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Abstract

The view planning problem, also known as the next-best-
view (NBV) problem, for object reconstruction and inspec-
tion has been shown to be isomorphic to the set covering
problem which is NP-Complete. In this paper we express a
theoretical framework for the NBV problem as an integer
programming problem including a registration constraint.
Experimental view planning results using a modi�ed greedy
search algorithm are presented.

1 Introduction

Automated acquisition of 3D geometric object models with
active range sensors remains an open problem. The acqui-
sition process involves an iterative cycle of view planning,
sensing, registration and integration. Conventional non-
model-based view planning methods can be categorized
by the domain of reasoning about viewpoints - that is,
surface, volume or global attributes. The most common
surface-based method exploits occlusion edges, for exam-
ple [7], while solid geometry algorithms have been used [14]
to model volumetric object knowledge. Model-based ap-
proaches to view planning have the useful attribute of sep-
arating scene exploration from precision measurement [10].
The �rst phase captures a sparsely-sampled, approximate
geometric object model by fast preprogrammed scans. Us-
ing this polygonal mesh rough model as the new knowl-
edge base, a subsequent phase undertakes view planning
for �ne-detail, precise object scanning. More in-depth lit-
erature reviews can be found at [15], [10].

This paper addresses performance-oriented reconstruc-
tion which has been de�ned [10] as model acquisition based
on explicit quality requirements expressed in a model spec-
i�cation. In addition to all-aspect coverage, typical qual-
ity objectives include measurement precision and sampling
density, which may be constant or variable by region.

The key model-based view planning data structure is a
measurability matrix, a concept �rst introduced for the in-
spection application by Tarbox and Gottschlich [16]. By
convention, rows correspond to surface points and columns
to viewpoints. Each matrix element is a binary estimate
of the ability of the corresponding viewpoint to measure
a speci�c rough model surface point. To be measurable,
the surface point must be visible from both the optical

transmitter (laser) and optical receiver (detector), and es-
timated measurement precision and sampling density must
be within speci�ed limits.

A measurability matrix is a powerful but computation-
ally expensive view planning tool - O(s2v), where s = jSj
and v = jV j are the sizes of the surface and viewpoint sets,
respectively. Sampling schemes in surface and viewpoint
space are therefore important. While the required rough
model sampling density depends on object shape complex-
ity and speci�ed reconstruction �delity, experiments have
shown that a fairly coarse rough model su�ces for view
planning and the process is robust with respect to modest
levels of acquisition noise [12]. Viewpoint space decimation
is even more critical as its dimensionality is much higher.
Viewpoints are treated as generalized viewpoints (v; �v),
consisting of sensor pose v and a set of controllable sensor
parameters �v. Experiments have shown that generation
of approximately one optimized viewpoint per rough model
surface point is usually su�cient.

As an additional measure to reduce computational com-
plexity, the rough model may segmented into patches based
on the view planning challenge presented by their shape.
For example, cavities are particularly di�cult to image due
to shadow e�ects. In this case, a measurability matrix is
computed for each segmented region. The cardinality of s
and v are typically in the range [200,400] per patch. This
compares with the size of a representative target �ne model
of about 105 points while brute force discretization of a
one cubic meter imaging volume would require about 1011

viewpoints, even with pruning infeasible orientations.

Within this framework, view planning proceeds as fol-
lows - rough model creation by rapid pre-programmed
scans, rough model segmentation (optional), viewpoint
generation, measurability matrix computation, followed by
solution of the set covering problem (SCP).

Industrial imaging environments often face an additional
challenge with a positioning system whose accuracy falls
below that of the sensor and the desired model precision.
Such cases necessitate image-based registration (such as
the standard Iterative Closest Point (ICP) algorithm [3])
to bring images into a common reference frame with a pre-
cision comparable to surface measurements. In the current
work, we add an image-based registration constraint to the
view planning problem (VPP) and present experimental
view planning results using a modi�ed greedy search (GS)
algorithm with a registration constraint.



2 Image-Based Registration

Constraint

Image-based registration requires su�cient overlap be-
tween images1. A degree of image overlap is also necessary
for image integration. As a �rst approximation, this ini-
tial algorithm speci�es a point overlap constraint which is
necessary but not su�cient for image-based registration.
In general, we need to add a geometric complexity require-
ment to the overlap region to fully constrain registration
in all directions and rotations. It will be apparent from
the simpler point overlap constraint how, in principal, we
can formulate a more stringent constraint for overlap with
geometric complexity. Development of a geometric com-
plexity constraint is being pursued.

Image overlap can be determined from the degree of
viewpoint correlation. For view planning purposes, we de-
�ne the cross-correlation �kj of two viewpoints vk and vj
as the dot product of the respective column vectors MS;k

andMS;j of the measurability matrix, normalized2 by the
maximum surface coverage of any viewpoint in the candi-
date viewpoint set, i.e. mS = maxjMS;kj 8k 2 V .

�kj =
MS;k �MS;j

mS

(1)

To register image (viewpoint) vk with image (view-
point) vj with su�cient overlap, we require that their
cross-correlation exceed a registration threshold, typically
around 20%.

�kj � tr (2)

Let the binary variable Xkj = 1 if �kj � tr and Xkj = 0
otherwise. We can then compute the symmetric v-by-v
cross-correlation matrix � = [Xkj ]. Normally, Xkk = 1.
In the rare case where Xkk = 0, meaning the image is so
sparse it could not even register with itself, we drop the
associated viewpoint from the candidate viewpoint list and
reformulate the set covering problem accordingly.

We can now observe that � speci�es viewpoint adja-
cency in registration terms. We therefore de�ne a view-
point registration-adjacency matrix A = [akj ] such that
akj = Xkj , k 6= j, and akk = 0. The registration-
adjacency matrix A has an associated viewpoint registra-
tion graph Gr encoding viewpoint connectivity in terms
of inter-image registration potential. Consequently, we
can express the view planning image-based registration re-
quirement by stating that

1Few view planning techniques in the literature incorporate
a registration constraint. Pito [8] includes an explicit overlap
requirement and mentions the need for shape complexity in the
overlap area but does not implement it. Whaite and Ferrie [17]
achieve image overlap by a conservative search strategy.

2There are several potential choices for a normalizing value.
mS has the advantage of guaranteeing �kj values in the range
[0,1], is reciprocal and is independent of segmentation patch
size, object size, rough model sampling density and sensor
characteristics.

The viewpoint registration graph must be at least simply
connected.

Note that the viewpoint registration graph for each
patch is a sub-graph of the global registration graph for
the entire object. We can ensure global connectivity at
the object level by an initial segmentation with suitable
overlap across segmentation boundaries.

3 Set Covering Problem

3.1 View Planning as an Integer Pro-

gramming Problem

We have previously developed [10] a set theory based for-
mulation of the view planning problem in terms of a mea-

surability mapping vj
M
�! Sj between viewpoint space V

and object surface space S. The set Sj of surface elements
measurable by a single viewpoint vj is de�ned by the corre-
sponding column vectorMS;j of the measurability matrix.
Similarly, the region Vi of viewpoint space from which a
given surface element si is measurable is de�ned by the
corresponding row vector Mi;V of the measurability ma-
trix. Subsequently, the VPP was shown to be isomorphic
to the SCP which is known to be NP-complete [5].

Recognizing the view planning problem as an instance
of the set covering problem admits its expression as a clas-
sical 1/0 integer programming problem (IP), a sub-class
of linear programming problems (LP). The VPP can be
expressed as the problem of covering the rows of a binary
s-by-v measurability matrixM = [mij ] by a minimal sub-
set of the columns.

We de�ne the following variables: a vector X of bi-
nary viewpoint variables xj , where xj = 1 if measurabil-
ity matrix column j is in the solution and xj = 0 if not;
a viewpoint cost cj( non-uniform for signi�cant position-
ing system movement cost, otherwise 1); and a cumulative
registration-adjacency matrix C = [ckj ] de�ning the num-
ber of paths in the registration graph of all lengths from
minimum to maximum connectivity between viewpoints.
In principal, C can be computed directly from � as a pre-
processing step prior to tackling the IP problem [11].

Then, the view planning problem can be expressed as
the following integer programming problem [11].

Minimize Z =

vX
j=1

cjxj (3)

subject to

vX
j=1

mijxj � 1 ; i = 1; : : : ; s ; i 2 S (4)

ckj � xkxj ; k = 1; � � � ; (v � 1) ; j = k + 1; � � � ; v ; k; j 2 V
(5)

xj 2 f0; 1g ; j = 1; : : : ; v ; j 2 V (6)



Equation 3 states the minimization objective function
and provides the option of assigning non-uniform costs to
sensor movement; equation 4 expresses the set-covering re-
quirement that each surface point be measured by at least
one viewpoint; equation 5 imposes an image-based regis-
tration requirement that the registration graph for the seg-
ment be connected; and �nally, equation 6 applies a binary
constraint on viewpoint selection. The range of indices in
equation 5 indicates we are interested only in the upper
right triangle of the cumulative adjacency matrix.

3.2 Set Covering Algorithms

Expressing the view planning task as an IP provides a com-
pact mathematical formulation of the problem, opening
the application to the rich research base in discrete com-
binatorial optimization. Unfortunately, in general an in-
teger programming problem is considerably more di�cult
to solve than the equivalent LP problem. IP solution time
can be highly unpredictable, depending on problem for-
mulation, data characteristics and problem size (number
of variables and number of constraints). Optimal solu-
tion methods such as branch-and-bound and cutting-plane
techniques typically use an intelligent tree search of fea-
sible solutions and are found in a variety of commercial
LP/IP solvers. While guaranteeing optimal results, such
exact methods can be computationally prohibitive even for
modestly sized IPs. For most medium-to-large IPs, this
leaves a choice of approximate and heuristic algorithms
[9], including greedy search (GS) [4], simulated annealing
(SN) [13], genetic algorithm (GA) [2], Lagrangian relax-
ation [1] and neural network [6] methods. Most published
performance results [6], [1] deal with random, low density
data sets. The VPP falls into the category of a medium-
to-large IP with non-random data and moderate density.
A representative size for a measurability matrix generated
by our algorithm will be approximately 400 variables by
an equal number of constraints, or about 2x105 elements.

3.3 Footprint Ratio

The problem of covering a surface patch can be charac-
terized by its shape or size relative to sensor coverage.
Convenient shape measures include depth-to-width ratio
D=W for convex and concave patches. Relative size can
be characterized by the following measures: the patch foot-
print Fp equal to the patch area and the sensor footprint
Fs equal to the frustum cross-sectional area at the sen-
sor's optimal scanning range Ro. A surface patch's foot-
print ratio rf = Fp=Fs provides a rough indication of the
match between patch size, sensor capability and number
of views required. However, recall that measurability im-
ages vary in size and shape and almost always cover less
than 100 percent of the surface falling within the sensor
frustum. Consequently, set covering operations involve set
templates of variable size and shape. The absolute lower
bound on the number of views required to cover a patch is
drfe - attainable only under the most optimistic scenario
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Figure 2: Viewpoint Correlation - Cavity

of a bene�cial match between the shape of the patch and
measurability images.

3.4 The VPP Solution Landscape

To test our algorithm, we generated two synthetic sur-
face patches, the �rst larger than the sensor footprint and
nearly planar, and the second smaller than the sensor foot-
print with a cavity shape. Figures 1 and 2 show view-
point correlation relative to the mesh's center vertex as
a function of translation in viewpoint space for the test
patches. The axis of symmetry corresponds to the sen-
sor optical baseline. The data indicates that neighbouring
viewpoints are highly correlated, as expected, and that cor-
relation falls o� with displacement and is modi�ed by sur-
face shape. The footprint ratios are 2.55 and 0.55 respec-
tively, while the measurability matrix densities are 0.238
and 0.637.

Thus, in contrast to many SCP applications reported in



the literature [6], variables in the VPP SCP application ex-
hibit a high degree of correlation within neighbourhoods.
Additionally, we note that constraint matrix densities are
medium to high relative to other SCP applications. Fi-
nally, as in standard SCP applications, VPP solutions are
generally not unique.

A VPP set covering algorithm must contend with com-
peting forces acting on viewpoints in a candidate NBV set
- a repelling force minimizing viewpoint correlation to gain
coverage and an attracting force to achieve a minimum cor-
relation level to maintain compliance with the registration
constraint. A physics-based VPP set covering algorithm
may be possible based on this paradigm.

4 Greedy Search Set Covering

4.1 Experimental Process

The experimental process followed in this work is shown
in Figure 3. A high density mesh such as the example at
Figure 4 serves as a surrogate �ne model. The �ne model
is decimated to create a rough model at a desired lower
sampling density, after which surface noise may be added.
An example coarsely-sampled, noisy rough model is shown
at Figure 5. The rough model drives the view planning
process, including viewpoint generation, measurability es-
timation and NBV set determination. Other inputs in-
clude imaging environment and model speci�cations. The
former de�nes performance models for the sensor and po-
sitioning system. The latter speci�es model quality ob-
jectives - presently in the form of the tuple (measurement
precision, sampling density). The resulting view plans are
executed against the parent �ne model, closing the loop to
provide veri�ed measurability.

4.2 Greedy Search

In this section we show experimental results using the
greedy search (GS) set covering algorithm. The stan-
dard GS algorithm begins by computing a �gure of merit
(FOM) for each non-selected viewpoint - that is, the ratio
of currently uncovered surface points covered by a can-
didate viewpoint to the total currently uncovered. Then,
greedy search simply selects the viewpoint with the highest
FOM. The �rst experiment was conducted with a nearly
planar patch (D=W = 0:04) whose area was moderately
greater than the sensor footprint (rf = 2:55). The abso-
lute lower bound on the number of views required to cover
this patch is drfe = 3. Visual inspection shows the real
lower bound to be 4, given the actual shape of the patch
and sensor footprint. The experiment was conducted at
a low rough model relative sampling density �rel = �6:0,
a model speci�cation of (50 �m, 2 s=mm2) for a range
camera whose best-case performance was approximately
(10 �m, 10 s=mm2). Relative sampling density is de�ned
as log

2
of the ratio between the sampling density of the

rough and �ne models. This case illustrates a set covering
problem driven more by relative size than shape.

Fine Model
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* Add Noise

Rough Model

Recon Task

* Generate VPs
* Compute MM
* Find NBVs

Model Spec

Env Spec

NBV List

Estimated
Composite

Measurability

View Plan
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View Plan
Verification
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* Compute
   Measurability

Verified
Composite

Measurability

Figure 3: Experimental Process - Measurability Veri-
�cation

Figure 4: Cavity Fine Model

Figure 5: Noisy Cavity Rough Model
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Figure 6 compares the progression of estimated measur-
ability by the GS algorithm with the optimal solution ob-
tained by exhaustive search (ES). The optimal curve rep-
resents the best achievable for any given size i of next-best-
view set N i. We note that greedy search results are com-
pare favourably to the optimal ( seven views required ver-
sus six), while the computational complexities are O(v2)
and exponential, respectively.

Figure 7 presents closed loop experimental results by
verifying the computed NBV set against the �ne model.
Estimated measurability is very close to the veri�ed per-
formance, despite the low relative sampling density.

The NBV sequence generated by the GS algorithm is
shown in Figure 8 on a u-v plot of the optimal scanning
surface in viewpoint space. The u-v plot shows the relative
position component of views. The surface patch maps to
the range 0-120 over u and v. The GS set covering can be
compared to the optimal set covering shown at Figure 9.

The matrix of raw cross-correlation valves for the GS
next-best-view set at Figures 6, 7 and 8 is as follows.
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� 0:326 0:097 0:097 0:326 0:226 0:387
0:326 � 0 0 0 0:194 0:355
0:097 0 � 0 0 0:452 0
0:097 0 0 � 0 0 0:326
0:326 0 0 0 � 0 0
0:226 0:194 0:452 0 0 � 0:065
0:387 0:355 0 0:326 0 0:065 �

3
7777775

From it we can deduce the connectivity of the registra-
tion graph Gr if various levels of tr were applied post-facto.
For example, for tr = 0:2, the cross correlation matrix �
is as follows. The graph is connected - in this case by
statistical accident rather than by design.

2
6666664

� 1 0 0 1 1 1
1 � 0 0 0 0 1
0 0 � 0 0 1 0
0 0 0 � 0 0 1
1 0 0 0 � 0 0
1 0 1 0 0 � 0
1 1 0 1 0 0 �

3
7777775

4.3 Constrained Greedy Search

We next add an image-based registration constraint to the
standard GS algorithm. The NBV is now de�ned as the
view with the maximum FOM that also maintains connec-
tivity of the registration graph. This is achieved by requir-
ing the NBV to meet the correlation threshold (register)
with at least one member of the current NBV set.
Figure 10 shows NBV list size variation with the regis-

tration constraint. The data con�rms that the number
of views necessary to cover the surface patch increases
with constraint severity. While list size plateaus over some
ranges of the constraint, the composition of the NBV set
and the structure of the registration graph are evolving
with the changing overlap requirement. The algorithm be-
gins to fail beyond a certain point as the problem becomes
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over-constrained for the level of viewpoint space discretiza-
tion. While this example of a moderately large and nearly
planar patch illustrates the overlap-based approximation
to the registration constraint, it is recognized that the
viewpoint (image) sequence is not fully constrained for reg-
istration purposes in the absence of greater object shape
complexity.

Figure 12 presents NBV positions in viewpoint space
and their sequence, overlaid with the associated registra-
tion graph for values of tr in the range [0.1, 0.6]. As the
registration constraint is slowly tightened, we can observe
subtle shifts in set covering and registration linkages. As
speci�ed, Gr maintains at least simple connectivity.

The matrix of raw cross-correlation values and corre-
sponding cross-correlation matrix � for the constrained
set covering problem at Figure 12(b) for tr = 0:2 are as
follows, which can be compared to that obtained in the
unconstrained case.
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To illustrate a set covering problem driven more by
shape than relative size, Figure 11 presents the view plan
generated for a deep cavity surface patch with D=W = 0:5,
rf = 0:55 and measurability matrix density = 0.637. The
data is presented in extended Gaussian image (EGI) for-
mat to highlight the orientation complexity of the patch.
Two items are shown: the cavity mesh as represented by
the angular distribution of surface normals and the axis
component of each viewpoint in the NBV set overlaid with
the registration graph. As expected, viewpoints are lo-
cated on the opposite side of the Gaussian sphere from the
mesh. To relate viewpoints to mesh orientations, their axis
vector must be negated. Thus, viewpoints 2 and 3 (with
the same axis but di�erent rotation about that axis) are
aligned with the cavity axis of symmetry while viewpoint
1 peers over the rim of the cavity into its depths. The
registration graph is fully connected for tr = 0:2 and the
GS set covering is optimal.
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5 Summary and Conclusions

Experiments reported here have revealed both strengths
and weaknesses of set covering by greedy search. Two
problems in particular are noticeable. Firstly, close ex-
amination of Figure 7 reveals a small residual unmeasured
region upon executing the complete NBV list. This arti-
fact results from minor errors in surface normal estimation
which translate into errors in viewpoint orientation and
hence sensor footprint coverage. The problem manifests
itself in small uncovered �lets between veri�ed measura-
bility images. This can be corrected by slightly down-
sizing the sensor frustum volume used for measurability
analysis. Secondly, in the nearly planar patch example,
we note a discrepancy between the minimum number of
views determined by visual inspection (4) and the opti-
mal result (6) achieved by exhaustive search of candidate
viewpoints. This is because the candidate viewpoint set
does not optimally span viewpoint space. While these re-
sults are still quite good for the current very low level of
viewpoint space sampling (one viewpoint per rough model
vertex), there is room for further optimization. In partic-
ular, useful trade-o�s can be made between discretization
levels in orientation and position components of viewpoint
space. These observations again illustrate that generation
of a small set of high quality candidate viewpoints is the
crux to e�ciently solving the VPP. Viewpoint generation
will be addressed in a separate paper.

The classic weakness of the greedy search algorithm, its
irrevocable selection strategy [16], has minimal impact on
most industrial and cultural object reconstruction applica-
tions. Typically, the object size is comparable to or smaller
than the sensor frustum (rf < 1) and shape presents the
dominant view planning challenge. Cases of large rf are
the exception rather than the rule. Consequently, mea-
surability matrix density is typically medium-to-high and
solution set size is low relative to most set covering ap-
plications. In reconstruction, minor ine�ciency resulting
from a marginally longer NBV list is o�set by fast and
robust GS set covering computation plus added coverage
insurance from redundancy. In contrast, inspection appli-
cations are generally prepared to trade longer o�-line view
plan computation for improved on-line view plan e�ciency.
In either case, we have presented a theoretical basis for
computing optimal view plans by means of slightly more
dense sampling of viewpoint space and more computation-
ally intensive exact or heuristic set covering algorithms.

For object reconstruction, we �nd that greedy search
gives good set covering results and believe that compu-
tational resources are best allocated to quality viewpoint
generation. Phrased di�erently, we believe the most dif-
�cult challenge of the VPP is framing the problem, not
solving it - that is, determining an appropriate set of view-
point variables and surface constraints and computing the
associated measurability matrices.

In conclusion, we have expressed a theoretical frame-
work for the view planning problem as an integer program-
ming problem including a registration constraint. The for-

mulation is amenable to a variety of exact or approximate
solution methods, depending on application requirements.
We have also shown that good view planning results can
be achieved by means of a simple and robust greedy search
set covering algorithm modi�ed to include a registration
constraint. The constraint is being modi�ed to include a
geometric complexity requirement in the overlap region.
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