
READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez

pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the

first page of the publication for their contact information.

NRC Publications Archive

Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. /

La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version

acceptée du manuscrit ou la version de l’éditeur.

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

A Framework to Support Structural Reuse in Simulation Environments.
Tanir, O.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

NRC Publications Record / Notice d'Archives des publications de CNRC:
https://nrc-publications.canada.ca/eng/view/object/?id=838eeab0-4285-4286-83c4-7b9cf0f9089f

https://publications-cnrc.canada.ca/fra/voir/objet/?id=838eeab0-4285-4286-83c4-7b9cf0f9089f

National Research
Council Canada

Institute for
Information Technology

Conseil national
de recherches Canada

Institut de technologie
de l’information

A framework to support structural reuse
in simulation environments.*

Tanir, O., Erdogmus, H.

June 1997

* published in: Proceedings of the 1997 European Simulation Multiconference
(ESM'97), Istanbul, Turkey. June 1-4, 1997. pp. 25-33. NRC 41545.

Copyright 1997 by

National Research Council of Canada

Permission is granted to quote short excerpts and to reproduce figures and tables from this report,

provided that the source of such material is fully acknowledged.

A FRAMEWORK TO SUPPORT STRUCTURAL REUSE IN SIMULATION

ENVIRONMENTS

Oryal Tanir

Bell Canada, Quality Engineering & Research

265 Roland Therrien Blvd., Longueuil, Québec, J4N 1C5, Canada
otanir@qc.bell.ca

Hakan Erdogmus

National Research Council of Canada, Institute for Information Technology - Software Engineering

Montreal Road, Bldg. M-50, Ottawa, Ontario, K1A OR6, Canada

erdogmus@iit.nrc.ca

KEYWORDS

Structure, reuse, model, environment, design.

ABSTRACT

In the design of computer-based systems, simulation

tools employed during various stages of the design

cycle can provide significant insight into the

behavior of the proposed design. Unfortunately the

knowledge gained through the course of a simulation

exercise is typically lost and inaccessible to other

designs. One promising solution to this is the

utilization of development environments that can

support libraries of models at high levels of

abstraction — more suitable for reuse. One such

environment is the Design Analysis and Synthesis

Environment (DASE) based on the Design

Specification Language, or DSL. DASE allows

designers to model, experiment with, and reuse

model components in other designs. Whereas

component reuse has been studied extensively and

widely supported in environments such as DASE,

reuse of a different form — structural reuse — is

still relatively poorly understood. The Extended

Style Notation (ESN) establishes a basis for

describing the abstract structure of systems at a high

level — thus facilitating structural reuse. This paper

presents a framework — a marriage of ESN and DSL

— to create a rapid prototyping and simulation

environment supporting both structural and

component reuse.

INTRODUCTION

Component reuse is possible when an artifact

recurring in system descriptions can be isolated and

encapsulated as a unit of abstraction. Then the

artifact is conveniently incarnated on demand by a

simple reference to the corresponding unit of

abstraction. With structural reuse, the objects of

reuse are not the individual artifacts that make up a

system description, but rather the “contexts” in

which these artifacts are embedded. Thus structural

reuse is based on the identification and isolation of

organizational patterns recurring across system

descriptions, thereby allowing these patterns to be

taken advantage of over and over again. In this

context, an organizational pattern is expressed in

terms of configurations of abstract components

which serve as place holders for real, or concrete,

components. Such patterns are often parameterized,

making them generic — and hence more amenable to

reuse.

Reusable artifacts are often grouped into libraries.

When a component is reused, it is instantiated once

and this instance is final. One can also envision

reusable libraries of organizational patterns. When a

pattern is reused from such a library, first it must be

retrieved and instantiated in the same way a

component is retrieved and instantiated. The result is

a fixed pattern, but this does not constitute the

required final artifact since it still is expressed in

terms of abstract components for which concrete

counterparts must be substituted. Therefore, a second

level of instantiation is necessary. In the software

architecture literature, an organizational pattern is

often referred to as a style and the kind of reuse

described above is referred to as style-based reuse

(Shaw and Garlan 1992, Monroe and Garlan 1996).

This is illustrated in Fig. 1.

To identify and formally specify an organizational

pattern may be a substantial undertaking, in which

case the process would be worth the effort if either

2

the underlying complexity is nontrivial, or there is a

high degree of internal replication (many identical

components), or the pattern can be reused

sufficiently many times. Today, a large number of

concurrent and distributed systems possess a degree

of organizational complexity which makes structural

reuse increasingly important.

The Concept of Architecture

The term architecture is overused. Since its

definition is specific and the notion is central to the

paper, it is worthwhile to review the usage of the

term in the relevant literature.

Although there is no widely accepted definition of an

architecture and opinions are abound as to what kind

of information an architectural specification is

supposed to convey, it is generally agreed that at the

architectural level of abstraction, the key issue is the

gross decomposition of a system into components

and relationships among those components (Garlan

and Shaw 1993, GARLAN ET AL. 1994, Shaw et

al. 1995). Different definitions arise from placing the

focus on different aspects of system design at the

architectural level. In (Tanir 1997), this level falls

somewhere between the conceptual and algorithmic

levels of design, where a system is described as a

network of communicating components.

In the software engineering literature, several

different definitions can be found. In this framework,

the vocabulary invariably refers to the notions of

component, connection, and configuration, where

components represent computational entities,

connections represent relationships or interactions

between these entities, and configurations represent

the overall organization of a system in terms of the

constituent components and connections. According

to (SCHWANKE ET AL. 1989), architecture

specifies structure alone as the permitted set of

connections among components. This purely

structure-oriented view is also adopted in (Dean and

Cordy 1995). In VHDL (Lipsett et al. 1990),

architecture (and the corresponding language

construct) also refers exclusively to structure.

In the architecture description language RAPIDE

(Luckham and Vera 1995), architecture is defined as a

“plan of a distributed object system showing what

types of modules are components of the system,

how many components of each type are there, and

how its components interact.” Here an architectural

plan, besides serving as a template for guiding the

construction of a system, is also used to “prototype

its behavior before effort is put into building the

components,” and this implies some degree of

behavioral modeling at the architectural level

(Luckman et al. 1995, Luckham and Vera 1995).

Perry and Wolf’s definition (Perry and Wolf 1992)

goes further. They consider architecture as composed

of — in addition to components and connections —

constraints and a rationale which together may

address not only topological and functional

(behavioral) properties (such as data and control

flows, communication protocols, and

synchronization), but also extra-functional aspects

(such as performance, reliability, security, and

modifiability). Garlan and Shaw (Shaw and Garlan

1995) also adopt a similar extended definition. In

this view, Shaw et al. state in (Shaw et al. 1995)

that “in addition to specifying the structure and

topology of the system, the architecture shows the

intended correspondence between the system

requirements and elements of the constructed system.

It can additionally address system-level properties

such as capacity, throughput, consistency, and

component compatibility.” Finally, according to

Perry and Wolf (Perry and Wolf 1992) and also

Clements (Clements 1994), architecture is not

merely a one-dimensional view of the gross

organization of a system, but is a collection of one

or more useful complementary views that are

consistent with each other.

STRUCTURAL REUSE
FRAMEWORK

A compelling motive for structural reuse is that at

some high level of abstraction, it is desirable to

concentrate on the gross structure of a system. At

this level, component functionality is secondary,

with primary emphasis on the organization of

components with respect to each other. In this

Style Library Component Library

Style Component

Fig. 1 Style-based reuse.

3

respect, one is interested only in whether or not a

connectivity relation exists between any given two

components. This very high-level of abstraction will

be referred to as the topological level.

The next level is the so-called architectural level,

where although more detail can be added,

components are still not assigned particular

functionalities. The line between topological and

architectural levels is ordinarily blurry. However,

distinguishing between the two can be beneficial

since complexity can be reduced with the subdivision

of the structure into two levels, and reuse facilitated

with the higher level of abstraction. Essentially, the

more general a structural specification is, the more

reusable it becomes.

In going from a topological to an architectural

specification, component interfaces and connectivity

relations may be refined. Such refinement basically

involves mapping abstract components to concrete

components with multi-port interfaces, and also

mapping connectivity relations between abstract

components to bindings between the interface ports

of the participating concrete components.

The system level is where each concrete component

is assigned a functionality in terms of a behavioral

description. This involves mapping the architectural

specification to an executable model where bindings

may be implemented by standard communication

protocols or by the underlying communication

regime of the executable model. Note that the

system level encompasses the architectural level in

the same manner the architectural level encompasses

the topological level.

We propose a framework for style-based structural

reuse which supports the three levels of abstraction

described above. Activities at the topological and

architectural levels are supported by ESN. System

level support is realized by DSL. The proposed

framework and the related methodology are

summarized in Fig. 2.

ESN Basics

ESN is a strongly typed, interpreted functional

language based on the Style Calculus (Erdogmus

1996), a graph algebra with both an axiomatic and a

denotational theory, and the architectural model of

(Erdogmus 1995). It has special constructs for

expressing topologies and classes of topologies (the

style sublanguage), refinement rules (the map

sublanguage), and architectures (the template

sublanguage). In ESN, the unit of abstraction is the

definition. Functions of integers (int), booleans

(cond), names (name), styles (style), templates

(temp), and maps (map) can be defined, as well as

sets and vectors of integers and names. ESN also has

a package facility for library support which is not

discussed here.

Expressions of type style in ESN specify

topologies. Formally, a topology is a finite graph

consisting of typed (and named) nodes and named

binary edges. A parameterized style definition (a

generic style) is often thought of as specifying a

topological class, which when invoked with actual

parameters, is evaluated into an instance, yielding a

particular topology. Expressions of type template

specify architectures, and those of type map specify

refinement rules. Constants of type name (which

always begin by a backslash) stand for themselves,

and can be indexed by an integer vector; e.g., \a,

\a<1, 2>. A definition invocation must be prefixed

with the type of the value returned, e.g., name a, int

b[k], style S[~a, 1]. The default type is int (which is

ordinarily omitted) and the symbol ~ is often used as

a shorthand for the type keyword name. Strong

typing allows the inference of the type of any ESN

expression independent of the context.

An ESN definition is uniquely identified by its

signature which is made up of the type of the return

value, a definition identifier, and the types of the

formal parameters (if any). A definition returns its

signature (an object of type sig) when evaluated. We

Topological

Architectural

System

ESN

ESN

DSL

Abstraction
Level

Modeling
Language

VHDL

Concept
Language
ConstructActivity

Simulate &
synthesize

Topology

Refine

Instantiate

Translate &
define behavior

Process
or Entity

Topological
Class

Style

Map

Style

Architecture Template

System Module

Refinement
Rules

System

Fig. 2 A methodology for structural reuse.

4

do not discuss signatures further here. It is possible

to specify pre- and post-conditions for a definition.

These indicate the constraints that must be satisfied,

respectively, before and after the body of the

definition is evaluated.

DSL Overview

DSL is a specification language which provides the

necessary representation mechanisms at the system

level of design. It is employed within DASE (Tanir

1994, Tanir 1997), a rapid prototyping and synthesis

tool that was developed at McGill University and

Bell Canada. DSL is based on Prolog in which

DASE is implemented. This section will summarize

some of the basic concepts of the language.

The basic construct in DSL is the module. Modules

are the primitive building blocks of a system. A

module has a name, a set of possible behaviors, and

a set of resources. A module is defined as follows:

module(module_name, [

behavior1,

...

behaviorN]).

Each behavior is consists of a guard and a sequence

of actions. If the guard is satisfied, the associated

actions are executed in the given order. The guard is

usually a predicate which holds true upon the

reception of a communication message from another

module. An action can initiate communication with

other modules, modify or query the local resources of

the module, or suspend the execution of the module

for a specified time period.

Modules can possess their own unique behavior or

can inherit the behavior of other modules. Resources

store local data associated with a module. Note that

resources are not employed in the simple example

provided below.

Inter-module communication is realized using the

send construct (action) whose general form is:

send(destination, port, message)

where message is the message to be sent; port

specifies an output port; and destination specifies

the destination module. When the destination field is

blank (“_”), the message is sent to the first module

connected to port capable of interpreting the

message. If a port is not specified, one will be

synthesized during simulation.

Within DASE, the DSL simulator creates the data

structures necessary for communication, and takes

care of internal queuing of incoming and the

scheduling of outgoing messages.

DSL permits hierarchical specifications through the

composition of modules into higher order (ho-)

modules. Connections between modules within a ho-

module are specified using path statements. A path

statement binds a port of one module to a port of

another module. It serves as a virtual communication

channel. For example,

path(modX, modY, [portX, portY])

binds portX of modX to portY of module modY.

Note that since ports are not typed, any message can

be sent from or received at any port. A (primitive)

module’s behavior only refers to output ports, not

input ports. Thus, inside a (primitive) module, it is

not known at which port a particular incoming

message is going to be received. This is determined

at execution time by the simulator using the path

statements associated with ho-modules. Path

statements are not mandatory; the DSL simulator is

able to synthesize such bindings between ports at

execution time.

DSL also has a special library mechanism to support

component reuse and design space exploration. But

the discussion of this topic is beyond the scope of

this paper.

Translation from ESN to DSL

An ESN template specifies the architecture of a

distributed system in terms of an interface (a

collection of ports), a set of components (expressed

as instances of other templates), and a set of

bindings between the interface ports of its

components. A primitive template does not possess

an internal structure, and thus simply consists of an

interface. At the system level, each ESN primitive

template is implemented by a corresponding DSL

module. Which DSL module to use and how to

instantiate it is specified by a with clause in the

translations part of a template. The translations part

is evaluated by a language-specific translator when

an instance of the template is exported to a system-

level language. As an example, consider the

following primitive template:

def temp tempX[N] is

5

...

translations

with DSL use "modX(1, %(N))" where

\p is "dsl_port_p",

rep k from 0 .. N-1 in

\q<k> is "dsl_port_q(%(k))",

end rep

end with

end def;

Here, the ESN-to-DSL translator is instructed to use

a module named modX for every instance of the

above template. The module must have two

parameters, and each time the template is instantiated

with parameter N, modX is instantiated with

parameters 1 and N. Thus the value of the second

parameter of modX is bound to the value of the

template's parameter N. In the where clause, the port

correspondences are defined. In the above example,

the port named \p of the template is mapped to the

port dsl_port_p of the module modX. Similarly, for

k from 0 to N-1, the template's \q<k> port is

mapped to the module's port dsl_port_q(k) (a

parameterized port).

EXAMPLE: AN ATM SWITCH
FABRIC

Let us illustrate the methodology through a small

example. Here we specify the fabric of an

Asynchronous Transfer Mode (ATM) switch (Awdeh

and Mohftah 1995). The architectural model given

here is that of the fabric component of a Banyan

switch.

First, the topology of a Banyan network is specified.

An N x N Banyan network, where N is a positive

power of 2, consists of N*N switch elements,

represented by nodes of type \E. 2*N of these nodes

are external (visible) nodes. There are two kinds of

external nodes, the first N of which are named \a<0>

to \a<N-1> and designated as entry nodes, and the

remaining N of which are named \b<0> to \b<N-1>

and designated as exit nodes. Such a network can be

constructed recursively using two N/2 x N/2 Banyan

networks (see Fig. 3) organized in parallel and an

additional entry stage of N parallel elements (see

Fig. 4. For the resulting topology.)

Following this recursive construction, the topology

of a Banyan network for an arbitrary N can be

specified by the following generic style:

1 def style Banyan[N] is

2 let

3 M be N div 2,

4 style E be \a<0>\b<0> node \E,

5 style Stage[L, ~a, ~b] be

6 style Parallel[L, style E, <~a, ~b>, <1, 1>],

7 style B[M] be

8 style Banyan[M]

9 rep k from 0 .. N-1 in

10 ren \a<k> as \xa<k>

11 end rep

12 in

13 branch

14 case if N = 1 then

15 style Stage[1, \a, \b]

16 otherwise

17 style Stage[N, \a, \xb]

18 style Parallel[2, style B[M],

19 <\xa, \b>, <N, N>]

20 rep k from 0 .. N-1 in

21 edge \U<k><\xb<k>, \xa<k>>

22 edge \D<k><\xb<k>, \xa<k div 2 + M>>

23 end rep

24 rep k from 0 .. N-1 in

25 hide \xa<k> hide \xb<k>

26 end rep

27 end branch

28 end let

29 pre cond PowerOf2[N]

31 post ...

32 end def;

\a<1>

\a<0>

\a<2>

\a<3>

\a<4>

\a<5>

\a<6>

\a<7>

\b<1>

\b<0>

\b<2>

\b<3>

\b<4>

\b<5>

\b<6>

\b<7>

\E

Fig. 4 Topology of a 8x8 Banyan netw

6

We do not discuss the individual style constructs in

detail here. The construct node applied to a name

expression creates a single node of the type specified

by the name expression (line 4). The nodes of a style

can be named through prefixing a style expression

by a name expression (line 4). The named nodes

become external and can subsequently be used in an

edge. By concatenating two style expressions, larger

styles are obtained (lines 17–19). The postfix

semantic renaming construct ren is used to rename

the nodes of a given style expression (line 10). The

postfix construct edge introduces named edges

between nodes; the nodes are identified by a name

pair (lines 21–22). The postfix construct hide is used

to hide a specified external (node) name of a style

(line 25). Note that, in addition to these constructs,

the above definition takes advantage of a generic

Parallel style whose definition is omitted here.

The next step involves the mapping of the topology

defined by the style Banyan to a concrete

architecture. To do this, we need a primitive

template to represent the switch element component

of a Banyan switch:

def temp BE is
spec temp

interface \x<0>, \x<1>, \y<0>, \y<1>
end spec
translations

with DSL use "binary_switch_elmt" where
\x<0> is "x(0)", \x<1> is "x(1)",
\y<0> is "y(0)", \y<1> is "y(1)"

end with
end def;

Thus the switch element component has four

interface ports, namely \x<0>, \x<1>, \y<0>, and

\y<1>. Now we can define a map which specifies

the refinement rules for the Banyan style so that a

composite template can be synthesized from it. The

respective map can be expressed as:

1 def map Banyan_to_BANYAN[M] is

2 let

3 ~x[k] be if cond Even[k] then \x<0>

4 else \x<1> end if

5 in

6 spec map

7 interface

8 rep k from 0 .. M-1 in

9 \a<k> to \x<0> as \i<2*k>,

10 \a<k> to \x<1> as \i<2*k+1>,

11 \b<k> to \y<0> as \o<2*k>,

12 \b<k> to \y<1> as \o<2*k+1>

13 end rep

14 components

15 \E to `temp BE’

16 bindings

17 rep k from 0 .. M-1 in

18 \U<k> to <\y<0>, ~x[k]>,

19 \D<k> to <\y<1>, ~x[k]>

20 end rep

21 end map

22 end let

23 pre cond Powerof2[M]

24 end def;

Line 15 states that each \E-node must be mapped

into an instance of the template BE. Refinement of

the edges (connections) are specified by the bindings

part (lines 16–20). The rules regarding the interface

ports of the synthesized template and the bindings

associated with these interface ports are specified in

the interface part (lines 7–13). For example, line 9

states that for each external (visible) node having

name \a<k>, there must be a corresponding

component with an interface port \x<0>, and that

this interface port is to be bound to the interface port

\i<2*k> of the synthesized template. Finally, the

switch fabric is defined as the synthesized template

SF by applying the above map to the Banyan style:

def temp SF[M] is

extend

let L be M div 2 in

apply map Banyan_to_BANYAN[L] to

style Banyan[L]

end let

with interface \r

end extend

1B

1B

1B

1B

1B

1B

1B

1B
2B

2B

2B

2B

4B

4B

8B

2P

2P

2P

2P

4P

4P

8P

Fig. 3 Recursive construction of a 8 x 8 Banyan

network, where nB represents an n x n Banyan

and nP represents an n x 1 stage of parallel

elements.

7

pre M > 0

post ...

translations

with DSL use "generic_fabric(%(M))" where

rep k from 0 .. M-1 in

\i<k> is "cell_in%(k))",

\o<k> is "cell_out%(k))"

end rep,

\r is "synch_in"

end with

end def;

Note that the architectural model of the switch fabric

is more detailed than its topological model because a

network element node of the Banyan switch is

refined into a (binary) switch element component

with four interface ports.

The interface port \r is added (by the extend

construct) in case the switching fabric must send a

synchronization message to an external component.

Whether this is necessary or not will be decided at

the system level. Therefore, in the architectural

specification, this port is not bound to any internal

port within the switch fabric. The necessary internal

bindings and the missing ports of the switch

components can be synthesized by DASE if the

corresponding behaviors of the switch components

require it. To generate the architecture of a 16 x 16

Banyan fabric with input ports \i<k>, output ports

\o<k>, and a synchronization port \r, we instantiate

the above template as follows:

temp SF[16];

When this expression is evaluated by the ESN

interpreter, the instance illustrated in Fig. 5 is

generated.

The translation rules of the primitive template BE

states that in a DSL model, this template will be

implemented by the DSL module

binary_switch_elmnt, which may be defined as

follows:

module(binary_switch_elmnt, [

(atm_cell(VPI, VCI, D, [Bit | Rest]) :-

delay(BE_delay),

send(_, y(Bit), atm_cell(VPI, VCI, D, Rest)))]).

The module binary_switch_elmnt accepts ATM cells

at an unspecified input port, stores them for a fixed

amount of time, and routes them to one of its two

output ports. A new cell is admitted by the atm_cell

message whose last parameter specifies the output

port address of the switch to which the cell is

destined. Upon receiving an atm_cell message, the

module removes the most significant bit of this

address, and uses this bit to route the cell either to

its y(0) or y(1) port.

The translation rules of the template SF instructs the

ESN-to-DSL translator to synthesize a ho-module

generic_fabric for each instance of this template. If

the definition of the module binary_switch_elmnt

is stored in a directory atmSwitch, then the ESN-to-

DSL translator can be invoked by an export

statement such as

export `temp SF[16]’ to results:DSL using

atmSwitch;

which generates automatically a DSL ho-module

description and the associated path statements for the

fabric component of a 16 x 16 Banyan switch, and

stores the resulting description in a file named

results. The generated ho-module generic_fabric is

composed of several instances of the module

binary_switch_elmnt.

CONCLUSIONS

This paper presented an integrated framework

supporting both structural and component-based

reuse for rapid prototyping and simulation of

distributed computer-based systems. The idea of

combining ESN and DSL to support style-based

reuse in a rapid prototyping and simulation tool is

novel. Work is underway to implement an ESN

interpreter and interface it with DASE using an

ESN-to-DSL translator.

\x<1>

\x<0>

\y<1>

\y<0>
BE

\o<1>

\o<0>

\o<2>

\o<3>

\o<4>

\o<5>

\o<6>

\o<7>

\o<8>

\o<9>

\o<10>

\o<12>

\o<11>

\o<14>

\o<13>

\o<15>

\i<1>

\i<0>

\i<2>
\i<3>

\i<4>

\i<5>

\i<6>
\i<7>

\i<8>
\i<9>

\i<10>

\i<11>

\i<14>
\i<15>

\r

Fig. 5 The template temp SF[16]

8

REFERENCES

R.Y. Awdeh and H.T. Mohftah. 1995. Survey of
ATM switch architectures. Computer Networks
and ISDN Systems, 27:1567–1613, 1995.

P.C. Clements. 1994. From domain models to
architectures. In Proc. Workshop on Architecture,
USC Center for Software Engineering, Los
Angeles, 1994.

T.R. Dean and J.R. Cordy. 1995. A syntactic theory
of software architecture. IEEE Transactions
Software Engineering, 21(4):303–313, April
1995.

H. Erdogmus. 1995A Formal Framework for
Software Architectures. Technical Report ERB-
1047, National Research Council of Canada,
Institute for Information Technology, Ottawa,
Canada. December 1995.

H. Erdogmus. 1996. From Configurations to Styles:
An Algebraic Theory. Technical Report ERB-
1049. National Research Council of Canada,
Institute for Information Technology, Ottawa,
Canada. June 1996.

D. Garlan, R. Allen, and J. Ockerbloom. 1994.
Exploiting style in architectural design
environments. In Proc. of SIGSOFT’94, Second
International ACM SIGSOFT Symposium on
Foundations of Software Engineering, December
1994.

D. Garlan and M. Shaw. 1993. An introduction to
software architecture. In Advances in Software
Engineering and Knowledge Engineering, vol. 1,
World Scientific Publishing, 1993.

R. Lipsett, C. Schaefer, and C. Ussery. 1990.
VHDL: Hardware Description and Design. Kluwer,
1990.

D.C. Luckham and J. Vera. 1995. An event-based
architecture definition language. IEEE
Transactions on Software Engineering, 21(9),
September 1995.

D.C. Luckham, J. Vera, and S. Meldal. 1995. Three
concepts of architecture. Technical Report, The
Program Analysis and Verification Group,
Computer Science Department, Stanford
University, July 1995.

R.T. Monroe and D. Garlan. 1996. Style-based reuse
for software architectures. In Proc. 1996
International Conf. on Software Reuse, 1996.

D.E. Perry and A.L. Wolf. 1992. Foundations for
the study of software architecture. Software
Engineering Notes, 17(4), October 1992.

R.W. Schwanke, R.Z. Altucher, and M.A. Platoff.
1989. Discovering, visualizing, and controlling
software structure. In ACM SIGSOFT Notes,
14(3):147-150, Proc. 5th International Workshop
on Software Specification and Design, May 1989.

M. Shaw and D. Garlan. 1992. Characteristics of
higher-level languages for software architecture.
Report CMU-CS-94-210, Carnegie Melon
University, School of Computer Science,
December 1992.

M. Shaw and D. Garlan. 1995.Formulations and
formalisms in software architecture. In Lecture
Notes in Computer Science, vol. 1000, Springer-
Verlag, 1995.

M. Shaw et al. 1995. Abstractions for software
architecture and tools to support them. IEEE
Transactions on Software Engineering, 21(6),
April 1995.

O. Tanir. 1997. Specification Driven Architectural
Modeling Environment for Telecommunications
Systems Synthesis. PhD Thesis. Department of
Electrical Engineering, McGill University,
Montreal, Canada. October 1994.

O. Tanir. 1997. Modeling Complex Computer and
Communication Systems: A Domain-Oriented
Design Framework. McGraw Hill. 1996.

