We accept the following basic
rule: the result of an activity is transferred, only if the
working node is being changed, no matter if there is a re-
cipient of the activity like it is in a UML sequence message
chart. Based on this rule, no signal will go to gizmo after
install gizmo or activaie gizmo. Driver does not communi-
cate with the other nodes. The type of vehicle is important
for System to switch to green or yellow light and therefore
verification of vehicle type is performed in the System node.
The connection between vekicle and system is clear from
the SN, while the connection between vehicle and sensor
{depicted with a dashed line} has to be determined by the
analyst.

The UCP model has no precise analog among the UML
diagrams, but it is natural and stays close to the NL descrip-
tion of activities, hence can be used as an intermediary be-
tween NL and other UML diagrams (further explained in
the article). The algorithm and a detailed description for
processing this kind of diagram can be found in [15].

Bretamy e

Rtorzraad do
Ussink
. = I} aveount

)

Fig.5. Use Case Path model

Hybrid Activity Diagram (HAD): This diagram can be
obtained from UCP if we rearrange the working nodes as
‘swimming lanes’, We inscribe the activities that are being
executed in a swimming lane/working node in the same
sequence in which we read them in the text. A message
arrow connects swimming lanes in places where the result
of the activity is being transferred. Following this logic we
obtain the graph in Fig. 6a. Since our activity diagrams
combine characteristics from both sequence message charis
(swimming lanes and messages between them) and activity
diagrams (conditional diamonds and activities), we call
-them-Hybrid-Activity- Diagrams, From an HAD we can
obtain sequence message charts by unrolling every path
separately, as shown in Fig.6b).

Use Case (UC) model: In order to build this type of dia-
gram, we are guided by the UML understanding of use
cases as interactions only between the user and the system.,
The relations that we need from the text for this fype of
diagram are: i} only those in which the user is a Su, and the

< [RThaesd oy SEHEE T

%mk _ ey

E

Pacs

[ogied ™~ (myiad
(E@yi;uﬂl {Tohepints] :
1) Hyteld Ay Disgram,) Sequare tussage drat

Fig.6. From an HAD io Sequence Message Charts

system is an Ob; i) the system is a Su and continues an ac-
tion initiated by the user. These types of relations, extracted
from the graph of the text in Fig.2 are represented in Fig.7,
The actions from case i) are connected with wser, while
those from case ii) are in the backend, and are represented
as <extend> or <include>, depending on whether they are
executed under specific condition, or not. For example, we
observe in Fig.2., that zurn on green/yellow light are activi-
ties placed after the diamond shape, i.e. they are condi-
tional. In this case, activities will be included in the UC
Diagram (UCD) as <extend> of the activity ‘pass green
fane’. The activities of the system, with which a response
is given to ‘Sensor read gizmo®, are not included into an
UCD diagramn, because there is no user participation, and

thus they are not a part of the Use Case.

Fig.7. Use Case diagram

5. FINAL REMARKS

Summary: The idea of representing NL graphically is not
new, Diverse graphical models keep appearing from both
the fields of computer linguistics and SE modeling. While
linguists tend to concentrate their efforts on the graphic
representation of natural languages and aim to create more
complete and precise models of languages, engineers are
more interested in the domain knowledge, its extraction and
representation. In order to automatically exiract knowledge
from text, we need a common model, which would repre-
sent both the fext and the knowledge it contains. In order to
make the mode] of the language (text) more universal and
applicable to a wide range of problems, it has to represent
both general and domain knowledge. While linguists offer
models which mostly represent the general knowledge,
engineers often prefer to create their own models of lan-
guage, where they implicitly include specific domain
knowledge. For example, the eight graphic templates pro-
posed in [7] aim to summarize those characteristics of the
NL model that are appropriate for its automatic mapping
into an OO model. These templates are not likely to be ap-
propriate for texts in which we cannot find these special
language constructs, or for other target SE models, The

maodel in [5] is also obtained after the processing of special
texts where the focus is on special linguistic templates, rep-
resenting data structures and various processes applied to
them.

The right balance between linguistic, general and problem
domain knowledge in a single common representation has
still not been discovered.

The current paper suggests one possible solution. We pro-
pose a unified model of natural language and the knowl-
edge it carries, Working upward from the definition of
natural language building blocks as relations between con-
cepts, which are also building blocks of the knowledge rep-
resented by UML diagrams, we achieved a correlation
between the two graphic representations. The graphic rep-
resentation of text through Semantic Networks has served
us in discovering patterns, analogical to the UML represen-
tation. This analogy helps us to reveal heuristics and rules
with which the awtomatic generation of UML diagrams can
be considered as a process of translating one graphic lan-
guage into another,

Advantages of graphical formalisms: GNL was designed
for SE purposes, namely, for creating executable models of
knowledge described in natural language. GNL tries to cap-
ture unrestricted NL and to represent language and knowl-
edge in one common model. That is what differentiates our
methodology from other ones that separate the two models,
The disadvantage of this separation is that if language pat-
terns do not correspond to knowledge patterns, the theory
loses validity.

In Fig.8 we present the same example in the two notations -
Concepiual Graph formalism [10] and GNL. This brief vis-
ual comparison leads us to the following observations:

1) GNL is more compact, uses less space, and allows pre-
senting larger volumes of information for visual inspection,

“Tombalisves that Mary wants o
vy & sadlor.”

e T
| (o e

Fig.8. Two representations of the same example - comparison

2) In GNL, concepts and relations which form one simple
sentence are free to participate in other relations too. This
makes the concepts dynamic, and one concept can partici-
pate in many relations. 3} As a consequence of the dyna-
mism of the concepts in GNL, we can build a diagram of an
entire text. 4) The unambiguousness of the relations in
GNL is supported by their strict indication with labels and
with the use of different graphic symbols according to their
semantic interpretation.

GNL is appropriate for the automatic drawing of text. An
important supporting phase of its processing is the tabular

representation (TR} of text. In order to construct a TR we
use technologies of NL processing — POS taggers, parsers,
chunkers. Then, for proceeding from TR to graphical and
visual representations (e.g., SVG), it is possible to use
scripting languages (e.g., PHP} and XML technologies.
Future work: We are going to develop GNL in two direc-
tions: 1) Theoretical research which comprises the follow-
ing: i) New extension to the knowledge base: examples,
case studies, and comparison with examples from similar
theories. i1) Add to, update and improve the collection of
rules and heuristics. iii} Explore various methods and logi-
cal languages for the formal representation of SN. 2) We
will continue with the development of a software applica-
tion which comprises the following projects: i) Architecture
of an integrated environment for automatic analysis and
formal representation of textual software requirements; ii)
Structured representation of the text in a tabular format; iii)
XML format of the TR; iv) Visualization.

REFERENCES

1. Burg, L.LEM. and van de Rict, R.P.: Analyzing Informal Re-
quirements Specifications: A First Step towards Conceptual
Modeling, Proc.of the 2nd Int. Workshop on Applications of
Natural Language to Information Systems, Amsterdam, 1996.

2. Fliedl, G.; Kop, Ch.; Mayerthaler, W.; Mayr, H.C.; Winkler
Ch.: The NIBA workflow: From textual requirements specifi-
cations to UML-schemata Tn; ICSSEA, Paris, 2002,

3. Kop, Ch.; Mayr, H.C.: Mapping Functional Requirements:
From Natural Language to Concepfual Schemata, In Proc. of
the 6th Int. Conf, SEA, Cambridge, USA, 2002,

4. D. Richards, K. Bottger, O. Aguilera: A Controlled Language
to Assist Conversion of Use Case Descriptions into Concept
Lattices. In 15th Australian Joint Conference on Al 2002

5. Lee, B.-S,, Bryant, B.R.: Automated conversion from require-
ments documentation to an object-oriented formal specification
language. In Proceedings of SAC(ACM), Madrid, Spain, 2002.

6. Mencl, V.: Deriving Behavior Specifications from Textual Use
Cases, In Proc of “Workshop Intelligent Technologies for Sofl-
ware Engineering (WITSE, part of ASE), Linz, Austria, 2004.

7. Moreno A.: Object-Oriented Analysis from Textual Specifica-
tions”, In Proc. of 9th International Conference on Software
Engineering and Knowledge Engineering (SEKE), 1997.

8. llieva M., Ormandjiecva Q.. Automatic. Transition of Natural
Language Software Requiremenis Specilication into Fortnal
Representation, NLDB 2005,

9. M. G. llieva, Q. Ormandjieva: Models Derived from Automati-
cally Analyzed Textual User Requirements. Proe. of SERA06

10. John E. Sowa: Knowledge Representation: Logical, Philoso-
phical, and Computational Foundations, Brocks Cole Publish-
ing Co., Pacific Grove, CA, ©2000

11. John Sowa: SemNet http:/fwww.jfsowa.com/pubs/semnet.htm

12. Unified Modeling Langnage (UML) 2.0 http://www.uinl.org/

13, J. Arafjo, A. Moreira, 1. Brito, A. Rashid. Aspect-Oriented
Requirements with UML., Workshop on "Aspect-oriented
Modeling with UML", UML 2002, Dresden, Germany

14, Tlieva M.: Graphical Notation for Natural Language and
Knowledge Representation, In Proc. of 19th SEKE, 2007.

15, Nlieva M.: Use Case Paths Model Revealing Through Natural
Lanpguage Requirements Analysis, Proceedings of ICAT, 2007.

16. Tlieva M, Ormandjieva O.: NLP and FCA. Technology for
Automatic Building of DM, Proceedings of SEA, 2007

17, Infogistics” NELProcessor Interactive Demo: Tagging and Syn-

tax Chunking hitp:/fwww.infogistics. com/posdemo. him

