
Publisher’s version  /   Version de l'éditeur: 

Physical Review A, 60, 6, pp. R4225-R4228, 1999-12-01

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE. 

https://nrc-publications.canada.ca/eng/copyright

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la 

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez 

pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at 

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the 

first page of the publication for their contact information. 

NRC Publications Archive

Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. / 

La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version 

acceptée du manuscrit ou la version de l’éditeur.

For the publisher’s version, please access the DOI link below./ Pour consulter la version de l’éditeur, utilisez le lien 

DOI ci-dessous.

https://doi.org/10.1103/PhysRevA.60.R4225

Access and use of this website and the material on it  are subject to the Terms and Conditions set forth at

Two-color control of localization: from lattices to spin systems
Karczmarek, Joanna; Stott, Malcolm; Ivanov, Misha

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

NRC Publications Record / Notice d'Archives des publications de CNRC:
https://nrc-publications.canada.ca/eng/view/object/?id=8b3c3472-7d24-46d0-8b95-092ea158d064

https://publications-cnrc.canada.ca/fra/voir/objet/?id=8b3c3472-7d24-46d0-8b95-092ea158d064



Two-color control of localization: From lattices to spin systems

Joanna Karczmarek,1,2 Malcolm Stott,2 and Misha Ivanov1
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~Received 13 July 1999!

We demonstrate control of quantum dynamics in a finite model system described by a tight-binding Hamil-

tonian, through interaction with a multifrequency external field. Effective defects can be introduced into the

lattice by a two-frequency field, and the character of the defects can be controlled by the relative phase between

the two field components. These field-induced defects imply robust localization of dressed ~Floquet! states on

lattice sites. Implications for a spin system in crossed magnetic fields are discussed. @S1050-2947~99!51211-0#

PACS number~s!: 42.50.Hz

The desire to control dynamics of a quantum system is

both a driving force and a unifying theme in many areas of

modern laser-matter interaction physics. For example, atom

optics focuses on controlling the translational degrees of

freedom of an atom. Molecular optics @1# strives to extend
this ability to molecules. Coherent control @2# focuses on
using laser fields to manipulate the internal dynamics of
atomic and molecular systems; e.g., creating complex super-
positions of quantum states according to a given prescription
@3#.

Following the experiment @4#, coherent control in solid-
state systems became an active area @5#. In quantum-well
semiconductor structures, one of the objectives is the control
of electron motion between quantum wells. An intriguing
theoretical prediction is the coherent suppression of electron
tunneling between the wells @6# by application of a strong
monochromatic THz electric field. Following the first experi-
ments in quantum-well structures @7#, this idea has been
transplanted back into the quantum-optics context: narrow-
ing of Bloch bands has been observed for cold neutral atoms
in optical lattices @8#, with ac driving due to phase modula-
tion of the counterpropagating waves that create the lattice.

Suppression of tunneling is caused by a destructive inter-
ference of different multiphoton quantum pathways, and has
far reaching consequences in the case of the tight-binding
lattice. For example, manipulation of the strength of the THz
field allows control of the effective strength of the existing
defects in the lattice, the Anderson localization length, and
consequently affects the temperature dependence of electron
transport @9#.

We have studied numerically and analytically coherent
control of quantum dynamics in a tight-binding model sys-
tem subject to a multifrequency periodic external field, ex-
tending the monochromatic field study @9#. Although our
analytical results apply to any periodic field, we focus on the
simple case of only two frequencies v and 2v , where al-
ready we find a wealth of new effects.

First, unlike the single-frequency case, in a two-frequency
field a delocalized initial state can be localized adiabatically
at a single well, because the Floquet states of the driven
system can be so localized. Second, the site where the elec-
tron is localized may be changed by adjusting the relative
phase of the two frequencies. Third, compared to its single-
frequency counterpart, the two-frequency localization is

stronger, and robust with respect to small changes in the
external field strength. The two-frequency field introduces
effective defects into the lattice, the strength of which de-
pends on the relative phase of the two colors. For equal
couplings between the sites the defects are induced at the
ends of the lattice, but for couplings that are not all equal the
defects are also induced within the lattice. In the presence of
decoherence, the two-frequency driving can induce a tunnel-
ing current, whose direction is controlled by the relative
phase between the frequencies.

The Hamiltonian for the tight-binding system together
with an external time-dependent field is

Ĥ5Ĥ01V~ t !N̂

5 (
1

N21

Vn~ un&^n11u1un11&^nu!

1V~ t !(
1

N

nun&^nu, ~1!

where N is the number of lattice sites, un& is the state local-
ized at the nth site and the Vn’s are couplings between ad-
jacent sites. V(t)5E(t)d is periodic with period T52p/v .
V(t) arises from the interaction with an external electric field
E(t), d being the well spacing.

The Hamiltonian ~1! could describe an electron in a mul-
tiple quantum-well structure, or an ion in an optical lattice.
For neutral atoms in an optical lattice analogous Hamiltonian
is realized by phase-modulating the optical waves creating
the lattice @8#. Equation ~1! can also be used to represent the
dynamics of circular Rydberg atomic states in a circularly
polarized microwave field ~the so-called Trojan states! @10#,
or the Zeeman effect in crossed magnetic fields. The coales-
cence of Zeeman lines in an oscillating magnetic field
crossed with a constant magnetic field, observed almost 30
years ago @11#, is formally equivalent @9# to the suppression
of tunneling discovered in 1990s. We also note recent con-
trol experiments @12#, where the time-dependent magnetic
field was actively controlled to create a prescribed coherent
superposition of Zeeman levels.

To explore the dynamics of the system described by Eq.
~1!, we first apply a unitary transformation uC(t)&
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5Û(t)uC8(t)&, where Û(t)[exp@2i*0
t V(t8)dt8N̂# and N̂

[(nun&^nu. This is a direct analog of the Kramers-
Henneberger transformation often used for studying atoms in
strong high-frequency fields @13#: it gives the exact solution
of the problem when H050. The transformed Hamiltonian
is

Ĥ85 (
1

N21

Vn„G~ t !un&^n11u1G*~ t !un11&^nu…, ~2!

where G(t)[exp@2i*tV(t8)dt8#. For a periodic V(t),G(t)

5(k52`
` Gkexp(2ikvt). If V(t) includes a slowly varying

envelope f (t), such as we shall introduce later, to turn on the
laser field, then Gk is replaced by f (t)Gk . The population of
the nth well is Pn[ z^nuC(t)& z25 z^nuC8(t)& z2.

The Hamiltonian Ĥ8 describes N degenerate energy levels
coupled by a multicolor ‘‘field’’ G(t). Its time-independent
part G0 provides a resonant coupling, and dominates over the
high-frequency, off-resonance couplings, Gkexp(2ikvt),
which primarily cause energy shifts similar to ac Stark shifts.
Following the usual procedure for ac Stark shifts, we elimi-
nate the fast time dependence by treating terms such as

Vn@Gkexp(2ikvt)un&^n11u1Gk
*exp(ikvt)un11&^nu# in

second-order time-dependent perturbation theory. For ex-

ample, the term Gk
*exp(ikvt)un11&^nu gives an amplitude

^n11uC8(t)&52^nuC8&VnGk
*exp(ikvt)/kv in the state un

11& which, when substituted back into i^nuĊ8(t)&, yields

2^nuC8(t)&Vn
2GkGk

*/kv . This diagonal contribution de-

scribes the energy shift.
When all the shifts are accounted for to second order we

obtain the following time-independent effective Hamil-
tonian:

Ĥe f f8 5 (
1

N21

Vn@G0un&^n11u1G0
*un11&^nu#

1GS(
1

N

~Vn21
2

2Vn
2!un&^nu, ~3!

where GS5(kÞ0GkGk
*/kv ,V0[VN[0, and the result

holds if v@uGkVnu for all n.
Of the same order as the ac Stark shifts are the ‘‘two-

photon’’ Raman-type couplings between the degenerate
states un& and un12& due to G(t)5(Gkexp(2ikvt). These
terms are absent from Eq. ~3! because the corresponding ma-

trix elements that enter to second order, Vn ,n12
(2)

5VnVn11(kÞ0GkG2k /kv , vanish, as can be seen by
changing the summation index from k to 2k .

The stationary eigenstates uC8& of He f f8 are approxima-

tions to the Floquet states of Ĥ8 and, hence, of Ĥ ~up to the

phase-altering transformation Û). The dominant part of the

rapid time dependence of uC&5Û(t)uC8& ~with the period

of the driving field! is included in Û(t). The relatively slow
time dependence of uC8&, due, for instance, to the turning on

or off of the laser field, is included in He f f8 by replacing Gk

with f (t)Gk . We now discuss the rich physics contained in

He f f8 and illustrate the effects with numerical examples.

Equation ~3! shows that the oscillating field V(t) induces
energy shifts Dn in the diagonal terms that are proportional

to differences in the coupling strengths, Dn5GS(Vn21
2

2Vn
2), breaking the degeneracy of the site energies. The

distribution of shifts among the lattice sites is determined by
Vn’s, but the overall magnitude and sign are controlled by
the magnitude and sign of GS , which are determined by
V(t). Furthermore, V(t) modifies the couplings between the
sites: Vn→VnG0.

When V(t) is such that G0 is zero, He f f8 is diagonal, with

eigenvalues, or quasienergies, Ẽn5GS(Vn21
2

2Vn
2) and

eigenstates un& . The Floquet states of the dressed system
become localized on lattice sites. Thus, coherent decoupling
of lattice sites, or coherent destruction of tunneling between
them, has been achieved.

For the case of a single-frequency field V(t)5V0cos vt,
the condition G050 for the coherent decoupling of lattice
sites reduces to the well-known result @6# J0(V0 /v)50,
where J0 is the zero-order Bessel function. However, for a
single-frequency field GS50, since uGku5uG2ku. Conse-
quently there are no diagonal energy shifts; the on-site ener-
gies remain degenerate. Tunneling is destroyed only at G0

5J0(V0 /v)50, and recovers as soon as G0 deviates from
zero, requiring exact tuning of V0 /v .

In contrast, the addition of the second frequency, V(t)
5V0@cos(vt)1cos(2vt1f)#, ensures that uGkuÞuG2ku and
so GSÞ0 ~except at f56p/2). This lifts the degeneracy of
the site energies, creating energy defects in the lattice and
making localization of the Floquet states robust. Localization
persists as long as the energy shifts are large enough:

VnuG0u,uGS(Vn11
2

2Vn21
2 )u.

This qualitative difference between the effects of single-
frequency and two-frequency fields is illustrated in Fig. 1.

The Schrödinger equation given by Ĥ in Eq. ~1! was inte-
grated numerically to obtain the populations of the sites as
functions of time. The results shown in Fig. 1 are for a
double-well system with f50. In a monochromatic field
@Fig. 1~a!#, a small 5% detuning of V0 from the value at

FIG. 1. One-frequency vs two-frequency localization for N52

wells. Curves show population in the state un51&. Initially uC(t

50)&5u1&; the field turn-on is instantaneous. ~a! Single frequency,

V0 /v52.525,V/v51/4. ~b! Two frequencies, V0 /v52.60, V/v
51/4,f50.
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which G050 @given by J0(V0 /v)50# destroys the localiza-
tion completely: all population moves back and forth be-
tween the two wells. In the two-frequency field @Fig. 1~b!#
the same 5% detuning of V0 from the condition G050 does
not destroy the effect; localization is robust with respect to
small changes in the field.

For nondegenerate Floquet states the system, starting in
an eigenstate of H0, evolves adiabatically into a single Flo-
quet state of H as the laser field V(t) is slowly turned on.
According to Eq. ~3!, the two-frequency field breaks the de-
generacy of the Floquet states, and thus adiabatic localization
of an electron around the induced defects is possible. Figure
2 shows numerical results for a four-well system with Vn the

same for all n. V0 is chosen so that G050, making He f f8

diagonal. The initial state is the delocalized ground state of
H0. As the field V(t)5V0@cos(vt)1cos(2vt1f)# is slowly
turned on, Fig. 2 shows that the population is adiabatically
localized in the leftmost ~first! well for f50. Localization
occurs in the rightmost ~fourth! well for f5p ~not shown!.

Adiabatic localization can be achieved at sites for which

the eigenstates of He f f8 are nondegenerate. Inspection of Eq.

~3! shows that under the conditions used for Fig. 2, where all

Vn are equal ~and G050), the eigenstates of He f f8 are de-

generate, except for the leftmost well with an energy shifted
down by GSV , and the rightmost well shifted up by GSV .
These are the only wells where robust localization is possible
for equal Vn . As the field is slowly turned on, the ground
state of H0 evolves into the lowest-energy Floquet state of H,
which corresponds to the leftmost well when GS.0. Chang-
ing the relative phase f of the two frequencies from 0 to p
reverses the sign of GS and moves the lowest-energy Floquet
state to the rightmost well.

If the set of Vn’s values is chosen suitably, localization
can be engineered in any selected well. The spectrum of site

energies in He f f8 is determined by ~i! the n dependence Vn
2 ,

and ~ii! the sign of GS , which is reversed by changing f
from f50 to f5p . For example, with Vn

2}(n2N/2)2 the

second term in the Hamiltonian equation ~3! depends linearly
on n, as if there were a dc bias across the lattice. Changing
the relative phase from f50 to f5p reverses the sign of

GS and, hence, the sign of the dc bias induced by the peri-
odic field.

Our next example ~Fig. 3! shows phase control of the
localization length of the Floquet states and, hence, of quan-
tum transport properties in a lattice with random couplings
Vn . Figure 3 was calculated for N510 wells with Vn

50.5(11a)V and a random between 0 and 1. The local-
ization length L of a state uc j& is defined as L j

51/(nz^nuc j& z4, which gives L5N for equal populations in
each well. In Figure 3 we show the localization length aver-
aged over all N510 Floquet states ~found numerically!. For
each of them z^nuc j& z2 is averaged over the field period. Bare
states are strongly delocalized, with average localization
length ^uLu&56.74. In contrast, when the energy shifts in-
duced by the applied field exceed the field-modified cou-
plings between the wells, VnuG0u, the Floquet states localize
on single sites for f50,6p . Changing f controls ^uLu&
~Fig. 3!.

One of many physical situations described by the tight-
binding Hamiltonian in Eq. ~1! is the Zeeman effect for a
system with fixed total angular momentum J, such as an
atom in a given electronic state, in crossed magnetic fields.
We take the constant field Bx to be along the x axis, the
oscillating field Bz(t) to be along the z axis, and the states

un& to be the eigenstates of Ĵz , with n ranging from 2J to J

and N52J11. Consequently, Ĥ05gmBBxĴx , and V(t)
5gmBBz(t), where mB is the Bohr magneton and g is the

Landé factor. The couplings, Vn5gmBBx^nu Ĵxun11& , vary
with n.

Following the method outlined above, the transformation

Û(t)5exp@2iĴzgmB*0
t Bz(t8)dt8# is a time-dependent rotation.

The new frame rotates back and forth about the z axis
through an angle u5gmB*Bz(t8)dt8. Jz is unaffected by this
rotation. The transformed and effective Hamiltonians are

Ĥ85

gmBBx

2
@G~ t !Ĵ21G*~ t !Ĵ1# ,

~4!

Ĥe f f8 5

gmBBx

2
~G0Ĵ21G0

*Ĵ1!1GS

~gmBBx!2

2
Ĵz ,

G~ t !5expS 2igmBE
0

t

Bz~ t8!dt8D ,

FIG. 2. Adiabatic localization in an N54-well system ~sketched

in the upper left corner!. Curves show occupation in un&’s well, as

numbered. Initially uC(t50)& is in the delocalized ground state of

Ĥ0. All Vn are equal, Vn5V; V0 /v52.48,V/v51/4,f50. For

each point on the nth curve the occupations are averaged over ten

cycles. Inset shows full time dependence for un51& before averag-

ing, demonstrating the extent of fast oscillations in the occupation

of the first well.

FIG. 3. Phase control of the Floquet states’ localization length in

an (N510)-well system with random couplings: Vn50.5(1

1a)V; a is random between 0 and 1. V0 /v52.48; V/v51/4.
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where Ĵ6[ Ĵx6i Ĵy . In He f f8 the term proportional to Ĵz

arises from the difference in couplings, ^nu Ĵxun11&. The

term G0Ĵ21G0
*Ĵ1 in He f f8 reduces to 2uG0u Ĵx after an ad-

ditional rotation about the z axis by a constant angle u0 de-
fined through G05uG0uexp(2iu0). This rotation is made in
the direction opposite to the previous one, and again, does
not affect Jz . The resulting effective Hamiltonian takes a

simple form AĴx1CĴz , with A5gmBBxG0 and C

5GS(gmBBx)2/2.
When Bz(t)50,GS50; thus C50 and the eigenstates of

the system have well-defined Jx . However, when the ampli-
tude of Bz(t) is such that G050, A vanishes and Jz becomes
a good quantum number, as reported @11# for a single-color
case. In the two-color case Jz remains a good quantum num-

ber as long as the effective field along the x axis, Bx
(e f f )

5uG0uBx , is sufficiently small: uG0ugmBBx!GS(gmBBx)2.
As with the lattice, we can adiabatically move the system

from an initial eigenstate of Jx to an eigenstate of Jz by
slowly turning on a suitably chosen Bz(t). Since the expec-

tation value ^Jz& is invariant under rotations about the z axis,

and we control ^Jz& in the rotating frame through the two-

color field, we control ^Jz& in the laboratory frame. For ex-

ample, changing f reverses the direction of ^Jz&.

So far we have neglected the effect of decoherence, which

is important in quantum semiconductor structures. The key

parameter should be the ratio of the field period T to the

phase relaxation time Tph . For T!Tph there is sufficient

time to establish the Floquet states, and the relaxation will

occur between these rather than the bare states @6,14#. If the

magnitude of field-induced energy shifts, Dn exceeds the en-

ergy relaxation width Ten
21 , localization survives. In the op-

posite case of DnTen,1 an interesting situation arises if Vn

are chosen to ensure that Dn depends linearly on n. Then, as

we have seen, the two-color field introduces an effective dc

bias that will induce a tunneling current. Its direction is re-
versed by changing the relative phase of the two frequencies
f from 0 to p . This complements phase control of ionization
current first demonstrated in @4#.
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