
READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez

pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the

first page of the publication for their contact information.

NRC Publications Archive

Archives des publications du CNRC

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Monte Carlo Algorithms for Expected Utility Estimation in Dynamic

Purchasing
Buffett, Scott

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

NRC Publications Record / Notice d'Archives des publications de CNRC:
https://nrc-publications.canada.ca/eng/view/object/?id=7c11798f-1714-4d30-90c0-ffcb55b95cbd

https://publications-cnrc.canada.ca/fra/voir/objet/?id=7c11798f-1714-4d30-90c0-ffcb55b95cbd

National Research

Council Canada

Institute for

Information Technology

Conseil national

de recherches Canada

Institut de technologie

de l'information

Monte Carlo Algorithms for Expected Utility

Estimation in Dynamic Purchasing *

Buffett, S.
March 2004

* published as PhD Thesis. Faculty of Computer Science, University of New Brunswick.

Fredericton, New Brunswick, Canada. March 2004. 191 Pages. NRC 46557.

Copyright 2004 by

National Research Council of Canada

Permission is granted to quote short excerpts and to reproduce figures and tables from this report,

provided that the source of such material is fully acknowledged.

Monte Carlo Algorithms for Expected Utility

Estimation in Dynamic Purchasing

by

Scott Buffett

BCS — University of New Brunswick 1996

MCS — University of New Brunswick 1998

A Thesis Submitted in Partial Fulfillment of

the Requirements for the Degree of

Doctor of Philosophy

in the

Graduate Academic Unit of Computer Science

Supervisors: Bruce Spencer, Ph.D., NRC and Faculty of Computer Science

J. D. Horton, Ph.D., Faculty of Computer Science

Examining Board: Ebrahim Roumi, Ph.D., Faculty of Business, UNBSJ (Chair)

George Stoica, Ph.D., Dept of Mathematical Sciences, UNBSJ

Huajie Zhang, Ph.D., Faculty of Computer Science

External Examiner: Prof. Dr. Michael M. Richter, Department of Computer

Science, University of Kaiserslautern

This thesis is accepted.

Dean of Graduate Studies

THE UNIVERSITY OF NEW BRUNSWICK

February, 2004

c© Scott Buffett, 2004

Dedication

To my grandparents, Harold and Julia Buffett, Lefty and Regina Wright.

ii

Abstract

This thesis describes a theory for decision-making in a dynamic purchasing environ-

ment where one of possibly many bundles of items must be purchased from possibly

many suppliers. The online combinatorial purchasing problem is defined as the prob-

lem with which a purchase agent in such an environment is faced when deciding

which combination of items, from whom and at what time to buy in order to max-

imize overall satisfaction. Expected utility maximization is used as the criterion on

which decision-making is based. To facilitate the exchange of probabilistic and tempo-

ral information between suppliers and purchasers, the PQR protocol is defined. The

theory considers two distinct purchasing models, one in which only complete bundle

purchases can be made at any time, and one in which partial bundle purchases are

allowed. In the first model, a decision procedure that exploits future time intervals

where several options will be available is developed that provably yields higher ex-

pected utility than simply pursuing the bundle with highest expected utility. For the

second model, the QR-tree is defined as a decision tree that can be exponentially

smaller than conventional decision trees when used to model the same system of deci-

sions. Efficient Monte Carlo methods are developed that solve the QR-tree in linear

time on the number of nodes in the tree. Results show that these methods estimate

expected utility as much as 25 times more accurately than a greedy method that

always pursues the bundle with the current highest expected utility.

iii

Acknowledgements

I would like to thank my supervisor, Dr. Bruce Spencer, for all of the help, support

and encouragement he offered during my research for this thesis. Through thick and

thin, his confidence in the progress and direction of my work was unwavering. Also

deserving of thanks is Dr. Jane Fritz, who offered financial support by employing

me in the Faculty of Computer Science, and contributed to my success in ways too

numerous to mention.

Many thanks also go to the National Research Council Canada for funding me as

a guest worker, Dr. Joe Horton for his help as co-supervisor, the NRC-UNB Business

Rules for Web Services Group, NRC’s Internet Logic Group and all of my colleagues

at NRC IIT - e-Business.

Last but not least, my most heartfelt gratitude goes to my parents Hal and Donna,

who gave me every chance in life, and my wife Kathy, whose patience and encourage-

ment I needed the most throughout the entire endeavour.

iv

Contents

Dedication ii

Abstract iii

Acknowledgements iv

List of Tables ix

List of Figures xi

List of Symbols xiv

1 Introduction 1

2 Background 6

2.1 E-Commerce . 6

2.1.1 History and Background . 6

2.1.2 E-Commerce Purchasing Models 7

2.2 Market Clearing . 9

2.2.1 Multiple Indistinguishable Items 10

2.2.2 Combinatorial Auctions . 11

2.2.3 Optimal Combinatorial Auctions 16

2.2.4 Online Market Clearing . 18

v

2.3 Utility Theory . 21

2.3.1 Introduction . 21

2.3.2 Preference Orders and Utility Functions 23

2.3.3 The von Neumann-Morgenstern Theory of Expected Utility . 24

2.3.4 Assessing Utility Functions . 26

2.3.5 Multi-attribute Utility . 32

2.3.6 Savage’s Expected Utility Theory 38

3 Online Combinatorial Purchasing 41

3.1 Introduction . 41

3.1.1 Motivation . 41

3.1.2 Problem Formalization . 43

3.2 The PQR Protocol . 43

3.3 Assessing Utility . 46

3.3.1 Utility for Money . 47

3.3.2 Utility for Bundles . 49

3.3.3 Utility of Bundle Purchases 50

3.3.4 Expected Utility of Bundle Purchases 53

4 Simple Decision Making 56

4.1 Introduction . 56

4.2 Restricting the Problem Definition 57

4.3 A Näıve Decision Procedure . 58

4.4 An Improved Decision Procedure . 58

4.4.1 Motivation . 58

4.4.2 Expected Highest Value . 59

4.4.3 Comparison Sets . 60

4.4.4 The Proposed Decision Procedure 62

4.5 Calculating the Expected Utility of a Comparison Set 63

vi

4.5.1 Simple Calculation . 64

4.5.2 Monte Carlo Simulation . 65

4.5.3 Variance Reduction . 65

5 Complex Decision Making 68

5.1 Introduction . 68

5.2 Purchase Procedure Trees . 70

5.2.1 Purchase Procedure Tree Definition 70

5.2.2 Construction . 72

5.3 Conventional Decision Trees for Purchase Procedures 73

5.3.1 Conventional Decision Trees 73

5.3.2 The Purchase Procedure Tree as a Decision Tree 76

5.3.3 Inefficiencies of Conventional Decision Trees 80

5.4 QR-Trees for Purchase Procedures 82

5.4.1 Construction . 82

5.4.2 Defining Certainty at Decision Points 86

5.5 Solving the QR-tree Using Discrete Approximation 87

5.5.1 Utility Projection Functions 88

5.5.2 q-subset-mappings . 89

5.6 Solving the QR-tree using Monte Carlo Simulation 92

5.6.1 Utility Projection Functions for Purchase Nodes and Endpoints 94

5.6.2 Functions for Decision Nodes: the Restricted q-horizon Method,

the q-subset Discretization Method and the Classification Tree

Method . 95

5.7 Other Issues . 104

5.7.1 “Garden Paths” . 105

5.7.2 Minimum Allowable Utility 106

5.7.3 Item Cost Dependencies . 107

vii

6 Results and Analysis 109

6.1 Complete Bundle Purchases . 110

6.1.1 Proofs . 110

6.1.2 An Example . 115

6.1.3 Adding New Choices . 117

6.2 Partial Bundle Purchases . 120

6.2.1 The Restricted q-horizon Method 120

6.2.2 The Classification Tree Method 123

6.2.3 The q-subset Discretization Method 126

6.3 Testing of QR-Tree Solution Methods 129

6.3.1 Implementation . 131

6.3.2 Test Bed . 137

6.3.3 Accuracy of Each Method . 140

6.3.4 Utility Achieved by Each Method 141

6.4 The Effect of the Antithetic Variate Technique 142

7 Conclusions 144

7.1 Thesis Results . 144

7.2 Thesis Contributions . 147

7.3 Future Work . 148

A Tables 158

viii

List of Tables

3.1 Summary of time periods during which the buyer will have certain

information about an item i. 46

5.1 Outcomes and probabilities for the PT three-point approximation. . . 79

5.2 Outcomes and probabilities for the PT approximation of a normal ran-

dom variable. 80

5.3 The q-subset-mapping for Example 5.3 102

6.1 Means and variances of bundle purchase utilities in the example . . . 115

6.2 Means and variances of bundle costs in the example for a risk averse

buyer . 117

6.3 Values for ai constants in (6.13) . 118

6.4 Examples of utility increase when adding a new set of choices, where

µr is the relative mean, σr is the relative standard deviation, MC µ is

the mean found using Monte Carlo, Approx µ is the mean found using

(6.12) and (6.13), and Difference is the difference between MC µ and

Approx µ. 120

6.5 Notation used in proofs where n is a node in a QR-tree 121

6.6 Quote and rescind times for items used in testing 137

6.7 Average expected utility estimates for right subtree compared with the

true utility achieved (average over 10000 runs per instance) 141

ix

6.8 Standard error for each estimation method over the 100 test cases . . 141

6.9 Average utility achieved using each method with µX and σX such that

u(X, µX) = (θPT + θrq)/2 and u(X, µX + σX) = max{θPT , θrq}. 141

6.10 Average utility achieved using each method with µX and σX such that

u(X, µX) = (θPT + θgr)/2 and u(X, µX + σX) = max{θPT , θgr}. 142

6.11 Average variance during testing . 143

A.1 Item price means and standard deviations for each instance in tests

described in section 6.3.3 (mean appears above standard deviation) . 158

A.2 Expected utility of right subtree of Figure 6.8 in section 6.3.3 for each

instance, as well as mean and variance of utility achieved over 10,000

runs/instance. 169

A.3 Average utility achieved by each method in each instance over 10,000

runs/instance (as described in Section 6.3.4) 172

x

List of Figures

2.1 Sandholm’s search tree for finding optimal allocation. 14

2.2 An example probability measure. 25

2.3 If lottery A is chosen, the decision-maker has a .6 chance of winning

$400 and a .4 chance of winning $600, while lottery B gives a .5 chance

of winning $50 and a .5 chance of winning $1000. 26

2.4 Lottery used to determine π. 28

2.5 (a) Increasing and (b) decreasing concave utility functions for a risk

averse decision-maker. 32

2.6 Demonstration of Y ’s utility independence with respect to Z. 34

2.7 Indifference implies additive independence between Y and Z. 35

2.8 Preference for acts determines subjective probability. 40

3.1 Utility function for a risk averse spender. 48

3.2 Direct assessment of bundle utility. 49

3.3 Demonstration of AB’s utility independence with respect to AZ 51

3.4 Demonstration of AZ ’s utility independence with respect to AB. . . . 51

4.1 Purchase intervals for bundles in Example 4.1. 61

4.2 Comparison set cover of Bv in Example 4.1. 62

4.3 Obtaining the c′(i) for the second estimator t′. 67

5.1 Example purchase procedure tree. 71

xi

5.2 An example decision tree. 75

5.3 Solution to the example decision tree. 76

5.4 Example transformation of a purchase procedure tree to a decision tree. 77

5.5 Transformation of the purchase procedure tree in Figure 5.4 to a deci-

sion tree (described in Example 5.2). 79

5.6 Decision tree where T1, T2 and T3 represent the same subproblem of

computing expected utility where the buyer has bought B and C at a

total of $11. 81

5.7 Example of a QR-tree. 83

5.8 Example of a QR-tree transformation as described in Algorithm 5.2. . 84

5.9 Example of a decision tree with q-horizons indicated by dotted lines.

For example, for d4 the q-horizon consists of the nodes representing

purchases of F, G and E, and the q-subhorizon consists of the nodes

representing purchases of F and G. 87

5.10 Partial QR-tree. 91

5.11 Example of restricting the q-horizons. 96

5.12 Tree for the example situation where using the greedy procedure would

achieve higher expected utility than using the restricted q-horizon method. 97

5.13 The QR-tree given in Figure 5.9 with q-regions indicated by dashed

lines. 98

5.14 Classification tree for Example 5.3 . 102

5.15 Discretized classification tree for Example 5.3 104

5.16 Purchase procedure tree before and after A is purchased 105

5.17 Purchase procedure tree before A is purchased that considers “garden

path” possibility . 106

6.1 Probability density function for the utility of purchasing b 112

6.2 Abstract representation of a QR-tree for the proof of Theorem 6.5 . . 126

xii

6.3 A simple QR-tree used to demonstrate the performance of the q-subset

discretization method. 127

6.4 Estimation error for each method where σA = σB = σC = 0.5 and

µB = µc = 0. The black line indicates the restricted q-horizon error

while the white line indicates the q-subset discretization error. 128

6.5 The effects of individually increasing (a) µB to .1 (b) µC to .1 (c) σB

to .1 (d) σC to .1. 129

6.6 The effects of increasing (a) µC ,σC (b) σB,σC (c) σB,µC (d) σB,µC ,σC

(e) µB,σC (f) µB,σB (g) µB,σB,σC . 130

6.7 Sample output for qrtree.java for given input 136

6.8 QR-tree for experiments. The subscripts for each purchase node denote

the tq and tr times, respectively. The q-sets for each decision node are

d1 : X, d2 : ABCEJ , d3 : CDE, d4 : CJK, d5 : EF , d6 : GH 138

xiii

List of Symbols

Symbol Meaning

An set of above values of node n (monetary amounts that could

possibly be spent before n is encountered)

A′
n a small subset of An

B set of bundles

Bv set of valid bundles

b bundle

ci(CS) comparison interval of CS

CS comparison set

csc(B) comparison set cover of B
CTd classification tree for decision node d

ctd(a) expected utility of d given above value a ∈ Ad as computed

using CTd

D set of decision nodes

E[x̃] expected value of x̃

Egr(n) the true (possibly unknown) expected utility if the greedy

method is used from n until the end

Eim the expected utility of the improved decision procedure

Ena the expected utility of the näıve decision procedure

xiv

Erq(n) the true (possibly unknown) expected utility if the restricted

q-horizon method is used from n until the end

I set of items

i item

j the highest expected utility over all bundles (chapter 6)

K set of outcomes for prices of items in a QR-tree

k the highest expected utility over all comparison sets (chapter 6)

kbz scaling constant for ub(b)uz(z) in the two-attribute utility function

kb scaling constant for ub(b) in the two-attribute utility function

kz scaling constant for uz(z) in the two-attribute utility function

p probability distribution or density function

P set of purchase nodes

pi(b) purchase interval of bundle b

qh(d) q-horizon of decision node d

qs(d) q-set of decision node d

qsh(d) q-subhorizon of decision node d

qss(d) q-subset of decision node d

qssc(d) q-subset-complement of decision node d

Tpp purchase procedure tree

Tqr QR-tree

tp(x) prequote time of item, node or purchase interval x

tq(x) quote time of item, node or purchase interval x

tr(x) rescind time of item, node or purchase interval x

ũ(b) the unknown outcome of utility of purchasing b

u(b, z) utility of bundle b at cost z

ub(b) utility of bundle b

xv

uz(z) utility of cost z

upn(a) the utility projection function for node n (gives the expected utility

at n given that an above value a ∈ An is spent before n is

encountered)

up′n(x) same as upn(a) except A′
n values (rather that An values) are

mapped to expected utilities

x̃ the unknown outcome of random variable x

Z set of monetary units

µ mean

µr relative mean

σ standard deviation

σr relative standard deviation

θct estimate of expected utility as given by the classification tree method

θgr estimate of expected utility as given by the greedy method

θgr−rq(n) the estimated expected utility at n if the greedy method is used

throughout n’s q-region, and the restricted q-horizon method is used

afterward

θPT estimate of expected utility as given by the q-subset discretization

method

θrq estimate of expected utility as given by the restricted q-horizon

method

θ′rq(n) the expected utility at n estimated by the restricted q-horizon

method if all q-horizons in n’s q-region are eliminated (i.e. for any

decision node d in the q-region, qsh(d′) is subtracted from qh(d)

for every descendent d′)

θrq(n) the expected utility at n estimated by the restricted q-horizon

method

xvi

Chapter 1

Introduction

As early as the 1960’s, when the idea of computer connectivity became realistic,

people in the business world envisioned the possibility of performing transactions

electronically. As technology has improved and electronic commerce has become

more common, strategic purchasing tools that can cleverly ascertain the true value of

many different options over possibly many different markets are becoming extremely

important. More and more businesses are turning to Web-based pricing tools that sift

through large volumes of data on product revenues, inventory levels and consumer

activity to determine how much to charge for certain items during certain periods of

time [Kee03]. This “perfect pricing” translates into higher profits for sellers, mostly

at the expense of the buyer. To combat this trend, buyers need the decision analysis

technology that can properly assess not only the current purchasing options, but also

the positive or negative potential of future opportunities.

This thesis presents a theory for decision-making in a dynamic electronic mar-

ketplace where the buyer needs to purchase a set of items (referred to as a bundle).

In this framework, there may be alternative bundles (two or more items may be

interchangeable, for example) from which to choose. Each bundle has a particular

preference level based on the quality of the items, the compatibility of the items,

the reputations of the suppliers or any other factors that may make one bundle of

1

items more desirable than another. The dynamic element implies that, at any given

time, some items may be currently available at a set price for a fixed length of time,

while other items may be available during future periods at prices that are currently

unknown. The buyer must therefore make purchasing decisions based on incomplete

information, in hopes of ultimately completing the best set of purchases in terms of

item preference and cost.

While purchase decision-making is certainly not a novel concept, applying existing

theories to e-commerce, where potential offers from countless suppliers can be con-

sidered at once, is often impractical. Expected utility theory [vNM47] was proposed

by von Neumann and Morgenstern as a means for computing a numeric preference

level (called a utility) for each choice in a decision problem for which perhaps only

a probability measure is known for the consequences, based on the decision-maker’s

attitude towards risk. However, with expected utility theory alone, it is difficult to

model a sequence of decisions where the consequences of some choices are learned be-

fore subsequent decisions are made. This modeling is necessary in bundle purchasing.

Consider an example where the buyer needs to decide whether or not to buy some

item A, and there are two bundles containing A: A and B or A and C. Perhaps the

prices of B and C will be known before the decision on which of the two to buy needs

to be made, but not until after the decision on whether to buy A must be made,

making it difficult to determine the expected utility of buying A. This sequence of

decisions can be modeled by a decision tree [Mag64]. A technique referred to as roll-

back solution can be applied to the model in reverse order with respect to time in

order to determine the expected utility of each choice at the original decision. In a

decision tree there is a branch for each choice at each decision, as well as for each

possible consequence of each choice. Thus decision trees can easily get unmanage-

ably large, especially if there are many consequences (i.e. price outcomes) for choices.

Hespos and Strassman [HS65] proposed the use of Monte Carlo simulation [MU49]

in decision trees for investment decision-making. This was done with the purpose

2

of eliminating the high branching factor at chance nodes by instead simply taking

random samples from probability distributions. However, their technique only con-

sidered consequences that would occur after a decision was made (which is common

in investment decision-making). It was not designed to handle the computational

complexity that arises when solving a future decision during rollback where some

consequences associated with the decision (i.e. outcomes of some item costs) occur

before the decision is made. This thesis attempts to solve these problems and present

a solid theory of how such decisions can be made in computationally feasible ways.

After formalizing the problem of determining utility functions for bundles and

money and computing the expected utility of bundle purchases, a simple method for

making decisions where all items in a bundle must be purchased at once is presented.

The decision problem is much less complicated in this case since there are no sub-

sequent decisions to be made after the buyer chooses to purchase something. The

theory is then extended to the general case where the buyer makes decisions at the

item level. The QR-tree is proposed as a structure to efficiently model the system

of subsequent decisions that will follow a choice in a decision. This tree is shown

to be exponentially smaller than a conventional decision tree if used to model the

same system of decisions. Three Monte Carlo techniques for solving the QR-tree to

determine the expected utility of each choice are developed. Since the time complex-

ity of each technique grows linearly with the size of the QR-tree, then each of these

techniques is exponentially faster than decision tree rollback solution, as well as the

method proposed by Hespos and Strassman.

The main results of the thesis are as follows: Initially the problem of bundle

purchasing in this model, termed the Online Combinatorial Purchasing Problem, is

formally defined. A decision procedure is proposed for the simple domain in which

only complete bundles are chosen, and is proven to always yield expected utility

greater than or equal to that of a näıve procedure that simply instructs the buyer to

buy a bundle if it has the highest expected utility over all bundles. In the more general

3

domain where the buyer makes decisions at the item level, the QR-tree is defined

as a decision tree that can be exponentially smaller than a conventional decision

tree. A solution method for the QR-tree that considers all possible discrete price

outcomes is developed, as well as three Monte Carlo algorithms: the restricted q-

horizon method, the classification tree method and the q-subset discretization method.

The expected utility of the restricted q-horizon method is proven to be at least as

high as the expected utility of using the greedy method of always pursuing the bundle

with the highest expected utility. The classification tree method is shown to provide

an underestimate of the true utility when a reasonable restriction is placed on the

execution of the purchase procedure. Testing shows that this estimate is also very

close to the true expected utility. Finally, the q-subset discretization method is shown

to provide the most accurate estimate of all, with a standard error just 1
26

that of

the greedy method that judges the expected utility of a choice to be the maximum

expected utility of all bundles that can potentially be procured as a result of that

choice. To reduce the required sampling workload, the antithetic variate [HM56]

sampling method is shown to be an effective variance reduction technique in Monte

Carlo simulation in this domain. For the simple case of finding the expected highest

utility of two simultaneous choices, antithetic variate sampling is shown to reduce

the variance (and thus the number of simulations needed) to 1
6

that of crude Monte

Carlo.

While much of the required background is given in chapter 2 and other techniques

and terminology are introduced when necessary, the reader is expected to have some

prior knowledge of basic probability theory and statistics. Knowledge of standard

decision analysis tools such as decision trees and Monte Carlo simulation would be

an asset, as would a basic understanding of calculus.

The thesis is organized as follows: Chapter 2 outlines the required background on

e-commerce, market clearing and utility theory. After introducing the online combi-

natorial purchasing problem and the required theory for computing utility functions

4

needed to solve the problem in Chapter 3, Chapter 4 presents a decision procedure for

use in the restricted domain where only complete bundle purchases are made. Next,

Chapter 5 discusses the inherent problems in the purchase procedure when partial

bundle purchases are permitted and the expected utility of individual item purchases

must be evaluated. The QR-tree is proposed as a structure for modeling the system of

decisions in such way that is more convenient for solution techniques, and three such

techniques which make partial use of Monte Carlo simulation are developed. Chapter

6 presents both theoretical and experimental results, and Chapter 7 concludes by

summarizing the contributions of the thesis, and also discusses plans for future work.

5

Chapter 2

Background

2.1 E-Commerce

2.1.1 History and Background

In 1984, a significant breakthrough was made toward the goal of enabling business

transactions to be performed electronically. During that year, the Electronic Data

Interchange (EDI), which gave computing systems a reliable means for handling a

large number of transactions, became an ASC X12 standard. With this technology in

place, all that was needed for online commerce to become a reality was a user-friendly

platform that would allow the transactions to be created. The first point-and-click

Internet web browser, Mosaic, was introduced in 1992 (and subsequently Netscape

in 1994), giving merchants a new medium for displaying and demonstrating their

products, and buyers the easy user interface required for locating goods and making

purchases. In the next few years the activity of performing transactions electronically

over the Internet, eventually termed electronic commerce (or e-commerce), became

more common. Finally, the largely successful holiday season of 1998 showed online

buyers and sellers alike that e-commerce was the way of the future.

The rapid growth witnessed in the volume of online transactions over the last few

6

years is astounding. In 1997, worldwide e-commerce transactions totaled approxi-

mately $5 million (US) [FR01]. The year 2000 saw e-commerce hit the $1 trillion

mark [FR01], and it is predicted to reach $4.6 trillion in 2005 [GC01]. In Canada,

e-commerce reached $24.8 billion (Cdn) in 2000 and is projected to grow to $220.4

billion in 2005. Of this, $187.3 billion (85%) is expected to come from Business-to-

Business (B2B) transactions, and the remainder from Business-to-Consumer (B2C)

and Consumer-to-Consumer (C2C) transactions [GC01].

With this growth in sales volume comes an equal growth in the need for capable

technology. Unfortunately for businesses and consumers who benefit from e-commerce

solutions, the technology has not grown fast enough. Much of the e-commerce-related

technology produced today is focused on solutions for helping transactions between

businesses work more smoothly and efficiently. However, these solutions are typically

just the automation of business practices and procedures that are already in place

between companies. What about the business looking for new contracts? Or perhaps

one in need of a set of one-time purchases for which it is not necessary to establish

long-term business relationships, but rather is more important to find the best items

at the lowest cost? Even a regular consumer attempting to acquire a set of parts to

build a custom car or computer needs help. Locating the desired items can often be

very difficult for a buyer. And once the proper websites are found, they are often

slow, uninformative, and difficult to navigate. Recent research has shown that 43%

of shoppers who visit an e-commerce enabled site intending to make a purchase leave

frustrated, buying nothing. These missed potential sales are believed to represent a

$11 billion (US) loss [Cre01].

2.1.2 E-Commerce Purchasing Models

Aside from the development of new business models upon which new e-commerce

solutions are built, a lot of work is now being put into developing and improving

actual e-commerce purchasing models. Each of these models basically provides a

7

setting and a strategy for buyers and sellers to meet and perform transactions. Some

are static and serve merely as a place to browse available goods and make purchases

on selected items, while others are more interactive and involve both the supplying

and purchasing parties to work together to ultimately reach a transaction. A few of

the more popular models are now discussed [DDN01].

Storefront

The storefront e-commerce model is the one typically used in most B2C e-commerce

transactions. In this model, businesses set up a ”store” on their website. Potential

buyers can visit their site, view their products, and make purchases on-line. The

storefront model is the most widely used in e-commerce, by businesses of all types

and sizes.

Portal

If a buyer is in need of a few items of generally the same nature, it is relatively easy

to find a site at which most of his or her needs can be satisfied. However if a broad

range of items is needed, the onus is on the potential buyer to locate each of the

many sites at which the desired goods or services may be found. This search process

can be very time consuming. In the portal model, the buyer needs only to put in a

request at a portal website. The portal, typically linked to thousands of sites, will

search for the requested product and return a list of matching items it found, along

with information as to the supplier, price, ordering information, etc.

Request for Quote

In this model, purchasers visit a particular B2B e-commerce enabling site to request

a quote for supplies, projects, etc. These sites are typically vertical and product-

specific. When a potential buyer submits a request-for-quote (RFQ), a notice is sent

to all suppliers of that item who have signed on with the site. A list of current RFQ’s

8

is also available for perusal. Suppliers send their quotes to the buyer, who then has

the opportunity to compare quotes and choose a winner. Competitors’ quotes are

typically not disclosed. If a transaction is made, a fee is paid by the winning supplier

to the enabling site.

Auctions

Just as there are traditionally, several variations of the auctioning model are held elec-

tronically. Sequential auctions, where items are auctioned one at a time (in sequence)

and awarded to the highest bidder (referred to as an English auction), are common.

Silent bid auctions (similar to request-for-quote) are also seen. Another type that is

quite common in e-commerce is the reverse auction. Reverse auctions work in much

the same manner as sequential auctions, except in the opposite direction. Here, a

purchaser requests an item from a set of suppliers, and each of the suppliers compete

for the lowest sale price. At any given time in a typical reverse auction, each of the

suppliers know what each of its competitors has offered (but possibly without knowing

who each of the competitors are), and has the right to submit a better offer. Reverse

auctions work differently from traditional sequential auctions in that the purchaser

might not accept the best price, but perhaps the one it presumes to be the best offer

depending on extra incentives, preference of supplier, etc.

2.2 Market Clearing

While the research presented in this thesis is not directly based on any particular as-

pect of market clearing research, there is a strong relation and thus a few techniques

are discussed for completeness. This section focuses on past and present research

on techniques for clearing auctions that require more complex item allocation and

winning-bid determination strategies. Specifically, the problem of awarding winning

bids becomes much more complex when bids are on quantities of goods or on bundles

9

of different goods. Thus the problem of deciding which bids should be awarded in

order to achieve maximum income, profit, liquidity, social welfare, etc. is difficult.

For auctions that require offline algorithms, where all bids are submitted before the

auctioneer decides any winners, the problem is to compute the optimal allocation of

the available goods to the bidders. Auctions or other markets that require online algo-

rithms, where bids are being submitted and the market is being cleared continuously,

have the extra problem of also deciding when clearing should be done.

The problem of determining optimal allocations has been identified in many prob-

lem domains, such as in task allocation in multi-agent systems, and airport take-off

and landing time slot allocation [RSB82]. The most recent demand for efficient clear-

ing algorithms has surfaced in e-commerce research, as demonstrated by such market

server prototypes as eMediator [San00] and AuctionBot [WWW98]. For generality,

the term item is used to represent whatever entity for which buy bids and sell bids

are placed in these auctions. First, the problem of awarding bids on quantities of

indistinguishable items is presented. The problem is then extended to include bids

on bundles of different items, followed by a discussion on optimal auction protocols

that encourage bidders to bid their true values for items. Finally, a discussion on

recent work on online algorithms for continuous auctions is given.

2.2.1 Multiple Indistinguishable Items

This section considers the setting where there are multiple indistinguishable units

of a single item (e.g. stock) for sale. The following formalization is attributed to

Sandholm and Suri [SS01], and the reader is referred there for a more thorough

treatment including algorithms, proofs, and other special cases.

In this auction, each bidder has a certain desire for different quantities of the

item for sale. To express this, each bidder submits a piecewise linear demand curve

indicating the quantity q(p) he/she is willing to pay at unit price p. If the bid is

cleared at price p, the bidder is awarded q(p) units at price p · q(p). The goal of the

10

auctioneer is to consider the demand curve for each bidder, and clear the bids in such

a way that will maximize total income. Different strategies for solving this problem

are developed for different auction rules, specifically whether or not discriminatory

pricing and/or free dispersal are allowed.

In a discriminatory price auction, a price pi is set for each bidder i in such a way

as to maximize
∑

i piqi(pi) subject to the supply constraint
∑

i qi(pi) ≤ Q (where Q

is total quantity available). With free disposal, the auctioneer is not required sell

all available units (i.e. the remainder is allowed to be disposed for free). Without

free disposal, all units must be sold. Sandholm and Suri show that the problem

of determining a revenue-maximizing allocation using discriminatory pricing is NP -

complete when free disposal is either allowed (knapsack) or not allowed (subset sum).

In a non-discriminatory price auction, all bidders pay the same unit price. The

optimal price p∗ must be determined such that
∑

i p
∗qi(pi) is maximized. Sandholm

and Suri give O(nk log(nk)) algorithms (where k is the maximum number of pieces

in any bidder’s demand curve) for both with and without free dispersal.

2.2.2 Combinatorial Auctions

Quite often, participants in an auction have preferences over bundles of different

items. For example, a buyer may be interested in obtaining two items A and B,

where both are needed (one or the other by itself would be unacceptable). It would

be most beneficial if the buyer could place a bid on both items, thus eliminating

the risk of buying one and subsequently finding that the other is unattainable. Or

possibly either A or B by itself is acceptable, but the buyer’s value for the two of them

together is greater than the sum he/she values for them individually. The buyer would

certainly like to express this preference in his/her bidding strategy. These needs are

satisfied by the combinatorial auction mechanism.

11

The Winner-Determination Problem (WDP)

The combinatorial auction is believed to be first presented by Rassenti et al. [RSB82]

as a means for auctioning airport take-off and landing time slots to airlines. In

the general setting of the combinatorial auction, an auctioneer has a set I of items

available for sale, and accepts a set B of bids where each b ∈ B is a subset of I and

has a bid price p(b). The winner determination problem (WDP) is the problem faced

by the auctioneer when clearing a combinatorial auction, and is defined as follows (as

in [SSGL01])

Definition 2.1 The winner-determination problem (WDP) for a combinatorial auc-

tion is the problem of deciding how to label the bids as winning or losing so as to

maximize the auctioneer’s revenue under the constraint that each item can be allo-

cated to at most one bidder.

This problem is NP-complete [RPH98], and cannot even be approximated to within

a bound k ≤ n1−ǫ, ǫ > 0 in polynomial time, where n is the number of available

items and k is a constant such that the revenue yielded by the best allocation is

guaranteed to be no more than k times that of the best allocation found by the

algorithm. However, polynomial time algorithms exist for instances of the WDP

in combinatorial auctions with certain restrictions. The following are discussed in

[San02]:

1. If the bids have at most w items each, and ∆ is the number of bids with which any

given bid can share items, a bound k = 2(w + 1)/3 can be established in O(nw2∆w)

time [CH99].

2. If ∆ is the number of bids with which any given bid can share items, a bound

k = ⌈(∆ + 1)/3⌉ can be established in linear time by partitioning the set of bids

into ⌈(∆ + 1)/3⌉ subsets such that ∆ ≤ 2 in each subset, and then using dynamic

programming to solve the weighted set packing problem in each subset [Hal98]. Other

12

bounds to be established for this setting are k = ∆/2 [Hoc83] and k = (∆ + 2)/3

[HL97].

3. If the bids can be coloured with c colours such that no two bids that share items

have the same colour, then k = c/2 can be established [Hoc83].

4. The set of bids have a K-claw if there is some bid that shares items with K other

bids that do not share any items with each other. If the bids are free of K-claws,

bounds of k = K − 2 + ǫ and k = (4K + 2)/5 can be established in nO(1/ǫ) and nO(K)

time, respectively [Hal98].

5. If D is the largest d such that there is some set of bids in which every bid shares

items with at least d bids in that subset, then k = (D + 1)/2 can be established in

polynomial time [Hoc83].

Tennenholtz [Ten00] also pointed out practical non-trivial instances of combinatorial

auctions for which there are polynomial-time solutions, such as combinatorial network

auctions and various sub-additive combinatorial auctions.

An Optimal Solution for Winner-Determination

While the WDP is NP -complete, some computationally manageable algorithms have

been developed [FLBS99, ATY00, San02, SSGL01]. See also [dVV00] for a survey.

Some of these techniques make use of clever programming strategies, while others

take advantage of characteristics of typical problem instances. One such solution,

attributed to Sandholm [San02], takes advantage of the fact that, while the number

of possible item allocations is exponential on the number of items, in practice the

space of allocations that need to be checked is actually quite sparse. This solution is

now presented.

Consider a combinatorial auction on a set I of items, upon which there is a set

of bids B and each bid b ∈ B has a bid price p(b). The algorithm generates a tree

13

T (see Figure 2.1) where each path in T consists of a sequence of disjoint bids. Let

Bp ⊆ B be the bids on path p, and let p(Bp) be the total of the bid prices. The

algorithm adds bids to a path p until all items in I have been used on p. Bp then

corresponds to a feasible allocation. Note that since free dispersal is typically allowed

in the combinatorial auction, dummy bids may have to be added to B (with bid price

0) for single items for which no actual bids were placed. This is necessary since the

optimal allocation may not include every item in I. This continues for all allocations.

The best allocation (i.e. the one with the highest p(Bp)) found so far is always stored.

Once the search completes, that allocation is optimal.

Figure 2.1: Sandholm’s search tree for finding optimal allocation.

The näıve method of constructing the tree would include all bids (that do not

include items already on the path) as children of each node. This, however, will

lead to the consideration of many different orderings of bids representing the same

allocation. The branching factor can be significantly reduced by ensuring that each

allocation is explored only once. This can be done by assigning an index to each item.

The tree is then built by generating the children of a node with those bids that

• include the item with the smallest index among items that are not on the

14

path yet, and

• do not include items that are already on the path.

Since the algorithm only generates the populated parts of the search space of allo-

cations, which in practice is typically sparse, it provides a computationally feasible

method for solving the WDP. To improve on the performance of the algorithm, Sand-

holm uses a secondary depth-first search and IDA* [Kor85] with heuristics to find

children quickly, Also, several preprocessing techniques such as removing noncompet-

itive bids and decomposing the problem into parts, are implemented in order to help

speed up the overall process.

Many sophisticated algorithms for solving the WDP optimally have been, and

continue to be, developed to work much faster than the one presented here. Two

examples of front-runners in the field are CPLEX [ATY00] and CABOB [SSGL01].

Layton-Brown et al. [LBST00] have developed CAMUS, an algorithm to determine

optimal winning bids in multi-unit combinatorial auctions. This auction protocol

considers the more general setting where there may be more than one unit of each

good, and bidders are allowed to bid on bundles consisting of not only several distinct

items, but also on quantities of those items.

The problem that remains is that, while the WDP can be solved optimally, it is

not necessarily the case that an auctioneer will obtain the maximum possible income.

This is because the general combinatorial auction problem itself is not optimal. In

this setting, there is not much incentive for bidders to bid their actual worth for a

bundle, but rather quite often a lower price (and never higher). An auction protocol

that encourages the bidders to bid their full worth on bundles, where the auctioneer

can solve the WDP on those bids, would certainly provide an optimal solution. Such

protocols are now discussed.

15

2.2.3 Optimal Combinatorial Auctions

An optimal combinatorial auction is one where bidders, using a reasonable bidding

strategy, will bid their actual value for a bundle of items. The idea of an optimal

auction protocol was inspired by Vickrey [Vic61], and later generalized to include

combinatorial auctions. Iterative combinatorial auctions, where prices on bundles are

increased incrementally until the highest possible sale prices are achieved, are also

known to be optimal. Examples of each of these protocols are now presented.

Generalized Vickrey Auctions

A Vickrey auction is a sealed-bid silent auction where the submitter of the highest bid

for an item is the winner. This winner then pays the amount of the second-highest

bid. With this mechanism, it is an optimal strategy for each bidder to reveal his/her

true value for the item. Consider a Vickrey auction for a single item, where each

participant i has a value vi and places a bid bi on the item. Let the payoff for the

winning bidder to be the difference between his/her value and actual price paid for

the item. Participant i would therefore have the expected payoff

Prob(bi > bmax) · (vi − bmax)

where bmax is the highest over all bids other than bi. If i’s value for the item is more

than bmax (i.e. vi > bmax), then he can make the probability of winning equal to 1 by

bidding bi ≥ vi. He will then pay bmax. Else if vi < bmax, then he/she can make the

probability of winning 0 by bidding bi ≤ vi. So if bi = vi then i will win the auction

and pay bmax iff his value for the item is at least this amount. Since Prob(bi > bmax)

is 1 when vi − bmax is positive and 0 when vi − bmax is negative, the expected payoff

is maximized. Hence, bidding one’s true value for the item in this type of auction is

always an optimal strategy.

MacKie-Mason and Varian [MMV95] describe a Generalized Vickrey Auction

(GVA), in which bids on more than one type of good, multiple units of goods, and

16

externalities (interests of the bidders other than just their own bundles) are consid-

ered. They demonstrate that, even for their extension to the general case, an optimal

bidding strategy1 for the participants is to reveal their true value for desired bundles.

Iterative Combinatorial Auctions

In an iterative combinatorial auction, the idea is to iteratively increase the ask price

for each requested bundle through a sequence of rounds, until it is determined any

further increase will not increase the total income of any allocation (i.e. the bidders

are not willing to go any higher). Note that this works very much like the single-item

standard English auction, where the price increased until it is to determined that no

bidder will offer anything more. When this final round is reached, the best allocation

is found and bids are awarded.

iBundle, attributed to Parkes [Par99, PU00a], is an iterative ascending-price com-

binatorial auction that is guaranteed to compute optimal bundle allocations with a

best-response agent bidding strategy. In particular, iBundle considers agents to be

myopicly rational, which means that they play a best (utility-maximizing) response

to the current ask prices and allocation in the auction. The agents are myopic in the

sense that they only consider the current round of the auction. Note that if agents

had the foresight to consider future rounds, the auction could be strategically manip-

ulated and therefore become sub-optimal. See [PU00b] for work on preventing this

pitfall.

The auction begins with the submission of bids. Bidders are allowed to submit

both OR bid sets, which contain bids such that winning more than one would be

acceptable to the bidder, and XOR bid sets, where no more than one win is acceptable.

The ask price for each desired bundle is initially set at 0, and is incremented by a

pre-set value ǫ after each round. In round t, an agent can submit a bid for a bundle

b equal to the ask price of b in round t − 1 (meaning that it is not interested in

1The authors refer to this as a “dominant” bidding strategy.

17

increasing its bid), or greater than or equal to the new ask price. After all bids are

submitted for round t, an algorithm for solving the WDP is used to determine the

best allocation. The auction terminates when one of the following occurs:

1) all bidding agents are happy in the current winning allocation, or

2) all agents submit the same bids in two consecutive rounds

where an agent is happy iff it wins all bids in its OR bid sets and exactly one bid in

each of its XOR bid sets. If either 1) or 2) occur, then it is the case that no agent

will ever increase its bids further, and thus the optimal set of bids has been achieved.

2.2.4 Online Market Clearing

In the online market clearing problem, items are bought and sold by multiple buyers

and sellers who submit buy and sell bids that arrive and expire at different times.

The auctioneer is faced with an online clearing problem of deciding which buy and

sell bids to match before seeing all of the bids. Blum et al. [BSZ02] study the setting

where there is a market for one commodity. Algorithms are also developed to maxi-

mize surplus (total profit for the auction) and liquidity (total number of transactions,

total buy volume, or total sell volume), and competitive ratios are given for compar-

ison with offline algorithms. Their formalization, as well as two of their algorithms

designed to maximize surplus, are presented here.

Temporal Clearing Model

The online market clearing problem faced by an auctioneer where buy and sell bids

arrive over time is formalized as follows: When a bid is introduced, the auctioneer

learns the bid price and expiration time. A bid that has been introduced but has not

yet expired is called live. At any point in time, the auctioneer can match a live buy

bid with a live sell bid and remove the bids from the system. At such a time, the

18

submitter of the buy bid is committed to buying the item at the buy bid price, and

the submitter of the sell bid is committed to selling the item at the sell bid price.

Definition 2.2 (temporal clearing model) A temporal clearing model consists of

a set B of buy bids and a set S of sell bids. Each bid v ∈ B
⋃

S has a positive price

p(v), is introduced at start time ts(v), and removed at finish time tf (v). A bid v is

live in the interval [ts(v), tf(v)]. Two bids are said to be concurrent if there is some

time when they are both live simultaneously.

Definition 2.3 (legal matching) A legal matching is a collection of pairs {(b1, s1),

(b2, s2), . . .} of buy and sell bids such that bj and sj are concurrent.

Algorithms for Maximizing Surplus

Each matched pair of buy bids and sell bids produces a surplus. This surplus is equal

to the buy price minus the sell price (and is not necessarily positive in the general

case). The total surplus is the sum of surpluses over all matched pairs, and can be

split in any way among the auctioneer, buyers, and sellers.

An offline algorithm receives knowledge of all buy and sell bids up front, while

an online algorithm only learns of bids when they are introduced. Both types of

algorithms have to produce a legal matching. The performance of an online algorithm

can be measured using competitive analysis [BEY98] with the optimal offline solution

for a given sequence of bids. Let ALG be an online algorithm whose performance is

to be measured where ALG(I) is the surplus achieved by the matching found by ALG

on input I, and let OPT be an offline algorithm that computes the matching yielding

the optimal result OPT(I). For the purposes of the following algorithms presented

here, for a c ∈ ℜ ALG is said to be c-competitive if for any I, c· ALG(I) ≥ OPT(I).

A method for maximizing total surplus online is to choose some G to be the

minimum surplus required by any matched pair. That is, b and s can only be matched

19

if p(b) ≥ p(s) + G. In their paper, Blum et al. [BSZ02] choose G randomly according

to an exponential distribution. Specifically, for all x ∈ [1, pmax − pmin], let

Prob(G ≤ x) =
ln(x) + 1

ln(pmax − pmin) + 1

where [pmin, pmax] is the range of possible bid prices. Let M ∗(G) be the maximum

matching (i.e. the matching with the highest number of matches) given G, |M ∗(G)|
be the number of matches in M∗(G), and OPT be the optimal achievable surplus. If

G is chosen from the above distribution, then

E[G · |M∗(G)|] ≥ OPT

ln(pmax − pmin) + 1

where E[G · |M∗(G)|] is the expected minimum surplus. See [BSZ02] for the proof.

Following are two online matching algorithms. The first, which works as a greedy

algorithm, corresponds to the strategy “whenever there exists a pair of bids that

would produce a surplus of at least G, match them immediately”.

Algorithm 2.1 (Greedy) When a buy (sell) bid v1 is introduced, if there exists a

live sell (buy) bid v2 such that matching v1 and v2 would provide a surplus greater

or equal to G, then match them.

The Greedy algorithm is 2(ln(pmax − pmin) + 1)-competitive [BSZ02]. Note that

this algorithm does not need to consider the expiry times of bids.

The second algorithm is a bit more sophisticated, and thus provides a better result.

It works by keeping a perfect matching throughout. Each time an unmatched bid is

about to expire, it checks to see if it and some other unmatched bid can be added to

the matching (not necessarily being matched together).

Algorithm 2.2 Let W be the bids in the current matching. When a bid v is about

to expire, consider all live unmatched bids sorted by expiration time. Starting with

the bid v′ that starts the soonest, see if there exists a perfect matching on W
⋃{v, v′}

(making sure each match achieves a surplus ≥ G). Add the pair {v, v ′} to W where

v′ is the first such bid that works. If no such v′ exists, allow v to expire unmatched.

20

Algorithm 2.2 is (ln(pmax − pmin) + 1)-competitive [BSZ02]. Note that matching

v and v′ does not need to achieve a surplus of at least G (and in the general case

does not even need to achieve a positive surplus at all), but it must be the case that

a perfect matching exists on W
⋃{v, v′} where every match achieves a surplus of at

least G. So algorithm 2.2 achieves a surplus of at least G|M ∗(G)|.
Blum et al. also develop algorithms that attempt to maximize liquidity of the

market in terms of the number of transactions, the total buy volume, and the total

sell volume. This, while not as immediately beneficial to the common good as surplus

maximization, can help the long-term fortunes of the market. The success of a market

is often assessed in terms of liquidity, as buyers want to be able to buy and sellers

want to be able to sell. So liquidity maximization is quite valid. The reader is referred

to [BSZ02] for a further discussion.

2.3 Utility Theory

2.3.1 Introduction

The concept of utility is believed to have originated in work by Daniel Bernoulli

[Ber38, Ber54], when he solved the famous St. Petersburg Paradox posed in 1713 by

his cousin Nicholas Bernoulli. The paradox posed the following situation: a fair coin

is tossed until the first “heads” appears. If this happens on the nth toss, the payoff

is 2n ducats. How much should one pay to play this game? The idea was that since

the expected payoff is infinite, a gambler should be willing to pay an infinite sum to

play. Bernoulli demonstrated that the expected payoff of a gamble is not necessarily

the same as one’s expected utility for the gamble. Typically, one’s marginal utility

for money decreases as the amount increases. This is known as diminishing marginal

utility. Expected utility, rather than expected payout, was shown to be the true

measure of how much a gambler would be willing to pay. After 200 years, the subject

21

matured with the classic work on maximizing expected utility by von Neumann and

Morgenstern [vNM47]. This theory had seminal influence on the area of decision

under risk, and encouraged work in the more general area of decision making under

uncertainty. Two of the great works in this discipline were that of Wald [Wal50]

and Savage [Sav54]. Some of the more recent treatments on utility theory are those

of Fishburn [Fis70], Keeney and Raiffa [KR76], and Kreps [Kre88], upon which the

presentation given here is largely based. Much of the historical background comes

from [BEY98]

Utility theory is used as means for taking a person’s judgments of preference,

worth, usefulness, etc. and enabling them to be represented in numerically useful

ways [Fis68]. This numeric representation allows decision-makers, whether human or

automated, to make indisputable and objective choices from a set of given alternatives.

There are two main schools of thought when it comes to utility theory: descriptive

theory and normative theory. Descriptive utility theory is the study of human choice

behaviour. It consists mostly of analysis of how people make choices, and what

causes them to behave in certain ways. This type of utility theory plays a large role

in economics.

Normative utility theory is the study of how people should behave and make

decisions. It focuses on helping the decision-maker to act in a rational and logically

consistent manner. A third category is discussed by Bell et al. [BRT88], referred

to as prescriptive utility theory. According to them, this theory focuses on how to

help people make rational decisions. However, this is not widely accepted. Most

agree upon the usual dichotomy, and either place these prescriptive theories inside

the category of normative theory, or consider the terms normative and prescriptive

to be interchangeable and thus to represent the same theory.

22

2.3.2 Preference Orders and Utility Functions

The concept of utility can be considered by a decision-maker hoping to act rationally

when faced with the problem of choosing from a set of alternatives. Each alternative

has one or more attributes that need to be considered when assessing one’s preferences

for alternatives. More formally, a utility theory on a set X of comparable alternatives

is based on a binary preference relation � (read as “is at least as preferable to”) on

X such that for all x, y ∈ X, exactly one of x � y or not x � y is true. Typically the

relations of strict preference ≻ and indifference ∼, defined from �, are used:

x ≻ y means that x � y and not y � x

x ∼ y means that x � y and y � x

A utility theory is a set of consistent assumptions and theorems on X and �. One

such assumption that appears in most utility theories (including that used in this

thesis) is that of transitivity:

if x � y and y � z then x � z

One such theorem that is often used when incorporating utility theory into decision

making assigns a numeric utility to each element of X. Specifically, there exists a

function u : X → ℜ such that:

∀x, y ∈ X, x � y ⇔ u(x) ≥ u(y) (2.1)

Each alternative in X may be comprised of several attributes. In this case, u(x) can

be computed as a function of the utilities of the attribute values that describe x. If

the decision-maker can accurately assess his/her utility function over all alternatives,

then it follows that the preference relation for all pairs of alternatives will be known.

Before such an assessment can be performed, the notion of expected utility must be

introduced.

23

2.3.3 The von Neumann-Morgenstern Theory of Expected

Utility

The discussion of preference theory presented in the previous section introduced the

theory of decision under certainty. That is, whichever alternative is chosen, the

decision-maker is certain of the consequence of that decision (i.e. the associated

attribute(s) of the alternative). Expected utility is used in the theory of decision

under risk. As before, this decision problem consists of a set of alternatives X from

which the decision-maker must choose. The problem differs in that, given the set of

possible consequences Z, for each alternative x ∈ X, each z ∈ Z has some likelihood

of occurring if x is chosen. Expected utility theory takes into account the decision-

maker’s preferences for all consequences of alternatives, as well as the probabilities of

these consequences occurring, and computes the expected utility for each alternative.

The von Neumann-Morgenstern (NM) model views this uncertainty as objective, in

the sense that there is a quantification of how likely the various outcomes are. This is

given in the form of a probability distribution, which in the utility theory literature

is most commonly referred to as a probability measure.

Probability Measures

Let Z be a finite set of consequences for a given alternative. A probability measure

p on Z is a function p : Z → [0, 1] such that
∑

z∈Z p(z) = 1. Consider the structure

presented in Figure 2.2. This is an example of a probability measure (often referred to

as a gamble or lottery in the NM setup) on the consequence set Z = {$0, $400, $1000},
where p(0) = .1, p(400) = .7, and p(1000) = .2. This means that, if the decision-

maker chooses this lottery, he/she has a .1 chance of receiving $0, a .7 chance of

receiving $400, and a .2 chance of receiving $1000.

24

 .1 .7 .2

 $0 $400 $1000

Figure 2.2: An example probability measure.

The NM Axioms

Let Z be a finite set of consequences and P be the set of probability measures on

Z. P is the set of alternatives to be considered, referred to as the choice set. The

following three axioms are necessary and sufficient for the NM theory of expected

utility:

Axiom 2.1 ≻ is a preference relation.

Axiom 2.2 (substitution axiom) For all p, q, r ∈ P , and all a ∈ (0, 1], p ≻ q

implies ap + (1 − a)r ≻ aq + (1 − a)r.

Axiom 2.3 (Archimedean axiom) For all p, q, r ∈ P , if p ≻ q ≻ r then there

exist a, b ∈ (0, 1) such that ap + (1 − a)r ≻ q ≻ bp + (1 − b)r.

These axioms yield the following result:

Theorem 2.1 A binary relation ≻ on P satisfies the above axioms iff there exists a

function u : Z → R such that

p ≻ q ⇔
∑

z∈Z

u(z)p(z) >
∑

z∈Z

u(z)q(z)

Refer to [Kre88] for a proof. This theorem leads to the notion of expected utility.

Let L be a lottery whose outcome is selected by a probability measure p on a set of

consequences Z. Let z̃ represent the uncertain outcome of L. The expected utility of

L is

25

E[u(z̃)] =
∑

z∈Z

p(z)u(z) (2.2)

which, by Theorem 2.1, is an appropriate index to maximize in choosing among

lotteries.

Example 2.1 Consider a choice between the two lotteries given in Figure 2.3. Also,

assume the decision-maker has utilities as follows: u($50) = .1, u($400) = .5,

u($600) = .7, u($1000) = 1. The expected utility for lottery A is .6(.5)+ .4(.7) = .58,

and for lottery B is .5(.1) + .5(1) = .55. Therefore, this particular decision-maker

should choose A since it has the higher expected utility.

Example 2.2 Consider again the choice between the two lotteries given in Figure 2.3.

Assume this time that the decision-maker has utilities u($50) = .1, u($400) = .2,

u($600) = .7, u($1000) = 1. In this case, the expected utility for lottery A is

.6(.2) + .4(.7) = .4 and for lottery B is .5(.1) + .5(1) = .55, so this decision-maker

should choose B.

 A B

 .6 .4 .5 .5

 $400 $600 $50 $1000

Figure 2.3: If lottery A is chosen, the decision-maker has a .6 chance of winning $400
and a .4 chance of winning $600, while lottery B gives a .5 chance of winning $50 and
a .5 chance of winning $1000.

2.3.4 Assessing Utility Functions

Let Z be a set of consequences and P be a set of alternatives, which are probability

measures on Z. In order to determine the expected utility for each p ∈ P , the utility

26

of each consequence z ∈ Z must first be assessed. There are two basic approaches to

this problem: one for when Z is small (i.e. perhaps less than 50 [KR76]) and another

for when Z is large and there is a natural ordering of the z’s (e.g. a range of integers

like amounts of money). These two methods are now presented.

Direct Assessment of Utilities for Consequences

With direct assessment, each z ∈ Z is analyzed and assigned a utility on a case-by-case

basis. First, the scale must be set. Since utility is relative and not absolute, utility

can arbitrarily be assigned to two of the alternatives and the utilities of all others can

be assessed relative to those two. This is typically done in the following way. Let z0

and z∗ be least and most preferred consequences, respectively, as determined by the

decision-maker. Assign the utilities

u(z0) = 0 u(z∗) = 1

The utility for all other consequences can now be set in relation to these two (or any

other two consequences with established utilities) with use of certainty equivalence.

Definition 2.4 (Certainty Equivalent) A certainty equivalent of a lottery L with

uncertain consequence z̃ is a consequence ẑ such that the decision-maker is indifferent

between L and the consequence ẑ for certain. That is, u(ẑ) = E[u(z̃)].

The utility of any consequence zi can be computed in relation to any two conse-

quences zj and zk with known utilities u(zj) and u(zk) as follows: A probability π

must be determined such that zi is a certainty equivalent to the lottery that gives a

π chance of getting zj and a 1 − π chance of getting zk. That is, π is the probability

such that the decision-maker is indifferent between zi for certain and the lottery in

Figure 2.4. By the definition of certainty equivalent and by equation 2.2,

u(zi) = πu(zj) + (1 − π)u(zk) (2.3)

27

 1-

 zj zk

Figure 2.4: Lottery used to determine π.

Accurately determining these π values can be a difficult task for a typical decision-

maker. And so, because of likely errors, several consistency checks will have to be

made by comparing a consequence with many different lotteries. For large numbers of

consequences, where there is some underlying ordering of the consequences, there is

a much more efficient method. This method allows the decision-maker to determine

all utilities without considering every consequence individually.

Example 2.3 Let z1, z2, z3 ∈ Z be consequences such that u(z1) = .4 and u(z2) = .5.

If the decision-maker is indifferent between a lottery that yields .7 and .3 probabilities

of getting z1 and z2 respectively, and getting z3 for certain, then u(z3) = .7(.4) +

.3(.5) = .43.

Utility Functions for Real-Valued Consequences

When the set of consequences are associated with a numeric scale, an efficient method

for determining the utilities over Z is to assess the utilities for a few values, plot

these utilities on the plane, and fit a curve. In this way, the utility function can be

determined. This function can subsequently be used to compute the utility for any

z ∈ Z. This method is commonly used when the consequences are losses or gains

of monetary values. Such consequences are common in many applications of utility

theory.

As before, let z0 and z∗ be the least and most preferred consequences, respectively,

with u(z0) = 0 and u(z∗) = 1. If the consequences were, for example, different

amounts of money to be won, z0 would then represent the smallest amount that could

28

be won and z∗ the largest. On the plane, the x-axis is labeled by the consequences

and the y-axis by the utilities. All other points are found by determining the decision-

maker’s certainty equivalents for 50-50 lotteries, as follows:

• Let ẑ1 be the certainty equivalent for the 50-50 lottery between receiving

z0 and z∗. Since u(z0) = 0 and u(z∗) = 1, then by equation 2.3, u(ẑ1) =

.5(0) + .5(1) = .5

• Let ẑ2 be the certainty equivalent for the 50-50 lottery between receiving

z0 and ẑ1. Since u(z0) = 0 and u(ẑ1) = .5, u(ẑ2) = .5(0) + .5(.5) = .25

• Let ẑ3 be the certainty equivalent for the 50-50 lottery between receiving

ẑ1 and z∗. Since u(ẑ1) = .5 and u(z∗) = 1, u(ẑ3) = .5(.5) + .5(1) = .75

The process of determining certainty equivalents for 50-50 lotteries between values for

which the utilities are known continues until a suitable number of points are found.

This is known as the quantitative assessment procedure. To make the process of

accurately determining a utility function much easier, the qualitative characteristics

must also be assessed. These include whether the function monotonically increases or

decreases, as well as a characterization of the decision-maker’s attitude towards risk.

Monotonicity

A monotonic function is one that either never increases or never decreases. Mono-

tonicity is a reasonable assumption when dealing with utility functions for money.

When the consequences consist of monetary gains, most (if not all) decision-maker

always prefer more to less, and thus their utility function monotonically increases.

Conversely, if consequences are losses of money (e.g. spending), then the utility func-

tion is typically monotonically decreasing. Note that a decreasing function can easily

be transformed to an increasing function by changing the interpretation of the conse-

quences. For example, if the consequences are “amounts of money spent” z, and the

29

highest amount that one could possibly spend is $1000, then the consequences could

be changed to represent “amounts of money saved” 1000 − z.

Nonmonotonic utility functions are not completely uncommon. Consider, for ex-

ample, a human’s utility function for internal body temperature. One would expect

this utility to be maximized at about u(37) (degrees Celsius). Depending on the goals

of the decision-maker, it is possible that even a utility function for money could be

nonmonotonic (e.g. earning less money keeps one in a lower tax bracket). However, in

this thesis the assumption of monotonicity will be maintained for all monetary utility

functions. That is, winning more money is always better and spending more money

is always worse.

Risk Aversion

Recall Example 2.1 where the decision-maker is faced with the choice of either a

lottery that gives a .6 chance of winning $400 and a .4 chance of winning $600 (A), or

a 50-50 lottery between winning $50 and $1000 (B). Taking into account the decision-

maker’s utility for the relevant amounts of money involved, it was determined that

lottery A should be chosen. This may seem like the wrong choice at first, since

the expected outcome of A is only $480 while the expected outcome for B is $525.

However, this is just an example of risk aversion. This is the result of a phenomenon

known as diminishing marginal utility, which is quite common in decision-making.

The idea of diminishing marginal utility, as used in economics, represents the fact

that typically when one has a small number of units of some good, receiving another

unit increases the consumer’s satisfaction (commonly measured in utiles) more than

if he/she had a large number of units. So, small numbers of units carry more weight

per unit than large numbers when determining the consumer’s satisfaction. So in

this case, the negative prospect of receiving only $50 (instead of either $400 or $600)

carries more weight than the positive prospect of winning $1000. In other words,

the decision-maker is willing to take a loss in expected winnings of $45 in exchange

30

for eliminating the possibility of only winning $50. Note that while risk is a concept

independent of utility, it plays a role when determining the expected utility of an

alternative for which there are uncertain consequences.

Characterizations of a decision-maker’s attitude towards risk are now formally

given.

Definition 2.5 (risk averse) A decision-maker is risk averse if, for any lottery L

with expected outcome E(z̃), he/she prefers E(z̃) for certain to L. That is,

u[E(z̃)] > E[u(z̃)]

Definition 2.6 (risk neutral) A decision-maker is risk neutral if, for any lottery

L with expected outcome E(z̃), he/she indifferent between E(z̃) for certain and L.

That is,

u[E(z̃)] = E[u(z̃)]

Definition 2.7 (risk seeking) A decision-maker is risk seeking if, for any lottery L

with expected outcome E(z̃), he/she prefers L to E(z̃) for certain. That is,

u[E(z̃)] < E[u(z̃)]

A decision-maker’s attitude towards risk can give an indication of the shape of

his/her utility function, as given in the following theorem (proven in [KR76]).

Theorem 2.2 A decision-maker is risk averse (neutral, seeking) iff his/her utility

function is concave (linear, convex).

Note that Theorem 2.2 holds for both monotonically increasing and decreasing func-

tions. For example, Figure 2.5 depicts an example of a (a) monotonically increasing

and a (b) monotonically decreasing concave utility function for a risk averse decision-

maker. Also note that knowledge of whether one’s risk aversion or lack thereof in-

creases or decreases can also help in determining the shape of the utility function.

31

 .5

 0
 0 z+

 (a)

1

 .5

 0
 0 z+

 (b)

1

Figure 2.5: (a) Increasing and (b) decreasing concave utility functions for a risk averse
decision-maker.

Once these qualitative characteristics have been assessed, finding a suitable utility

function for a decision-maker can be reduced to the problem of finding a parametric

family of functions possessing the relevant qualitative characteristics. Then, using

the quantitative assessments (i.e. points found by using certainty equivalents of 50-

50 lotteries), the specific member of the family appropriate for the decision-maker

can be selected. See Meyer and Pratt [MP68] for work on effectively determining

functions that satisfy the qualitative and quantitative restrictions simultaneously.

2.3.5 Multi-attribute Utility

This section gives some background for assessing the utility of consequences for which

there is more than one attribute. In particular, methods for combining the utilities

of the individual attributes to give an overall utility are discussed. The convenient

situation for this combining occurs when the attributes in question are utility inde-

pendent of each other. This allows the decision-maker to consider the utility of each

attribute individually. Most of the discussion here will focus on utility independent

attributes, but a short illustration of techniques to consider when no independence

properties hold is also provided.

32

Presentation and Notation

In general, any number of attributes can be associated with any consequence. Here,

only the two-attribute case will be specifically treated. This is for three reasons: 1)

two-attribute utility theory is easily generalized for a larger number of attributes,

2) the two-attribute case is simpler for explanation and comprehension, and 3) only

two attributes are used in the application of utility theory in this thesis. Consider

the following notation to be used. Let X be the set of alternatives and Y × Z the

set of consequences, where Y and Z are attributes and each y ∈ Y and z ∈ Z are

specific instances of those attributes. The decision-maker has single-attribute utility

functions uy : Y → ℜ and uz : Z → ℜ. The goal is to determine the two-attribute

utility function u : Y ×Z → ℜ, which, if some independence property holds and some

additivity assumption is made, is a function of uy(y) and uz(z). These properties and

assumptions are discussed here.

Utility Independence

One of the most fundamental concepts of multi-attribute utility theory is that of

utility independence.

Definition 2.8 (utility independence) An attribute Y is utility independent of an

attribute Z iff the conditional preferences for lotteries on Y given some z ∈ Z do not

depend on the level of z.

For a more intuitive feel for utility independence, consider the lottery and its

certainty equivalent given in Figure 2.6(a). Note that z is constant throughout. If

it is determined that the decision-maker’s certainty equivalent ŷ would not shift if

the attribute Z was held constant at a different value, say z′ (as in Figure 2.6(b)),

then Y is utility independent of Z. Note that this does not imply that Z is utility

independent of Y . A similar test would have to be carried out in order to make this

33

determination. If Y and Z are each found to be utility independent of each other,

then they are said to be mutually utility independent.

 .5 .5 1 .5 .5 1

 (y, z) (y, z) (, z) (y , z) (y , z) (, z)

 (a) (b)

Figure 2.6: Demonstration of Y ’s utility independence with respect to Z.

When mutual utility independence is established, and an additivity assumption is

made, the two-attribute utility function u(y, z) can be completely assessed in terms

of the single-attribute utility functions uy(y) and uz(z).

The Additive Utility Function

The simplest of the two-attribute utility functions is the additive utility function,

which is based on the assumption of additive independence.

Definition 2.9 (Additive Independence (1)) Attributes Y and Z are additive

independent if the paired preference comparison of any two lotteries, defined by two

joint probability distributions on Y × Z, depends only on their marginal probability

distributions.

The above definition is written in a form that can easily be generalized for more than

two attributes. A more intuitive feel for additive independence of two attributes is

given in the next definition.

Definition 2.10 (Additive Independence (2)) Two attributes Y and Z are ad-

ditive independent if, for any values y, y ′ for Y and z, z′ for Z, the two lotteries given

in Figure 2.7 are equally preferable.

34

 .5 .5 .5 .5

 (y, z) (y′, z′) (y′, z) (y, z′)

Figure 2.7: Indifference implies additive independence between Y and Z.

This means that, when faced with a 50-50 lottery for receiving one of two Y values

together with a 50-50 lottery for receiving one of two Z values, the decision-maker

is indifferent as to how the Y and Z values might be paired together. The following

theorem is due to Fishburn [Fis65]. The reader is referred there for the proof. An

excellent presentation of additive utility including this theorem and proof can also be

found in [KR76].

Theorem 2.3 Attributes Y and Z are additive independent iff the two-attribute

utility function is additive. The additive form can be written as

u(y, z) = kyuy(y) + kzuz(z) (2.4)

where ky and kz are positive scaling constants.

The scaling constants are necessary since uy and uz are individually scaled from 0

to 1, but not in relation to each other. One attribute might be more important than

the other, for example, and would therefore need more weight. There are various

methods for determining the scaling constants for a utility function. Consider the

following utilities that are initially set:

u(y0, z0) = 0, uy(y
0) = 0, uz(z

0) = 0

u(y∗, z∗) = 1, uy(y
∗) = 1, uz(z

∗) = 1

Note that, for consistency, it must be the case that ky + kz = 1. By equation 2.4,

35

u(y∗, z0) = kyu(y∗) + kzu(z0) = ky(1) + kz(0) = ky (2.5)

The decision-maker can determine u(y∗, z0) in relation to u(y0, z0) and u(y∗, z∗) using

the method of direct assessment as described in section 2.3.4, yielding the value for

ky. Similarly, kz can be determined by finding u(y0, z∗). For consistency, ky + kz = 1

can be checked, perhaps causing the decision-maker to make a minor adjustment.

An easier method can be used if there exist values y, y ′, z, z′ such that the decision-

maker is indifferent between getting y with z and getting y ′ with z′. This implies that

u(y, z) = u(y′, z′), and gives a system of two equations with two unknowns (ky and

kz):

kyuy(y) + kzuz(z) = kyuy(y
′) + kzuz(z

′)

ky + kz = 1
(2.6)

which allows ky and kz to be solved.

The Bilinear Utility Function

While additive independence implies mutual utility independence, the converse is not

true (see [KR76, page 230] for an example). If two mutually utility independent

attributes cannot be shown to be additive independent, the bilinear representation

may have to be used, as given in the following theorem (proven in [KR76]).

Theorem 2.4 If two attributes Y and Z are mutually utility independent, then the

two-attribute utility function is bilinear. The bilinear form can be written as

u(y, z) = kyuy(y) + kzuz(z) + kyzuy(y)uz(z) (2.7)

where ky, kz and kyz are scaling constants and ky and kz are positive.

36

These scaling constants can be determined in a manner similar to that used for

the additive utility function, except that

ky + kz + kyz = 1 (2.8)

As before, ky and kz can be determined by assessing u(y, z0) and u(y0, z) respectively,

since

u(y∗, z0) = kyuy(y
∗) + kzuz(z

0) + kyzuy(y
∗)uz(z

0) = ky(1) + kz(0) + kyz(1)(0) = ky

u(y0, z∗) = kyuy(y
0) + kzuz(z

∗) + kyzuy(y
0)uz(z

∗) = ky(0) + kz(1) + kyz(0)(1) = kz

(2.9)

Finally, by equation 2.8, kyz is calculated by

kyz = 1 − (ky + kz) (2.10)

Dependent Attributes

A decision-maker’s utility for some attribute may depend on how much he/she receives

of some other attribute. When this is the case, computing the additive utility of the

attributes is not so straightforward. For example, consider a farmer who has utilities

for various amounts of rain and various amounts of sun. His/her utility for an amount

of one depends on the amount of the other, since a lot of sunshine would typically

increase the utility for large amounts of rain. Keeney and Raiffa [KR76] suggest some

ideas for overcoming these problems. A few of these are now briefly discussed.

Transformation of attributes. It may be possible to select an alternative set of at-

tributes, or to slightly change the meaning behind the attributes, to describe the

consequences.

Direct assessment. This is done in the manner described in section 2.3.4. Each

37

pair (y, z) is assessed individually. This requires many comparisons and many more

consistency checks, and is therefore only feasible if the number of pairs is small (less

than about 50).

Dividing Y × Z into subsets. The idea here is to break the consequence space into

parts such that, in each part, the attributes act independently. Consider again the

farmer example. For low levels of sun and rain, since the farmer requires higher levels

of each no matter what, his/her utilities for sun and rain likely increase as the levels

increase, regardless what is happening to the other.

There is no formal method for combining dependent attributes into an overall

utility. Each case must be analyzed and solved on an individual basis. As for the use

of utility theory in this thesis, mutual utility independence is a reasonable assumption.

2.3.6 Savage’s Expected Utility Theory

To this point, all discussion on expected utility theory has assumed the existence

of objective probabilities for consequences. This is, however, not always sufficient.

What if the decision-maker must make a choice between two alternatives for which

the outcomes are uncertain? In this problem, there are no convenient probability

measures over the consequences to help with the decision-making, yet a choice must

still be made. The decision-maker, in this case, must assess his/her beliefs of what

might happen, and subjectively decide upon the probabilities. While these subjec-

tive probabilities do not arise in the application of utility theory in this thesis, a

brief presentation of a model for this theory is included here strictly for the sake of

completeness.

Savage’s theory of expected utility [Sav54] is referred to by many as the crowning

achievement in utility theory. It is used as a means for determining a decision-maker’s

utility for choices for which the probabilities of consequences are purely subjective.

38

Consider, for example, a family outing. You are uncertain of the weather for the

day (it may be sunny, rainy, hot, cool, etc.), but you must make decisions on how

to prepare for the trip (how to dress, whether to bring umbrellas, picnic blanket,

etc.). Obviously, the likelihood of the various weather activities, along with utilities

for the different family activities, must be assessed in order to make the best decision.

Savage’s model works for this.

Let Z be a set of consequences, S be a set of states, and F a set of acts. Each

state s ∈ S is a compilation of all characteristics and factors that are relevant to

the consequences that will ensue from some choice. In the family outing example, a

possible state could be rain. The set F is the choice set (i.e. alternatives). Each act

f ∈ F is a function from S → Z. In this model, the problem faced by the decision-

maker is to choose an act f without knowing which state s will prevail, resulting in

some consequence f(s) with utility u(f(s)). For example, if f1 is the act of wearing

shorts and taking a picnic blanket, then u(f1(rain)) would probably be quite low, and

u(f1(sun)) would probably be quite high.

To make a decision, the decision-maker’s expected utility for each act in F must be

determined. Clearly, this is dependent on his/her beliefs about the weather. Formally,

an decision-maker prefers an act f to an act f ′ iff

∑

s∈S

p(s)u(f(s)) >
∑

s∈S

p(s)u(f ′(s)) (2.11)

where the probability function p : S → [0, 1] represents the decision-maker’s beliefs as

to the likelihood of each state occurring. The probability function is determined by

assessing the decision-maker’s preferences. For example, consider the acts (shown in

a manner similar to that used earlier for lotteries) given in Figure 2.8 between which

the decision-maker must choose. Let a ⊆ S and b ⊆ S be events, and let ac = S \ a

and bc = S \b be the complements of a and b. Note that, in this example, the possible

consequences are the same for each act. If the decision-maker chooses act f , then

39

that must mean that he/she judges a to be more likely than b, since taking a chance

on a occurring (and thus yielding the better consequence) is preferred to taking a

chance on b occurring (since winning $1000 is better than $0).

 f g

 a ac b bc

 $1000 $0 $1000 $0

Figure 2.8: Preference for acts determines subjective probability.

Savage provides a set of axioms and theorems that show how the probability

function p is uniquely defined by the decision-maker’s preferences. The reader is

referred to Savage for a more thorough treatment. Also see [Fis70] and [Kre88] for

work on Savage’s theory as well as work by Anscombe and Aumann [AA63], to whom

the seminal work on using both subjective and objective probabilities together is

attributed.

40

Chapter 3

Online Combinatorial Purchasing

3.1 Introduction

3.1.1 Motivation

Consider the problem faced by a single potential buyer who has a number of needs

that must be fulfilled, perhaps to complete some project, plan a vacation, etc. All

purchasing needs must be satisfied (partial fulfillment is unacceptable). The problem

is that there may be more than one way to fulfill these needs. That is, there may

be several different (not necessarily mutually exclusive) bundles of items such that

each would individually satisfy the needs of the buyer. Some bundles may consist of

more preferable items than others, and most likely would incur differing total costs

if purchased. The task of the buyer is to consider his/her utility for each bundle of

items, as well as his/her utility for spending the various amounts of money, and make

rational decisions in hope of achieving a bundle purchase yielding maximum overall

utility. Making this problem more difficult is the fact that cost and availability of

items fluctuate over time. This problem, referred to as the online combinatorial

purchasing problem (OCPP), resembles the real-life situation of a typical buyer in

need of purchasing a set of items. Often, a buyer does not need to procure all items

41

immediately, but might take days or even weeks to explore the market, comparison

shop, wait for sales, etc. During this time, some products are added to the market,

some are removed, and prices change. In this model, the buyer needs to not only

consider the possible bundle purchases available at the current time, but also possible

future bundle purchases. That is, at any given time, the buyer must answer the

following question: Should I take the best bundle purchase available now, or do I have

sufficient reason to believe that there will be a better bundle purchase available later?

Note that the buyer must consider the possibility that the good bundle purchase(s)

available now may become unavailable later.

To solve this problem, the buyer needs to have some information on not only what

is available at the current time and at what price, but also some, albeit incomplete

or probabilistic, information about the future. Specifically, it is assumed that at any

given time, if the buyer knows that an item i will become available in the future, then

he/she also 1) knows when i will become available, and 2) has an idea of what the cost

of i will be, in the form of a probability distribution. Calculating the buyer’s utility

for bundle purchases that include these “future” items requires the use of expected

utility theory. That is, in order to make a decision at some time point, the buyer

must compare the utilities of currently available bundle purchases with the expected

utilities of future bundle purchases.

This chapter gives a description of the tools needed to make decisions in the OCPP.

After giving a formal definition of the OCPP, the Price-Quote-Rescind protocol is

described as a set of message-passing rules for information exchange between a buyer

and a seller, defining when information about items will become known to the buyer.

The application of utility theory to the problem is then demonstrated by providing

a technique for determining the utility of a bundle purchase. Finally, a discussion on

expected utility provides some insight into how preferences for future possibilities are

assessed, and also lays the groundwork for when and how purchasing decisions should

be made.

42

3.1.2 Problem Formalization

Let I be a set of items and B ⊆ 2I be a set of bundles of items in I. At any given

time, let I contain only those items that are known to be available either currently or

during some definite future time period. I and B may therefore change over time as

new availabilities arise and others pass by. Each i ∈ I has a quoted cost c(i) and each

b ∈ B has cost c(b) equal to the sum of its item costs. Note that when two instances

of the same item are offered by two different suppliers, or by the same supplier but

as part of two different offers, they are treated as two different items in the present

framework (although they may be the same from the buyer’s point of view). If an

item i is currently available, then assume the buyer knows c(i). Otherwise, the buyer

has a probability measure p : Z → ℜ on the outcome of the cost of i, where Z is the

set of monetary units. This could be any discrete or continuous distribution obtained

from market history, from the supplier directly, a third party, or even subjectively

decided upon by the buyer. The goal in the OCPP is to make decisions that maximize

expected utility, ultimately giving the buyer the greatest chance of purchasing the

b ∈ B that is most preferable in terms of b and c(b).

3.2 The PQR Protocol

The Prequote-Quote-Rescind (PQR) protocol is a message-passing protocol for infor-

mation exchange between a supplier and a purchaser for probabilistic and temporal

information. It defines when information will become known by the purchaser about

items such as cost, the distribution of possible outcomes on cost, the time a quote

will be offered, and the time a quote will be terminated. This information can then

be used when planning purchases.

Let [t0, tn] ⊆ ℜ be the period of time during which a buyer needs to purchase

some bundle b of items I, and let tp : I → ℜ, tq : I → ℜ and tr : I → ℜ assign time

points to items i ∈ I such that t0 ≤ tp(i) ≤ tq(i) < tr(i) ≤ tn.

43

Definition 3.1 (quote time) The quote time for an item i, denoted by tq(i), is the

time at which i becomes available at a fixed known cost c(i).

Definition 3.2 (rescind time) The rescind time for an item i, denoted by tr(i), is

the time at which i becomes unavailable.

Note that by the definition of I given in section 3.1.2, i ∈ I at time t only if

t < tr(i).

Definition 3.3 (prequote time) The prequote time for an item i, denoted by tp(i),

is the time at which the buyer learns about the upcoming availability of i. In particu-

lar, the quote and rescind times tq(i) and tr(i) are learned, and a probability measure

p : Z → ℜ on the outcome of the cost of i is learned or otherwise determined.

Note that by the definition of I given in section 3.1.2, i ∈ I at time t only if

tp(i) ≤ t. This, coupled with Definition 3.2, implies that ∀i ∈ I at time t, tp(i) ≤ t <

tr(i).

Definition 3.4 (prequote interval, quote interval) Let [tp(i), tq(i)] and [tq(i),

tr(i)] be the prequote interval and quote interval, respectively.

Consider the simplest comparison shopping situation, where a supplier provides

the purchaser with the asking price for items and the purchaser can purchase them

at that price, for a possibly limited period. In this situation the supplier needs to

estimate the market demand and set prices accordingly.

This simplest comparison shopping protocol consists of the following messages

between the two principals: the purchaser P and the supplier S. From a purchaser’s

point of view this is a comparison shopping protocol because there may be several of

these conversations occurring at once between the purchaser and various suppliers.

1. P → S: < request for item i >

The purchaser tells the supplier what he wants to buy.

44

2. S → P: < c(i) > or < c(i), tr(i) >

The supplier gives the purchaser the cost of the item. Optionally a time limit

(given by the rescind time tr(i)) is provided. But if not, the purchaser may

assume that tr(i) = tn, or may choose tr(i) based on the supplier’s history of

how long such offers last. Note that the purchaser would choose such a tr(i)

only if he/she is certain that the offer will remain unchanged until at least that

time.

3. P → S: < purchase order for i >

Either there are no more messages or the purchaser accepts the offer and then

provides payment and delivery instructions.

PQR is an enriched protocol in which the supplier has an opportunity to gauge

market demand and prepare for a specific purchaser a customized pre-quote estimate,

and a time interval in which the later-given quote is valid. The PQR protocol between

one supplier and one purchaser consists of the same messages as the simple protocol

above, replacing message 2 with the following:

2-a S → P: < p(c̃(i)), [tq(i), tr(i)] >

This is a prequote message. The supplier gives the purchaser a probability

measure p on the outcomes for the uncertain cost c̃(i) of the item, and the

endpoints of the quote interval. The supplier may give several messages for the

same product, using different quote periods and price estimates. Typically, one

would expect the estimates to become more accurate as tq(i) approaches. The

moment this message arrives is known as tp(i). The probability measure p and

the rescind time tr(i) can be taken from sources other than the supplier, such

as historical data.

2-b S → P: < c(i) > or < c(i), [tq(i), tr(i)] >

45

The supplier is obligated to return a real numbered price for the item and this

message should be sent and received no later than tq(i). There may be several

of these messages. If the message contains just the cost, the purchaser may

assume the item is available at that cost until at least the tr(i) time given in

message 2-a. We assume that each prequote and quote period is associated with

at least one cost valid in that period.

Table 3.1 summarizes the time periods during which the buyer will have informa-

tion on the cost, potential cost, and availability of an item.

Interval Information
[t0, tp(i)] nothing is known about i
[tp(i), tn] tq(i) is known; tr(i) is known; a

probability measure on c(i) (and
perhaps c(i) itself) is known

[tq(i), tr(i)] i is available for purchase
[tq(i), tn] the actual price of i is known
[tr(i), tn] i is subject to unavailability or price

change

Table 3.1: Summary of time periods during which the buyer will have certain infor-
mation about an item i.

3.3 Assessing Utility

This section discusses the methods involved in determining a buyer’s overall utility for

purchasing a bundle of items. Although much of the background on utility assessment

is given in chapter 2, specifics on determining a buyer’s 1) utility function for money,

2) utility for each bundle, and 3) two-attribute utility function, which is used to

calculate the buyer’s overall utility for each bundle purchase, are given here.

46

3.3.1 Utility for Money

Section 2.3.4 gives a discussion on determining a utility function for a large set of

consequences where the elements have some sort of natural ordering. This is the

case when the consequences are gains or losses of monetary values. When analyzing

a buyer’s utility for money for the purpose of purchase utility assessment, all conse-

quences are assumed to be losses, since monetary losses are equivalent to expenditures.

That is to say that no positive monetary gains are considered valid consequences (i.e.

we assume that a purchaser will not be paid to buy something). Note that this as-

sumption is made strictly for simplicity, and does not affect the generality of problem.

Let Z be used to refer to the set of monetary units, with whatever desired degree

of granularity (e.g. dollars, cents, thousands, etc.), let z+ denote the highest value

in Z, and let z− denote the lowest value in Z, which unless otherwise specified, is

assumed to be 0. Also, let uz : Z → ℜ be the monotonically decreasing utility

function for money. This section outlines the qualitative and quantitative assessment

for the determination of uz for a given buyer.

Qualitative Characteristics

As stated before, all utility functions for spending money are assumed to be monoton-

ically decreasing (spending more money is always worse than spending less, all other

factors remaining equal). With this assumption in place, the remaining major qual-

itative assessment of a buyer’s spending utility function is the level of risk aversion.

This is determined by observing the buyer’s preference between certain lotteries and

their expected outcomes. As outlined in section 2.3.4, a decision-maker is risk averse

iff he/she always prefers the expected outcome of a lottery for certain over the lot-

tery itself. When the consequences are expenditures, then a risk averse buyer would,

for example, prefer to spend $100 on some item rather than take a 50-50 gamble on

having to spend either $80 or $120. Such a buyer’s utility function would be concave.

47

Figure 3.1 shows an example utility function for a risk averse spender, where a cost

of $0 (free) is the best consequence, and a cost of z+ (the highest possible cost) is the

worst consequence.

 .5

 0
 0 z+

 (b)

1

Figure 3.1: Utility function for a risk averse spender.

One can see from this function that, while the expected utility of a 50-50 lottery

between spending 0 and z+ would be .5uz(0) + .5uz(z
+) = .5(1) + .5(0) = .5, the

buyer’s utility for the expected outcome of the lottery (the midway point between 0

and z+ on the x-axis) is about .75. Thus, the expected outcome is preferred. If the

opposite is true, that the buyer always prefers the gamble, then he or she is risk prone

and would have a convex utility function. If the decision maker is always indifferent

between a lottery and its expected outcome, then he/she is said to be risk neutral

and would have a linear utility function.

Quantitative Assessment

The quantitative assessment procedure involves the actual determination of a suitable

number of points on the plane so that a curve can be fit. This is done with the use

of certainty equivalents. Specifically, a point can be determined considering a 50-50

lottery between the expenditure of two values z1 and z2 for which the utilities uz(z1)

48

and uz(z2) are already known. The certainty equivalent of this lottery is the value ẑ

such that the buyer is indifferent between spending the outcome of the lottery and

ẑ for certain. Thus the utility of ẑ is equal to the expected utility of the lottery,

and therefore uz(ẑ) = .5uz(z1) + .5uz(z2). This process is continued for different

pairs of values until a sufficient number of points for some curve-fitting technique are

determined. See [MP68] for a discussion on consistent simultaneous assessment of

qualitative and quantitative properties.

3.3.2 Utility for Bundles

In order to determine the utility for each bundle of items, the method of direct

assessment, described in section 2.3.4, must be used. Let B be a set of bundles, and

let ub : B → ℜ be the buyer’s utility function for the bundles in B. Let b0 and b∗

be the least and most preferred bundles in B, respectively, and set ub(b
0) = 0 and

ub(b
∗) = 1. For any bundle bi, some probability p, and two bundles bj and bk with

known utilities ub(bj) and ub(bk), if bi is a certainty equivalent of the lottery given in

Figure 3.2, then ub(bi) = pub(bj) + (1 − p)ub(bk).

 p 1- p

 bj bk

Figure 3.2: Direct assessment of bundle utility.

This method is only practical if there are few bundles (say ≤ 50 [KR76]), since

accurate values can only reasonably be obtained with the help of multiple consistency

checks, and the number of consistency checks needed grows exponentially with the

number of bundles. For larger numbers of bundles, the problem becomes much more

difficult. As a solution, one might suggest that since the number of items under

consideration in B can be as low as log |B|, it would be better to directly assess the

49

utilities of the items, and let the utility of a bundle be determined by an additive

function of the utilities of its items. However, this would not work in the general

case since these utilities are typically not additive. Each bundle must be assessed as

a whole, not by the sum of its parts. A better idea might be to have the decision-

maker put the bundles into groups, where all bundles in a group are (close to) equally

preferable. The decision-maker would then have the task of assigning a utility to each

group.

A full discussion on efficiently and accurately determining one’s utility for goods is

beyond the scope of this thesis, but is discussed extensively in the economics literature.

3.3.3 Utility of Bundle Purchases

Once the decision-maker’s utilities for money and bundles are assessed, the overall

utility for the purchase of a bundle b at total cost c(b) can be determined. This utility,

given by u(b, c(b)), is computed as a function of u(b) and u(c(b)). This function is

determined as follows.

The first step is to ascertain that the two attributes of a bundle purchase are

mutually utility independent. That is, it must be shown that a buyer’s 1) utility for

bundles will be independent of cost and 2) utility for money will independent of the

bundles that are procured. While any decision analysis will ultimately solely depend

on the attitude of the decision-maker, it can easily be assumed that in most (if not all)

reasonable circumstances, utility independence will hold between these two attributes

in this situation. Consider the following demonstration where, for any given bundle

purchase, attribute AB is the bundle and attribute AZ is the cost.

1) AB is utility independent of AZ : Let b1, b2, and b be bundles such that obtaining

b at a cost of $0 (i.e. for free) is the buyer’s certainty equivalent for a 50-50 lottery

between getting b1 for free or b2 for free. That is, the buyer is indifferent between the

two lotteries in Figure 3.3(a). If, as the cost of these bundles is increased to some

50

 .5 .5 1 .5 .5 1

 (b1, 0) (b2, 0) (b, 0) (b1, z) (b2, z) (b, z)

 (a) (b)

Figure 3.3: Demonstration of AB’s utility independence with respect to AZ .

 .5 .5 1 .5 .5 1

 (b, 0) (b, z*) (b, z) (b , 0) (b , z*) (b , z)

 (a) (b)

Figure 3.4: Demonstration of AZ ’s utility independence with respect to AB.

value, say z, the buyer sees no reason to adjust b (and thus is indifferent between the

two lotteries in Figure 3.3(b)), then AB is utility independent of AZ .

2) AZ is utility independent of AB: Let z+ be the highest possible cost for any

bundle, let b be some arbitrary bundle, and let z be the amount such that the buyer

is indifferent between a 50-50 lottery on obtaining b at a cost of z+ or 0, and obtaining

b at a cost of z for certain. That is, the buyer is indifferent between the two lotteries

in Figure 3.4(a). If, for any different bundle b′, the buyer sees no reason to adjust z

(and thus is indifferent between the two lotteries in Figure 3.4(b)), then AZ is utility

independent of AB.

In this thesis, we assume that this mutual utility independence holds. This is

reasonable since, in almost any conceivable purchasing situation, a buyer will always

have a desire to get a low price for any given bundle, regardless of which one, and

will always have a desire to get the best bundle for any given cost, regardless of what

51

that cost might be. Refer to section 2.3.5 for example situations where mutual utility

independence definitely does not hold.

Once mutual utility independence has been established, an assumption must be

made as to the additivity of the attributes in order to determine the two-attribute

utility function. Section 2.3.5 defined two such two-attribute functions: the additive

function and the bilinear function. In this thesis, we choose the bilinear

u(y, z) = kyuy(y) + kzuz(z) + kyzuy(y)uz(z) (3.1)

This choice is made for two reasons:

1) The additive function (see equation 2.4) can only be used if additive independence

holds between the two attributes, which is difficult to show.

2) The additive function is just a special case of the bilinear function (with kyz = 0).

Using this bilinear form, we obtain the two-attribute utility function for purchas-

ing bundles as follows: Let ub : B → ℜ and uz : Z → ℜ be the buyer’s utility

function for bundles and money, respectively. The buyer’s two-attribute utility func-

tion u : B × Z → ℜ is defined as

u(b, z) = kbub(b) + kzuz(z) + kbzub(b)uz(z) (3.2)

where kb, kz, and kbz are scaling constants which sum to 1. To compute these scaling

constants, as before let b0 and b∗ be the least and most preferred bundles respectively,

and let 0 and z+ be the minimum and maximum possible costs, respectively. Initially

set the following utilities:

u(b0, z+) = 0 u(b∗, 0) = 1

52

Next, the utilities u(b0, 0) and u(b∗, z+) are individually determined in relation to

u(b0, z+) = 0 and u(b∗, 0) = 1 using the method of direct assessment. By equations 2.9

and 2.10, the scaling constants kb, kz, and kbz are calculated by

u(b∗, z+) = kb(1) + kz(0) + kbz(1)(0) = kb

u(b0, 0) = kb(0) + kz(1) + kbz(0)(1) = kz

(3.3)

Since kb + kz + kbz = 1, then

kb = u(b∗, z+)

kz = u(b0, 0)

kbz = 1 − (kb + kz)

(3.4)

Once the two-attribute utility function u(b, c(b)) is defined for all b ∈ B for which

a cost c(b) exists (i.e. all items in b are available for sale), the best bundle to purchase

is determined by selecting the b such that u(b, c(b)) is maximized.

3.3.4 Expected Utility of Bundle Purchases

For each item i in a bundle b there exists a probability measure pi : Z → ℜ on the

price of i such that

∑

z∈Z

pi(z) = 1 (3.5)

Note that only simple probability measures have been considered to this point. This

means that, while the number of possible outcomes may be infinite, pi actually only

assigns non-zero probability to a finite number of them. Also note that if the current

time t is during the quote interval for an item i and its price is therefore known, say

equal to z, then pi(z) = 1. So there exists a probability measure for the price of all

items in b, regardless of whether t is during their prequote interval or quote interval.

53

This allows a simple probability measure pb on the price of the entire bundle to be

specified, where the probability pb(z) of b costing z is the probability that the costs of

all items in b sum to z. A buyer’s expected utility for a bundle can now be calculated.

Let ub : B → ℜ be the buyer’s utility for bundles, uz : Z → ℜ be utility for money,

u : B × Z → ℜ be the two-attribute utility function of ub and uz for bundles and

money, and pb : Z → ℜ be the probability measure on the price for a bundle b. Also,

let ũ(b) denote the uncertain outcome of the two-attribute utility of purchasing b.

The expected utility E[ũ(b)] of purchasing b is

E[ũ(b)] =
∑

z∈Z

pb(z)u(b, z) (3.6)

While it is beneficial for the sake of simplicity to discuss the basic concepts of

expected utility theory using simple probability measures that give only a few discrete

non-zero probability outcomes, in practice this might not be realistic. Typically, costs

of future items can more easily be considered as outcomes of some (often normally

distributed) random variable. For this reason, the cost c(i) of such a future item i is

henceforth described in this thesis by means of a continuous random variable Xi with

a probability density function pi, expected value E(Xi), and variance V (Xi). The

cost c(b) of a bundle of items is also a random variable with

E[c(b)] =
∑

i∈b

E[Xi] (3.7)

V [c(b)] =
∑

i∈b

V [Xi] (3.8)

Using these values to determine the probability density function pb for the cost of b,

the expected utility E[ũ(b)] of purchasing b is then

E[ũ(b)] =
∫ ∞

−∞
pb(z)u(b, z) dz (3.9)

54

Unfortunately, closed-form expressions for such integrals are often difficult to deter-

mine. They often must be estimated instead by means of an approximation formula

or algorithm, a randomized algorithm that generates suitable sample points so that

the integral can be estimated, or by splitting the function into pieces and treating

it as a discrete distribution. The issues involved in calculating expected values for

continuous random variables are addressed as needed in the next chapter.

55

Chapter 4

Simple Decision Making

4.1 Introduction

This chapter presents a strategy for making decisions in the online combinatorial

purchasing problem. Here, the restriction is imposed that all items in a bundle must

be purchased at the same time. This is a reasonable restriction to use in practice,

since a buyer may be hesitant to make partial bundle purchases for fear that prices

of subsequent required items may be too high. This would force the buyer to either

pay too much for a bundle, or abandon some or all of the items purchased altogether.

These costly possibilities are eliminated by this restriction. Another advantage of

such an imposition is that the computational burden is somewhat lessened, since a

number of possibilities are eliminated. All decisions are made at the bundle level, as

opposed to the individual item level. This is more natural, since utility functions are

developed for bundles and not items. While making decisions on whether or not to

buy individual items based on the buyers’ utility for bundles is much more difficult, it

is not impossible. The development of techniques for decision-making in that domain

is the topic of chapter 5.

In this chapter, the restriction of only purchasing complete bundles is formally

added to the problem definition. A näıve solution to the decision problem is then

56

presented that chooses to purchase a bundle if and only if its utility is greater than

the expected utility of all other bundles. This is followed by a description of a more

strategic technique that takes advantage of time periods during which many options

are available by utilizing comparison sets. These sets help show, by grouping together

future bundle purchases that will be available during the same time period, when is

most likely to be the best time to buy [BS03a].

4.2 Restricting the Problem Definition

Definition 4.1 For a bundle b, the interval pi(b) = [tq(b), tr(b)] =
⋂

i∈b[tq(i), tr(i)]

is known as the purchase interval of b. All items in a bundle can be purchased at any

time during its purchase interval.

Definition 4.2 A bundle b is a valid bundle iff pi(b) 6= φ.

Let t be the current time, let I be a set of items and B a set of bundles as defined

in section 3.1.2, and let tp(i), tq(i) and tr(i) assign time points to each item i ∈ I as

defined in section 3.2. Also, let Bv ⊆ B be the set of valid bundles. If ∃b ∈ Bv such

that t = tr(b), then the purchaser must decide whether to buy b or allow it to expire

and wait for another bundle in Bv \ b.

This defines the set of decision points to be {tr(b) | b ∈ Bv}. In theory, any

bundle is available for purchase at any time during its purchase interval, but it would

be unwise to commit to purchasing it much before tr(b). First of all, since the cost

of the bundle is fixed until tr(b) and tr(b) is known, there is no need to commit any

earlier. Secondly, since new information on other bundles may arise, it would be best

to wait until the last moment (perhaps leaving a minimal amount of time ǫ before

tr(b) to perform the transactions or inform the suppliers of the buyer’s intentions).

Therefore, decisions only need to be made at (or just before) these tr(b) time points.

At such a time, the utility of purchasing b is compared with the utilities and expected

57

utilities of other available and future prospects, and a decision on whether or not to

buy b is made. Note that if there are two bundles bj , bk ∈ Bv such that tr(bj) = tr(bk)

then the bundle with lower utility is eliminated from the decision process.

4.3 A Näıve Decision Procedure

This section formalizes a näıve decision procedure for the OCPP. The strategy pre-

sented is simple: Each time an item in a bundle b is about to expire, u(b, c(b)) is

computed, as well as the expected utility of all other valid bundle purchases. If

u(b, c(b)) is higher than all expected utilities, then buy b. Else, let it expire.

More formally, let b be the bundle currently available at cost c(b) that is about to

expire at time tr(b). Also let Bv be the set of valid bundles and let {E[ũ(b′)] | b′ ∈ Bv}
be the set of expected utilities of all valid bundles. At (or just before) time tr(b),

If u(b, c(b)) ≥ max{E[ũ(b′)] | b′ ∈ Bv}, then purchase b.

Else, allow b to expire.

This method is referred to as the näıve decision procedure since it merely pursues

the bundle with the greatest expected utility, without using any strategy or taking

any other factors into account. A more intelligent method that takes into account

the impact of possible future options is now given.

4.4 An Improved Decision Procedure

4.4.1 Motivation

The presentation in the previous section offers a decision procedure that always

chooses to pursue the bundle purchase with maximum expected utility. That is,

each time a valid bundle purchase is about to expire, it must be determined whether

58

or not there is a bundle purchase, either available now or in the future, that is likely

to be better. As is shown in this section, this approach to decision-making is too

näıve. Instead of determining whether or not there is a future purchase that is likely

to be better, it should be determined whether or not it is likely that a future purchase

will be better. These are two different questions, as explained with a simple example

in the following section.

4.4.2 Expected Highest Value

Consider playing a game of chance with a typical six-sided fair die. You roll it once

and get a 4. You are then given a decision to make: either you end the game and

take $4, or you can choose to give up the $4 and roll the die twice more, winning

the equivalent dollar amount of the higher of your two rolls. Making this decision by

determining whether there is a future roll that is likely to give more than $4 would

not be wise. If it was made in this way, the decision-maker would calculate that the

expected value of each roll is 3.5 (and therefore the expected winnings $3.50), which is

less than $4. So the decision-maker would choose to keep the $4. But the outcomes of

these two rolls are not considered separately. The decision-maker has the opportunity

to choose whichever is higher of the two, and should therefore compute the expected

higher value. Let x̃h be the uncertain higher outcome of the rolls and let P (x̃h = k)

be the probability that the higher value is k. The expected higher value is then

E(x̃h) =
6

∑

k=1

kP (x̃h = k) (4.1)

For example, if the events are two rolls of a die, the expected highest outcome is

computed as follows:

Probability that each die value will be the highest of the two rolls:

6: 11 of the 36 possible outcomes will have at least one 6

59

5: 9 of the 36 outcomes will have at least one 5 and nothing higher

4: 7 of the 36 outcomes will have at least one 4 and nothing higher

3: 5 of the 36 outcomes will have at least one 3 and nothing higher

2: 3 of the 36 outcomes will have at least one 2 and nothing higher

1: 1 of the 36 outcomes will have at least one 1 and nothing higher

P (x̃h = 6) = 11/36 P (x̃h = 5) = 9/36 P (x̃h = 4) = 7/36

P (x̃h = 3) = 5/36 P (x̃h = 2) = 3/36 P (x̃h = 1) = 1/36

E(x̃h) = 6(
11

36
) + 5(

9

36
) + 4(

7

36
) + 3(

5

36
) + 2(

3

36
) + 1(

1

36
) = 4.47

Since the expected highest value is 4.47, the decision-maker would expect on average

to make $4.47 if he/she chooses to continue.

The same idea comes up in making decisions about purchases. If one is trying to

choose between making a purchase now and waiting until later, and it is known that

there is a future time period where two or more bundles will be offered, the buyer

needs to compare the utility of the current bundle with the expected highest utility of

those future bundles, since the buyer will have the luxury of comparing them at that

time and choosing the one with the highest utility. The notion of a comparison set,

which is a set of bundles for which there is a period of time that the buyer will have

complete information, is now introduced.

4.4.3 Comparison Sets

Recall that the purchase interval pi(b) for a bundle b is the period of time during

which the prices of all items in b are known, and all items are available for purchase.

Definition 4.3 Let Bv be a set of valid bundles and let CS ⊆ Bv. CS is a comparison

set of Bv iff it is maximal such that ci(CS) =
⋂

b∈CS pi(b) is non-empty. The interval

ci(CS) is called the comparison interval of CS. The comparison set cover csc(Bv) of

Bv is the set of all comparison sets of B.

60

Note that ci(CS) is the period of time during which the prices of all items in all

bundles in CS are known, and all items are available for purchase. So the buyer has

complete information on all bundles in CS. Note that any bundle in Bv will appear

in at least one comparison set even if by itself, and may also appear in more than

one. Thus csc(Bv) is a covering of Bv.

Algorithm 4.1 (Construction) The comparison set cover csc(Bv) for Bv is con-

structed by first finding the comparison intervals, and then determining the compari-

son sets from those. This is done as follows. Let T be a sorted list of the time points

in {tq(b) | b ∈ Bv}∪{tr(b) | b ∈ Bv} from earliest to latest. Ties between a tq and a tr

time are broken by placing the tr time first, and all other ties are broken arbitrarily.

For each pair of consecutive elements tk and tk+1 in T , if tk is a tq time and tk+1 is a

tr time, then [tk, tk+1] is a comparison interval, and CS = {b ∈ B | [tk, tk+1] ⊆ pi(b)}
is therefore a comparison set. The comparison set cover csc(Bv) is then the set of all

of these comparison sets [Hor02].

Example 4.1 Let Bv = {b1, b2, b3, b4, b5} where each bundle has a purchase interval

as depicted by horizontal lines in Figure 4.1 (e.g. the purchase interval for b1 is [0, 3]).

The comparison intervals are indicated by dotted vertical lines in Figure 4.2. The

comparison set cover for B is then csc(B) = {CS1, CS2, CS3}, where CS1 = {b1, b2},
CS2 = {b2, b3, b4}, and CS3 = {b5}.

 b1

 b2

b3

b4
 b5

 0 1 2 3 4 5 6 7 8 9 10 11

Time

Figure 4.1: Purchase intervals for bundles in Example 4.1.

61

 CS1 CS2 CS3
 b1

 b2

b3

b4
 b5

 0 1 2 3 4 5 6 7 8 9 10 11

Time

Figure 4.2: Comparison set cover of Bv in Example 4.1.

Since all items in all bundles in a given comparison set CS are available during

a common interval and all prices are known, if the buyer chooses to buy during

this period, he/she will choose the bundle in CS with the highest purchase utility.

The utility one would expect to achieve during this period is therefore equal to the

expected highest utility of the bundles in CS, referred to hereafter simply as the

expected utility of CS and denoted by E[ũcs(CS)].

4.4.4 The Proposed Decision Procedure

Let X be a set of alternatives upon which a decision must be made. This decision

is said to be a certain decision if the outcomes of all alternatives in X are known

for certain, and an uncertain decision if the outcomes for one or more alternatives in

X are not known for certain. Note that utility is maximized when making a certain

decision and expected utility is maximized when making an uncertain decision.

If a buyer chooses to buy during some comparison interval, he/she will make a

certain decision on the bundles available during the interval and will thus choose the

one that maximizes utility. So by determining the comparison intervals, we can reduce

the large uncertain decision of choosing from several bundles into a potentially much

smaller uncertain decision of choosing from a few certain decisions. The (uncertain)

utility that one expects to have if faced with a future certain decision of choosing

among bundles in a comparison set is the expected highest utility of those bundles.

62

Using this idea, whenever a bundle purchase with utility u is about to expire, the

buyer determines whether or not there is a comparison set with expected utility

greater than u. If so, this means that there is some future certain choice that is

expected to be better, so the bundle should be allowed to expire. The entire decision

procedure is now formally described.

Let b be the bundle currently available at cost c(b) that is about to expire at time

tr(b). Also let Bv be the set of valid bundles and let csc(Bv) be the comparison set

cover for Bv, each CS ∈ csc(Bv) with expected utility E[ũcs(CS)].

If u(b, c(b)) ≥ max{E[ũcs(CS)] | CS ∈ csc(Bv)}, then purchase b.

Else, allow b to expire.

Using this decision procedure is proven to provide the buyer with a higher expected

utility than using the näıve decision procedure (see Theorem 6.1 in section 6.1.1).

Unfortunately, computing expected utilities of comparison sets can be quite complex.

This is the topic of the next section.

4.5 Calculating the Expected Utility of a Compar-

ison Set

When using continuous random variables to represent item prices, in order to calculate

the exact expected utility of a comparison set, one would have to solve the multiple

integral

E[ũcs(CS)] =
∫ 1

0
. . .

∫ 1

0
max{x1, . . . , xn}

n
∏

i=1

pi(xi) dx1 . . . dxn (4.2)

where x1, . . . , xn are the utilities of the bundles in CS and p1, . . . , pn are their respec-

tive probability density functions. Since no closed-form expression exists for even the

single integral of a normal probability density function [MS73], if some or all of the

63

pi are normal (or some other complex form) then it is unlikely that the above can be

expressed in closed form. Therefore it must be approximated.

One thing that needs to be considered is that, since bundles available in the same

time period may share items, some interdependence may exist among bundle costs in

a given comparison set. So if one bundle ultimately costs more than was originally

predicted, it is likely that other bundles in the comparison set that have items in

common will cost more as well. Moreover, interdependence may exist even if there

are no common items, but still some interdependence in the costs of items exists (e.g.

gas and oil). This makes the expected highest utility difficult to compute. Because of

the potentially high quantity of bundles and items that could be under consideration,

approximation methods for calculating probabilities become difficult and lead to high

error. A simple and relatively accurate solution to the problem of approximating

expected utilities for comparison sets is to use a Monte Carlo method.

4.5.1 Simple Calculation

If no interdependence exists between bundles in a comparison set, a simple method

for approximating the expected highest utility is to divide the space of outcomes

into discrete values (perhaps increments of 0.001 from 0 to 1), and determine the

probability of each value being the highest. The expected highest value E[ũcs(CS)]

for a comparison set CS can be approximated by

E[ũcs(CS)] =
∑

k∈K

k

P [
∧

b∈CS

c̃(b) ≤ (k + d/2)] − P [
∧

b∈CS

c̃(b) ≤ (k − d/2)]

 (4.3)

where K is the desired set of discrete units, d is the increment size of elements of K,

and c̃(b) is the uncertain outcome of the cost of b.1

1Here P [
∧

b∈CS
q(b)] is the probability that property q(b) holds for all b ∈ CS.

64

4.5.2 Monte Carlo Simulation

Monte Carlo [HH64, MU49] methods involve simulation to approximately solve a

mathematical problem. Such a method can be used to estimate the expected highest

utility of a set of bundles in a comparison set. This is done by first properly modeling

the system of items residing in the bundles in question, which includes the probability

distributions for costs of the items as well as possible interdependencies between the

item costs, if they exist. The results of several independent simulations of the random

elements involved in the system are then obtained. For each simulation, the outcomes

of the item prices are used to determine the utility of purchasing each bundle, and the

highest is noted. The average of these results is then taken as the unbiased estimator

of the expectation θ, and the standard error is σ/
√

n, where σ is estimated by the

sample standard deviation and n is the sample size.

This method is known as crude Monte Carlo, since it consists only of straight sim-

ulation. The simulation process can be improved upon, however, possibly producing

a more accurate result with less work by using a variance reduction technique.

4.5.3 Variance Reduction

The efficiency of a Monte Carlo method strongly relies on the variability of the es-

timate. It is likely that a user of a Monte Carlo method will require some degree

of confidence in the estimator, and therefore a sufficient number of values must be

generated. This can become impractical, since in order to reduce the standard error

σ/
√

n by a factor of 10, for example, n must be increased by a factor of 100. An

additional or alternative method for reducing the standard error is to use a variance

reduction technique. Such techniques usually involve modifying the simulation in

such a way so that the outcomes will have the same expected value but a smaller

variance.

The variance reduction technique used in experiments for this thesis is referred

65

to as the antithetic variate method [HM56]. Antithetic variates are estimators that

mutually compensate for each other’s variations. This idea is used to reduce the

variance in the estimation of an expectation as follows (as given in Hammersley and

Handscombe [HH64]): Two estimators t and t′ are chosen, where t is the original

estimator of θ, and t′ is an estimator that has the same (unknown) expectation as

t but has a strong negative correlation with t. Then 1
2
(t + t′) will be an unbiased

estimator of θ, and its sampling variance is

var[
1

2
(t + t′)] =

1

4
var(t) +

1

4
var(t′) +

1

2
cov(t, t′) (4.4)

Suitably choosing t′ so that the covariance cov(t, t′) is negative has the potential to

significantly reduce the variance. Note that for the reduction to be significant, it must

save more work than the extra work required by computing the second estimator.

This technique is used to reduce the variance when finding the expected utility of

a comparison set as follows. Note that, for this particular technique to work properly

as it is applied here, random variables must have symmetric probability distributions

(e.g. normal). In each simulation, the cost c(i) of each item i in the comparison set

is selected at random from its corresponding probability distribution p. Let a second

cost c′(i) = 2E[c(i)] − c(i) be a value such that p(c′(i)) = p(c(i)) (see Figure 4.3 for

an example). The first estimator t is then constructed by finding the highest utility

of all bundles using the c(i) values. The second estimator, t′, is the highest utility of

all bundles using the c′(i) values.

Note that since c(i) and c′(i) are chosen from the same distribution for each i,

then t and t′ have the same expectation. So t and t′ are both unbiased estimators

of θ, and therefore 1
2
(t + t′) is an unbiased estimator of θ. Also note that, for each

i, c(i) and c′(i) values should be negatively correlated (especially if the distributions

are normal). This should cause t and t′ to be negatively correlated, thus reducing the

variance of the estimator. The effectiveness of the technique is tested in section 6.4.

66

 p

 c(i) c′(i)

Figure 4.3: Obtaining the c′(i) for the second estimator t′.

67

Chapter 5

Complex Decision Making

5.1 Introduction

The preceding chapter discusses a method for combinatorial purchasing in which all

items in a bundle are purchased at once. That is, the exact bundle to be purchased is

decided upon before any individual items are purchased, and any purchasing can only

be done at a point in time when all items in the bundle are available. The advantage

of this model is that the purchaser not only knows that all items are available, but also

knows the total cost of the items before he/she commits to buying any of them. This

eliminates the risk of purchasing a part of a bundle only to realize that the remaining

items are more expensive than originally believed, or perhaps unavailable altogether.

However, this restriction can significantly reduce the number of viable options that

the buyer is allowed to pursue. It would be beneficial to allow such partial bundle

purchases if the potential gain in utility is high and the risk is relatively low.

This chapter presents a method for bundle purchasing that allows for these partial

purchases. This is done by means of building a purchase procedure. The procedure

will guide the decision process through the individual purchases, helping to make

rational decisions along the way, until an entire bundle is procured. This is done with

the use of expected utility theory. Simply put, the buyer is instructed to purchase

68

an item at a given time if the expected utility of buying the item is higher than

the expected utility of not buying the item. Calculating these utilities, however, is

a daunting task since several issues need to be considered. Consider an item i that

is about to expire. The expected utility of buying i depends on the possible bundle

purchases that include i and any items already purchased, and the expected utility of

not buying i depends on the possible bundle purchases that include the items already

purchased but do not include i. Determining the expected utility of a choice is more

difficult here because one must consider not only the utilities of the bundles that

could be completed as a result of the choice and their expected costs, but also what

decisions will subsequently need to be made because of the path that has been chosen.

One must also consider what information will be available to the purchaser at these

later decisions, making this an extremely difficult mathematical problem.

The decision problem here is formally defined as follows: Let t be the current

time, let I be a set of items and B a set of bundles as defined in section 3.1.2, and let

tp(i), tq(i) and tr(i) assign time points to each item i ∈ I as defined in section 3.2.

If ∃i ∈ I and ∃b ∈ B such that i ∈ b and t = tr(i), then the purchaser must decide

whether to buy i or allow it to expire.

After the structure of a purchase procedure tree is defined and its usage is demon-

strated, a discussion on the general usage of decision trees to solve choice points in

a purchase procedure is given. The rollback solution method of computing expected

utilities for choices in a decision tree is then described. Next, a modified version

of the decision tree that is more suited to solving decisions native to this particular

problem, called the Quote-Rescind tree (QR-tree), is proposed. This decision tree is

much smaller and requires less redundant work than would a general decision tree.

Continuous random variables in the tree are handled by both discrete approximation

and Monte Carlo simulation, and several solution techniques are presented. Finally,

a few issues that had been ignored for the sake of simplicity are brought back to

complete the discussion.

69

5.2 Purchase Procedure Trees

In order to structure the decision process, a purchase procedure tree is introduced.

This tree graphically depicts the process of making decisions and purchases that, given

the set of items for which there is a prequote or quote, when executed will result in a

complete bundle purchase. Starting at the root node, the buyer proceeds toward the

leaf nodes, buying items at purchase nodes and making decisions at decision nodes.

Once the final purchase is made at some leaf in the tree, the buyer will have procured

a complete bundle. This section presents the formal definition as well as the method

for construction of such a tree.

5.2.1 Purchase Procedure Tree Definition

A purchase procedure tree is a tree T = (V, E) where V is partitioned into two types

of nodes: a set P of purchase nodes and a set D of decision nodes. The purchase

nodes are labeled by the items they represent. There are also three functions on the

nodes, tq : P → ℜ, tr : P → ℜ, and t : D → ℜ. At time t, let I be the set of items

not yet procured for which the prequote or quote interval includes t, and B ⊆ 2I be

a set of bundles. T is a purchase procedure tree at time t on B iff the following are

true:

• Each purchase node in T has at most one child node.

• Each decision node in T has two child nodes.

• Each purchase node p in T represents the purchase of an item i and

tq(p) = tq(i) and tr(p) = tr(i).

• For any two purchase nodes p1 and p2 in T , if p1 is an ancestor of p2 then

tr(p1) ≤ tr(p2).

• For any two sibling nodes v1 and v2 in T , if v1 is to the left of v2 then

tr(v1) ≤ tr(v2).

70

• For any decision node d with left child ℓ(d), t(d) = tr(ℓ(d)).

• For any root-to-leaf path in T , the set of items represented by the purchase

nodes on the path is a bundle in B, and all elements of B are represented

by some path.

Execution of the purchase procedure begins at the root of the tree and continues

toward the leaves. Whenever a purchase node p is encountered, the buyer is advised

to purchase the item represented by p at (or just before) time tr(p). When a decision

node d is encountered, the buyer must make the decision of which path to choose.

There will always be two options: buy the item in the remaining bundles that will

expire next (ties are broken arbitrarily), which is represented by the left child node, or

allow it to pass. Execution continues until a leaf node is reached and the corresponding

purchase is made, completing a bundle purchase.

Note that a purchase procedure tree built at time t will not depict purchases or

decisions that occurred before t. The root always represents the first action at t.

Figure 5.1 depicts an example purchase procedure tree where I = {A, B, C, D, E,

F} and B = {{A, B}, {A, C}, {D, B}, {E, F}} (hereafter written simply as B = {AB,

AC, DB, EF}). The convention for drawing such trees is to label purchase nodes by

the item each represents and decision nodes by a uniquely subscripted d.

 d1 B = {AB,AC,DB,EF}

 tq(A) = 0 tr(A) = 2
 tq(B) = 1 tr(B) = 6
 A d2 tq(C) = 7 tr(C) = 9
 tq(D) = 1 tr(D) = 5
 tq(E) = 3 tr(E) = 8
 tq(F) = 5 tr(F) = 9
 d3 D E
 t(d1) = 2
 t(d2) = 5
 t(d3) = 6
 B C B F

Figure 5.1: Example purchase procedure tree.

71

5.2.2 Construction

Algorithm 5.1 (Purchase Procedure Tree Construction) Let I be the set of

items and B ⊆ 2I the set of bundles. For any node n, let In be the set of items

labeling ancestors of n and let Ln be the set of items labeling the left children of

proper ancestor decision nodes of n. Then the set of bundles that can be procured

below n is Bn = {b ∈ B | In ⊆ b} − {b ∈ B | ∃ℓ ∈ Ln ∧ ℓ ∈ b} (since no item labeling

the left child of a decision node d can appear in d’s right subtree), and therefore

IBn
= {i ∈ b | b ∈ Bn} \ In is the set of items that can potentially label proper

descendents of n.

1. Let r be the root;

2. construct(r);

3. While there is a non-terminal leaf node n, constructChildren(n);

construct(n): If IBn
= φ, then let n be a terminal node. Else if there exists an i such

that tr(i) is a minimum in IBn
and i ∈ b for all b ∈ Bn, then let n be a purchase node

labeled by i. Else, let n be a decision node.

constructChildren(n): If n is a purchase node, then let c(n) be the child of n and

construct(c(n)). Else n is a decision node. Let ℓ(n) and r(n) be the left and right

children of n respectively, and i be an item in IBn
such that tr(i) is minimal. Let ℓ(n)

be a purchase node labeled by i, let t(n) = tr(ℓ(n)), and construct(r(n)).

Note that, while the purchase procedure tree will never plan them, extraneous

purchases are possible with this model. For example consider the purchase procedure

depicted by the tree in Figure 5.1, in which the purchaser chooses to buy A. After A

is purchased, the new set of bundles will be B = {B, C, DB, EF} (assuming no new

offers have entered the situation). This allows for the possibility that EF could still

be purchased if it turns out to have a highest expected utility of all options, even if

72

it meant that A is wasted. This occurrence is unlikely, however, given the fact that

the prospects associated with buying A were good enough to warrant A’s purchase.

5.3 Conventional Decision Trees for Purchase Pro-

cedures

While executing a purchase procedure, the buyer must decide which course of action

is likely to be most beneficial whenever a decision node is visited in the procedure

tree. To facilitate the decision process, expected utility maximization is used as the

criterion for ascertaining the best choice. Since the expected utility of a choice is

dependent on choices that will be made at subsequent decision points, a decision tree

is used.

5.3.1 Conventional Decision Trees

The general terminology and structure for the decision tree [Mag64] in this discussion

is largely taken from Raiffa [Rai68] and Goodwin and Wright [GW99].

Representation

A decision tree, as it pertains to decision analysis, is a schematic presentation of a

sequence of decisions and their possible consequences. Typically, the tree is drawn so

that the root is on the left and the leaves are on the right. There are three types of

nodes:

• decision nodes, typically represented by squares

• chance nodes, typically represented by circles

• leaf nodes (often referred to as the endpoints)

Edges are labeled as follows:

73

• Edges emanating from a decision node are labeled by the possible options.

• Edges emanating from a chance node, are labeled by the possible consequences,

as well as the probability of each consequence occurring, if available.

Finally, the endpoints are labeled by the numeric measure (e.g. utility, money) that

would result from the corresponding sequence of decisions and consequences. Fig-

ure 5.2 depicts an example decision tree for the decision problem described in Ex-

ample 5.1. Execution moves left to right. At each square node, the decision maker

needs to choose exactly one of the options labeling the following edges. Execution

proceeds down that path. At circle nodes, one of the consequences on the following

edges will be selected by chance, and execution will proceed down that path. This

process continues until an endpoint is reached, and the decision-maker has achieved

the corresponding value.

Example 5.1 John is 20 years away from retirement and has been offered a choice

between two positions in his company. Position A will pay John $40,000 per year,

with a 10% chance for a $10,000 raise after 10 years. Position B pays only $30,000

per year, but there is a 50% chance of getting a $30,000 raise after 10 years. Also, if

he takes Position B and does not get this raise, he will have the option of switching

to Position A at $40,000 per year. John’s only concern is making as much money as

possible over the next 20 years. Figure 5.2 depicts the decision tree for this decision

problem.

Solution

While the decision tree provides a good graphical understanding of a decision problem,

the main object in modeling a decision problem in this way is to determine the best

course of action. Specifically, it is used to determine the choice that will give the

decision maker the best expected outcome at a given decision point. This is done

using the rollback solution method.

74

 take position A ($40,000) (p = .1) get $10,000 raise
 $900,000

 (p = .9) no raise
 $800,000

 take position B ($30,000) (p = .5) get $30,000 raise
 $900,000

 (p = .5) no raise take position A ($40,000)
 $700,000

 keep position B
 $600,000

Figure 5.2: An example decision tree.

To apply this method, the tree is analyzed from right to left by considering the

later decisions and chances first. Each node will be labeled by the outcome E(n)

expected by the decision maker if this node is traversed. Initially, all endpoints are

labeled. For any chance node n such that all children nodes C of n are labeled, if

p(n, ci) is the probability labeling the edge (n, ci) of the corresponding consequence,

then

E(n) =
∑

c∈C

p(n, c)E(c) (5.1)

For any decision node n such that all children nodes C of n are labeled, E(n) is

simply the maximum E(c) for all c ∈ C, since the decision-maker would just choose

the best of all choices. Consider Figure 5.3, which depicts the solution for the tree

in Figure 5.2. This indicates that the decision-maker would expect to make $10,000

more if position A is taken.

75

 $810,000
 take position A ($40,000) / (p = .1) get $10,000 raise
 $900,000
 $810,000
 (p = .9) no raise
 $800,000

 $800,000
 take position B ($30,000) / (p = .5) get $30,000 raise
 $900,000
 $800,000
 $700,000
 (p = .5) no raise / take position A ($40,000)
 $700,000

 keep position B
 $600,000

Figure 5.3: Solution to the example decision tree.

5.3.2 The Purchase Procedure Tree as a Decision Tree

Transformation without Chance Nodes

To determine the course of action to be taken at a decision in a purchase procedure,

the purchase procedure tree can be transformed to a special case of a decision tree,

where there are no chance nodes. For every pair of decision nodes d′ and d′′, if there

are no intervening decision nodes between d′ and d′′, replace the path from d′ to d′′

with a single edge. Label this edge with all of the items that were on the original

path. For every decision node d that has no descendent decision node, replace each

of the two paths below it with an edge as just described and create a leaf node for

each edge. These leaf nodes are the endpoints. Label the endpoints by the expected

utility of purchasing the bundle formed by the items labeling edges on the path from

the root. If the root is not a decision node, then remove the nodes and edges above

the first decision node d and add the items that had labeled those nodes to the items

labeling the edges emanating from d. Finally, draw the tree from left to right and

the decision nodes as squares. The resulting tree is a decision tree as defined in

section 5.3.1. Figure 5.4 illustrates an example transformation.

76

 tr(A) = 0 d1
 tr(B) = 2
 tq(C) = 4 tr(C) = 8
 tq(D) = 3 tr(D) = 5
 tq(E) = 7 tr(E) = 9 A B

 t(d1) = 0
 t(d2) = 5 C d2

 D E

 Buy AC
 E[u(AC)]

 Buy B Buy D
 E[u(BD)]

 Buy E
 E[u(BE)]

Figure 5.4: Example transformation of a purchase procedure tree to a decision tree.

This decision tree can be used to solve näıvely the problem of deciding whether

or not to make a purchase. Using the rollback method on this tree would effectively

advise the buyer to buy an item i iff there exists a bundle b ∈ B containing i such

that expected utility E[ũ(b)] = max{E[ũ(b′)] | b′ ∈ B}. This would be the proper

method if a decision had to be made up front on which bundle to buy before any

information is known. However in real life, one would (almost) never buy an item

without first knowing its price. The act of learning outcomes of item prices must be

inserted into proper positions in the decision tree as chance nodes. Only then can the

decision problem be properly modeled by the decision tree and can accurate expected

values be computed.

Inserting Chance Nodes into the Decision Tree

Informally, a chance node is inserted between any pair of adjacent decision nodes in

the decision tree if any new information is expected to become available during the

interim between decision times. Formally, let d′ and d′′ be any two adjacent decision

nodes such that t(d′) < t(d′′), and let IBd′
be the set of items that label edges below

d′. If there exists an i ∈ IBd′
such that t(d′) < tq(i) ≤ t(d′′), then a chance node needs

to be inserted between d′ and d′′.

Consider the following notation used to represent a set of outcomes for a set of

77

items I. Let K(I) = {k1, . . . , kn} be the set of joint outcomes for I where each

kj : V → ℜ is a function that assigns the cost to each vertex representing an item in

I for that particular outcome. Note that it is possible for two v, v ′ ∈ V to represent

the same item i ∈ I. In this case, for any kj ∈ K(I), kj(v) = kj(v
′). If the outcomes

for item prices are discrete, then the procedure of adding a chance node is as follows.

Let Id′ = {i ∈ IBd′
| t(d′) < tq(i) ≤ t(d′′)} be the set of items below d′ for which

prices become known before the decision at d′′, let c be the new chance node, and

let K(Id′) be the set of possible joint outcomes for prices of items in Id′ . Remove the

edge (d′, d′′) and add edge (d′, c). Create |K(Id′)| copies of the subtree beginning at

d′′, joining an edge from c to the root of each subtree, and label each of these new

edges with a unique k ∈ K(Id′) as well as the probability of k occurring. Finally,

re-label each endpoint in the tree by the utility of buying its corresponding bundle

at the cost outcomes specified by the labels of the edges on its path from the root.

Example 5.2 Consider again the purchase procedure tree in Figure 5.4. At the root

decision time (say time 0), the outcomes of A and B are already known, and all

other items have two possible outcomes, either high or low, each with a 50% chance

of occurring. Figure 5.5 represents the decision tree to be used for solving the root

decision, with chance nodes included.

If the outcomes for item prices are continuous, then inserting a chance node is not

as straightforward since there will be an infinite number of outcomes. One solution

is to approximate the corresponding continuous probability density function (pdf)

with a discrete distribution that has a finite number of outcomes. For example,

the Pearson-Tukey (PT) three-point approximation [PT65, KB83] has been found

to be surprisingly accurate with a number of such functions. The three discrete

outcomes {x1, x2, x3}, each with probability p(x) of occurring, associated with a PT

approximation of a continuous probability density function for a random variable X

are as in Table 5.1. If X is a normally distributed random variable with mean µ

78

 Buy AC (p = .5) Chigh
 u(A,Chigh)

 (p = .5) Clow
 u(A,Clow)

 Buy B (p = .5) Dhigh Buy D
 u(B,Dhigh)

 Buy E (p = .5) Ehigh
 u(B,Ehigh)
 (p = .5) Elow
 u(B,Elow)

 (p = .5) Dlow Buy D
 u(B,Dlow)

 Buy E (p = .5) Ehigh
 u(B,Ehigh)
 (p = .5) Elow
 u(B,Elow)

Figure 5.5: Transformation of the purchase procedure tree in Figure 5.4 to a decision
tree (described in Example 5.2).

and standard deviation σ, then the three outcomes in a PT approximation are as in

Table 5.2.

Outcome x p(x)
x such that P (X > x) = .95 .185
x such that P (X > x) = .5 .63
x such that P (X > x) = .05 .185

Table 5.1: Outcomes and probabilities for the PT three-point approximation.

Chance nodes for items for which there is a continuous pdf on the price outcomes

can now be inserted in the same manner as those with discrete distributions if the

PT approximation is used. Another method for incorporating chance nodes with

continuous pdf’s into a decision tree is to use a Monte Carlo algorithm. This technique

is investigated in section 5.6.

79

Outcome x p(x)
µ − 1.645σ .185
µ .63
µ + 1.645σ .185

Table 5.2: Outcomes and probabilities for the PT approximation of a normal random
variable.

5.3.3 Inefficiencies of Conventional Decision Trees

While the previous section describes a transformation of the purchase procedure tree

that yields a perfectly legal decision tree, because of the nature of the problem that the

decision tree is being used to solve, there are two major inefficiencies with the design.

Even if there are only three outcomes for each chance node, using this method for

instances in which there are many items will cause trees to be too large. Fortunately,

this unmanageable growth is the result of many unneeded subtree duplications in the

construction that can be avoided. After giving a brief analysis of this growth, this

section discusses the two problems that cause identical subtrees to be constructed.

Let T be a decision tree constructed as demonstrated above and let m be the

number of discrete outcomes for each item. Let n be a chance node in T with child

decision nodes (as opposed to leaf nodes) and let I(n) be the items for which outcomes

are learned at n. Then there are m|I(n)| joint outcomes for n, and therefore n has

m|I(n)| child decision nodes. Since each decision node has two children, the rollback

method has 2m|I(n)| subproblems to solve before the decision nodes can be resolved

and the expected value E(n) of n can be computed. Fortunately, this number can

be reduced since many of the subproblems are the same and therefore need to be

solved just once. Each of the two causes for subtree duplication are now individually

demonstrated.

Duplication Cause #1: Let d be a decision node child of n, let c and c′ be the children

of d and let I(c) and I(c′) be the subsets of I(n) that may be purchased if the decision

80

is made to proceed to c or c′ respectively. Then there are m|I(n)|−|I(c)| decision node

children of n for the same outcome of the items in I(c) (but different outcomes for

I(n)\ I(c)). Since the subproblem of determining the expected utility of c only needs

to be solved once (similarly for c′), there are only m|I(c)| + m|I(c′)| subproblems to

solve. Refer to Figure 5.6 for example. The problems of solving each of subtrees T1

and T2 are identical, since both represent the problem of computing expected utility

if the buyer buys B at $5 and C at $6.

Duplication Cause #2: Let c be a child of a decision node d and let Id be the set

of items purchased on the path from the root to d. If there is a subset I ⊆ Id such

that there are two joint outcomes k and k′ such that the total cost of the items in

I for outcome k is equal to the total cost of the items in I for outcome k ′, then a

duplicate of the subtree below c exists. Again, refer to Figure 5.6. The problems of

solving each of subtrees T2 and T3 are identical, since, even though B and C have

different outcomes, both represent the problem of computing expected utility if the

buyer buys B and C at a total of $11.

 A=5 B=5 C=6 Buy A

 Buy B, C
 T1

 A=6 B=5 C=6 Buy A

 Buy B, C
 T2

 A=6 B=6 C=5 Buy A

 Buy B, C
 T3

Figure 5.6: Decision tree where T1, T2 and T3 represent the same subproblem of
computing expected utility where the buyer has bought B and C at a total of $11.

81

In order to eliminate the above inefficiencies caused in building general decision

trees to solve the problem of decision making in a purchase procedure, a new type of

tree referred to as the QR-tree is proposed.

5.4 QR-Trees for Purchase Procedures

The QR-tree [BS03b] is similar to and therefore about the same size as the purchase

procedure tree, but has all the information necessary for rollback solution stored at

the nodes. Like decision trees, each time a decision is to be made in the purchase

procedure, a QR-tree is built to analyze the consequences and help determine the

expected value of each choice. It is an organization of not only when decisions need

to be made, but also of when quotes for items will open and close. Purchase nodes

are sorted in the tree according to their quote times, while decisions are inserted

appropriately according to relevant purchase rescind times. It is therefore simple to

see what relevant information will be known at each decision point in a QR-tree.

5.4.1 Construction

The QR-tree is constructed by a direct transformation of a purchase procedure tree,

as described in Algorithm 5.2. This process simply reorders the purchase nodes

so that they are sorted by tq time rather than tr time. Decision nodes and their

corresponding decision times are unchanged. Steps 1 and 2 move all purchase nodes

to the appropriate segments of the tree (i.e. in between the appropriate pairs of

decision nodes). Once all of these reside in the proper segments, step 3 sorts the

purchase nodes within each segment by tq time in ascending order.

Algorithm 5.2 Let T be a purchase procedure tree with a decision node root. T is

transformed to a QR-tree as follows:

82

1. For any decision node d in T , let tq(d) = min{tq(v) | v ∈ des(d)} where des(d)

is the set of descendent purchase nodes of d.

2. While there exists a purchase node p with first descendent decision node d such

that tq(d) < tq(p), remove p from its position in T and insert it below d as ℓ(d).

Make a copy of ℓ(d) and insert the copy as r(d).

3. For every pair of decision nodes d and d′ in T such that d is an ancestor of d′

and there are no intervening decision nodes on the path from d to d′, sort the

purchase nodes on this path by their tq values in ascending order from d to d′.

4. Give each leaf in this tree a child node. These new nodes are called the endpoints.

 d1 B = {AB,AC,DC,DE,EF,GH}

 tq(A) = 0 tr(A) = 2
 tq(B) = 3 tr(B) = 7
 A d2 tq(C) = 6 tr(C) = 8
 tq(D) = 1 tr(D) = 6
 tq(E) = 7 tr(E) = 8
 tq(F) = 5 tr(F) = 9
 d3 D d4 tq(G) = 5 tr(G) = 9
 tq(H) = 9 tr(H) = 10

 t(d1) = 2
 B C d5 F G t(d2) = 6
 t(d3) = 7
 t(d4) = 9
 t(d5) = 8
 C E E H

Figure 5.7: Example of a QR-tree.

Figure 5.8 gives an example of such a transformation. For each purchase node in

the example, the subscripts denote the tq and tr times respectively, while the lone

subscript for each decision node denotes the decision time. Notice that in the QR-

tree, decisions are made at the same time as in the purchase procedure tree, and the

same bundles are pursued for each choice. The only difference is that some purchases

are pushed closer to the end. Note that this reordering is done only for the sake of

83

 A1,6 A1,6

 B4,7 d8

 d8 C3,8 B4,7

 C3,8 D7,9 B4,7 D7,9

Figure 5.8: Example of a QR-tree transformation as described in Algorithm 5.2.

look-ahead to predict expected utility. In reality, all purchases will occur at (or just

before) their tr times. Since endpoints serve no purpose other than for convenience

in computation (as is shown later), they typically are omitted in QR-tree drawings.

A QR-tree has all of the same properties as a purchase procedure tree except:

• For any two nodes v1 and v2 in the tree, if v1 is an ancestor of v2 then tq(v1) ≤
tq(v2).

• A decision node d with decision time t(d) may have a descendent purchase node

p such that tr(p) < t(d). If this is the case, however, the purchase represented

by p will be part of any bundle procured below d, and is thus not relevant to

the decision.

Theorem 5.1 Let T PP be a purchase procedure tree and T QR be the QR-tree trans-

formed from T PP as in Algorithm 5.2. Making purchases when purchase nodes are

encountered and using any decision procedure to make decisions at decision nodes,

the expected utility of traversing T PP is equal to that of traversing T QR.

Proof. Let T PP
d and T QR

d be the tree structures containing only decision nodes and

edges (no purchase nodes) of T PP and T QR, respectively. Since the transformation

does not change the decision times nor the position of the decision nodes relative to

each other, T PP
d = T QR

d . Let d be a decision node in T PP and let anci(d) be the set of

84

items labeling d’s ancestor purchase nodes and ℓi(d) be the item labeling the left child

of d. Then d represents the decision to be made at time t(d) between pursuing either

bundles BPP
ℓ = {b | anci(d) ∪ {ℓi(d)} ⊆ b} or BPP

r = {b | anci(d) ⊆ b ∧ ℓi(d) 6∈ b}
of bundles. Let dQR be the decision node in T QR that corresponds to d, and let BQR

ℓ

and BQR
r be the set of bundles that can be procured in the left and right subtrees of

dQR, respectively. Since T PP
d = T QR

d and each path in either tree represents a unique

bundle within the tree, |BPP
ℓ | = |BQR

ℓ |. And since BPP
ℓ = {b | anci(d) ∪ {ℓi(d)} ⊆ b}

and ∀b ∈ BQR
ℓ , anci(d) ∪ {ℓi(d)} ⊆ b because each time a purchase node is moved

below a decision node in the transformation a copy is inserted as both the left and

right child, then BPP
ℓ = BQR

ℓ . Similarly, BPP
r = BQR

r . Therefore, any decision node in

TQR
d represents a choice between the same two sets of bundles, to be made at the same

time as its corresponding decision node in T PP
d . And since the hierarchical sequences

of decisions are equal, the expected utility of traversing either tree is equal. ✷

The main result of Theorem 5.1 is that, in order to determine the expected utility

of a choice in as purchase procedure, one can instead compute the expected utility

of the corresponding choice in the QR-tree. This is preferable since nodes in the

QR-tree are sorted by tq time, a necessary property for the bottom-up computation

methods described in this chapter.

Information necessary to rollback solution is stored in the QR-tree as follows:

• For each node n there is a set An of above values. These are the possible

outcomes for the sum of the prices of items (“above” n) to be purchased before

n is encountered. For the root r, Ar = {z} where z is the amount spent so far

in the purchase procedure before this particular decision.

• Let each endpoint contain the two-attribute utility function of the bundle that

would be procured on the path from the root.

The goal in rollback solution for this type of tree is, beginning at the leaves and

working to the root, to determine for a node n the expected utility of n for each value

85

in An. This ensures that each subproblem is solved exactly once. If there is only one

such value in An, as there will be for the two children of the root, then the expected

utility for that value is the expected utility of n. The child of the root with higher

expected utility is deemed to be the best choice at the corresponding decision in the

purchase procedure.

5.4.2 Defining Certainty at Decision Points

The key to accurate utility expectation computation is to properly consider what

information will be available to the decision-maker at each future decision point. The

following terms are used to represent this future knowledge.

Definition 5.1 (q-horizon) The q-horizon of d, denoted by qh(d) = {n ∈ des(d) |
tq(n) < t(d)}, is the subset of des(d) for which item prices will be known when d

must be resolved.

Definition 5.2 (q-set) Let d be a decision node. The set qs(d) of items that are

represented by the nodes in qh(d) is the q-set of d.

Definition 5.3 (q-subhorizon) Let d and d′ be decision nodes such that d′ is an

ancestor of d and the path from d′ to d has no decision nodes. The q-subhorizon of

d, denoted by qsh(d) = qh(d) ∩ qh(d′), is the subset of qh(d) consisting of elements

that are also in qh(d′).

Definition 5.4 (q-subset) Let d be a decision node. The set qss(d) of items that

are represented by the nodes in qsh(d) is the q-subset of d.

Definition 5.5 (q-subset-complement) Let d be a decision node. The q-subset-

complement qssc(d) = qs(d)− qss(d) of d is the set of items in the q-set but not the

q-subset of d.

86

 d1 B = {AB,AC,DC,DE,EF,GH}

 tq(A) = 0 tr(A) = 2
 tq(B) = 3 tr(B) = 7
 A d2 tq(C) = 6 tr(C) = 8
 tq(D) = 1 tr(D) = 6
 tq(E) = 7 tr(E) = 8
 tq(F) = 5 tr(F) = 9
 d3 D d4 tq(G) = 5 tr(G) = 9
 tq(H) = 9 tr(H) = 10

 t(d1) = 2
 B C d5 F G t(d2) = 6
 t(d3) = 7
 t(d4) = 9
 t(d5) = 8
 C E E H

Figure 5.9: Example of a decision tree with q-horizons indicated by dotted lines. For
example, for d4 the q-horizon consists of the nodes representing purchases of F, G
and E, and the q-subhorizon consists of the nodes representing purchases of F and G.

The example tree in Figure 5.9 shows the tree from Figure 5.7 with q-horizons

indicated by dotted lines. Note that Algorithm 5.2 constructs QR-trees in such a way

that, for any decision node d and purchase node n, if n ∈ qh(d) then n′ ∈ qh(d) for

all purchase nodes n′ on the path between d and n. So all elements of a q-horizon are

connected.

5.5 Solving the QR-tree Using Discrete Approxi-

mation

This section describes the technique to be used with a tree for which all outcomes are

characterized by discrete probability measures. Note that since all possible outcomes

are analyzed, even though all probability measures are discrete, it may be necessary to

further approximate to a small number (perhaps no more than 3) of outcomes to ease

87

the computational burden. To solve the tree bottom up, each node must be solved so

that the expected utility can be ascertained (or estimated) for any occurrence above

it. Such occurrences include not only outcomes for money spent before the node is

encountered, but also outcomes of the items represented in the q-subhorizon of de-

cision nodes, since they are part of ancestor q-horizons and therefore are simulated

when these ancestor nodes are evaluated. Solution is done by computing 1) a utility

projection function for each purchase node, and 2) a q-subset-mapping for each deci-

sion node. Each of these two types of functions takes a state at a node, consisting of

the amount already spent at that point and, for decision nodes, the costs of items in

the q-subset. Since the actual state is known for each child node at the root of the

QR-tree, the function for each child is a constant representing the expected utility of

that choice.

5.5.1 Utility Projection Functions

Let n be a purchase node or an endpoint in a QR-tree. The set An of above values

for n is the set of all possible outcomes for the sum of 1) the cost of items represented

by proper ancestor purchase nodes of n and 2) the amount already spent on items

procured before the QR-tree was built. A utility projection function upn : An → ℜ is

a function that maps a value a ∈ An to the expected utility of buying n, given that

a is the amount spent before n is encountered.

If n is an endpoint, then the utility projection function is simply the two-attribute

utility function for the bundle procured above n. That is, if b is the particular bundle

procured, then for each a ∈ An,

upn(a) = u(b, a) (5.2)

Otherwise, let n be a purchase node. Note that if a purchase node resides in a q-

horizon, it is not considered separately but rather as part of the information available

88

for a particular decision, and an individual utility projection function does not need to

be computed. Thus only purchase nodes not residing in any q-horizon are considered

here. Consider the following notation used to represent the set of joint price outcomes

for items in a QR-tree. Let I ′ ⊆ I be a subset of the items represented in the QR-tree,

let NI′ be the set of purchase nodes that represent an i ∈ I ′, and let K(I ′) be the

set of joint price outcomes for items in I ′ where each element k : NI′ → ℜ of K(I ′)

is a function that assigns a price to each purchase node in NI′ . Let n be a purchase

node that does not reside in a q-horizon. Let K({i}) be the set of possible outcomes

for the cost of the item i represented by n, let p : K({i}) → ℜ be the probability

measure on the outcomes, and let n′ be the child of n. For each a ∈ An,

upn(a) =
∑

k∈K

upn′(a + k(n))p(k) (5.3)

Note that upn′(a + k) exists since (a + k) ∈ An′ .

5.5.2 q-subset-mappings

Computing expected utilities for decision nodes is much more complicated, since fu-

ture information must be considered. At the time a decision node d must be resolved,

the prices of all items in the q-set of d will be known. Therefore, in order to compute

the expected utility of d for some above value a, all possible joint outcomes of the

prices of items in the q-set should be considered. For each outcome, the expected util-

ity of d is taken as the choice with the higher expected utility, since we assume that

the buyer will always make choices that maximize expected utility, given the available

information. Making the computation even more complicated is the fact that the q-

horizon of d may contain other decision nodes. So, at decision time, the purchaser

will know part of the information that will be known at these future decisions. This

problem can be overcome, however, by carefully considering what information known

at a decision node will also be known at ancestor decisions, and properly passing that

information up during solution. This is the purpose of the q-subhorizon.

89

Since we need to know the expected utility of each choice at a decision node d given

the amount spent so far and the costs of items represented in the q-subhorizon, if there

is a descendent decision node d′ where qh(d)∩ qh(d′) 6= φ, then we need to be able to

determine the expected utility of d′ given item prices represented by nodes above d′

and in the q-subhorizon of d′. For this reason, a q-subset-mapping is computed. The

q-subset-mapping qssmd for a decision node d is a function that maps a joint outcome

for prices of items in the q-subset of d to a utility projection function. The utility

projection function in turn maps the above amount to the expected utility. Consider

determining the q-subset-mapping for d1 in the partial QR-tree given in Figure 5.10.

For a joint outcome kqs for the items in qss(d1) = {A, D}, the utility projection

function for d1 is computed as follows: Given an above value a ∈ Ad1
, for each joint

outcome kqssc for the items in qssc(d) = qs(d1) − qss(d1) = {B, C}, the expected

utility for each choice at d1 is computed: For a path below the decision node, if the

final node in the q-horizon is a purchase node (as is the case with node B in the left

path below d1 in the example) with child n′, then the expected utility of that choice

is upn′(x), where x is the sum of the prices of all items above n′ given a, kqs and

kqssc (if n′ is a decision node, since its q-horizon must be empty then upn′ = qssmn′).

Otherwise the path reaches a decision node before the q-horizon is exited, as is the

case with d2. In this case, given a, kqs and kqssc, the outcome for prices of items in

qss(d2) is entered into qssmd2
to determine the appropriate utility projection function

to use for d2, and the sum of item prices above d2 are used with the utility projection

function to determine the expected utility.

Formally, let K(qss(d)) be the set of joint outcomes of items in the q-subset of d,

let K(qssc(d)) be the set of joint outcomes of items in the q-subset-complement of

d and let p : K(qss(d)) → ℜ be the probability measure. Let the q-subset-mapping

qssmd for d be a function mapping each outcome k ∈ K(qss(d)) to a utility projection

function updk. With this q-subset-mapping, the expected utility of any decision node

d can thus be computed for any outcome in K(qss(d)) and above value in Ad. Note

90

 d1

 A D

 B d2

 B C

Figure 5.10: Partial QR-tree.

that if qss(d) = φ then there is only one utility projection function, so qssmd = upd.

The q-subset-mapping is computed as follows. For each outcome k ∈ K(qss(d)),

a utility projection function updk is constructed such that for each a ∈ Ad

updk(a) =
∑

k′∈K(qssc(d))

max{ω(a, k + k′, ℓ(d)), ω(a, k + k′, r(d))}p(k′) (5.4)

where k + k′ is the concatenation of the outcomes given by k and k′ for the set of

items qss(d) ∪ qssc(d) = qs(d), p(k′) is the probability of k′ occurring, ℓ(d) and r(d)

are the left and right children of d, and ω is a well-defined function where ω(a, k, n)

for a node n is computed as follows: If n is a purchase node and k(n) exists (i.e.

k assigns an outcome to n’s item), then ω(a, k, n) = ω(a + k(n), k, n′) where n′ is

the child of n. If k(n) does not exist (as is always the case with decision nodes and

endpoints), ω(a, k, n) = upn(a) where, if n is a decision node, upn = qssmn(k′) where

k′ is the outcome for items in qss(n) consistent with the item outcomes given by

k. Informally, ω(a, k, n) is the expected utility of n for a given a ∈ An and a given

outcome k for some of the descendents of n.

91

5.6 Solving the QR-tree using Monte Carlo Simu-

lation

In the method described in section 5.5, the problem of solving trees that include

continuous random variables is handled by using some discrete approximation, such

as Pearson-Tukey. While the literature shows that the Pearson-Tukey method gives

very favourable results when used to approximate a variety of distributions [PBF91],

approximating an entire density function with only three points can only achieve a

limited level of accuracy. With the current power of computing, using simulation

to solve difficult mathematical problems such as those seen in investment decision-

making, physics and statistics, is becoming more and more common (see for exam-

ple [BAD03, SDP03, Lub01]). In this section, the use of Monte Carlo methods to

solve decision trees during rollback is investigated. Here, the discussion is based on

solving QR-trees, but a similar theory can be developed to solve general decision

trees.

With Monte Carlo simulation, several independent simulations of the variable(s)

in question are run, and the average result is taken as the mean. Typically, for a given

sample variance s2, a number n of trials will be required so as to reduce the standard

error
√

s2

n
below a specified threshold. This variance can be reduced, thus reducing

n, by using the antithetic variate sampling technique as described in section 4.5.3.

With this sort of decision tree, Monte Carlo simulation can be used to more

accurately determine the expected utility of a node for a given above value. As

in the discrete case, computation must be done in a bottom-up manner. A top-

down solution of the entire tree is infeasible since too much simulation is required.

Consider attempting a top-down solution of the example in Figure 5.9. To determine

the expected utility of proceeding to decision node d2, for example, the information

to be known at that decision time (namely the prices of D, F, G) must be simulated.

For each simulation, the expected utility of each of the left choice (D) and right choice

92

(d4) must be computed and the higher noted, since this is the choice the decision-

maker would make if this simulation represented actual outcomes. To determine the

expected utility of the right choice d4, several simulations of the extra information

known at d4 (namely E) need to be run for the given values of F and G. If d4 had any

descendent decisions, then for each of these simulations, several further simulations

would be needed, and so on. For any decision node d, let x be the required number of

simulations of item costs that will be known at decision time t(d) in order to compute

the expected utility of d. Then if h is the decision node height of d (the maximum

number of decision nodes on a path from d to a leaf), then the number of simulations

required to compute the expected utility of d is O(xh). Since x can be quite large

(say 10,000 - 100,000 for reasonable accuracy), then xh can get unmanageably large

for even small h.

It is desirable to utilize a bottom-up approach for computing these utilities that

ensures that the number of simulations required grows linearly with the number of

nodes in the tree. The goal is, for any node n in the tree, to be able to estimate

the expected utility of n for any outcome for the nodes above n in the tree without

doing any further simulation on n’s subtree. Unfortunately, two problems arise when

trying to use simulation bottom-up: 1) for a node n, the set An is neither discrete

nor finite, and 2) for a decision node d the set K(qss(d)) of outcomes for the q-subset

items is neither discrete nor finite. The next subsection gives a discussion on how the

utility projection functions for purchase nodes and endpoints can be approximated.

Following that, three different techniques for handling this problem associated with

the q-subset-mappings for decision nodes is presented.

To denote results obtained through the use of Monte Carlo simulation, consider

the following notation: Let MC(I, α(k), ε) be a function that takes a set I of items

and a function α : K(I) → ℜ, and returns the average result of α(k) for several

independently generated random outcomes k ∈ K(I), within a standard error of ε.

93

5.6.1 Utility Projection Functions for Purchase Nodes and

Endpoints

Let n be a purchase node or an endpoint in a QR-tree, with above values An. As

in the discrete case, if n is the endpoint for the path on which bundle b is procured,

then the utility projection function for n is upn(a) = u(b, a). If n is a purchase

node and An is infinite, then upn likely cannot be computed exactly over the entire

domain. However, since upn is a monotone strictly decreasing function (higher cost

leads to lower expected utility), if we have actual values for some points then we know

that the values at other points are tightly constrained and therefore can be accurately

estimated. So a rather simple solution to the problem of computing a utility projection

function for n is to choose a few above values A′
n ⊂ An, compute the expected utility

up′n for each chosen value, and then fit a curve, thus specifying an estimated upn for

all of An. For this thesis, the set of points chosen is A′
n = {x | P (X < x) is a multiple

of .05 and .05 ≤ P (X < x) ≤ .95}.
For a purchase node n with child n′, for each a ∈ A′

n, the expected utility up′n(a)

is computed by

up′n(a) = MC({in}, upn′(a + k(n)), ε) (5.5)

where in is the item represented by n. Testing shows that using regression to find a

degree-three polynomial representing upn works quite well.

Now the expected utility of n can be predicted for any above value on the contin-

uous scale. Note that if n is a purchase node that resides in a q-horizon for a decision

d, then it is not considered separately but rather as part of the information available

at d. Thus its utility projection function is irrelevant and not computed.

94

5.6.2 Functions for Decision Nodes: the Restricted q-horizon

Method, the q-subset Discretization Method and the

Classification Tree Method

Computing q-subset-mappings for decision nodes is difficult when the space of out-

comes for the q-subset items is continuous. If there are only one or two items in the

q-subset, then techniques such as regression can be used to estimate a function, given

the utilities for a few chosen values. However, for more items this technique can be

time consuming and produce very inaccurate results. In this section, three different

Monte Carlo techniques for handling decision nodes during rollback solution of the

QR-tree are presented.

The Restricted q-horizon Method

One way to solve the problem associated with computing q-subset-mappings is to

simply ignore the q-subhorizons in the QR-tree. This can be done be putting a

restriction on the q-horizon that it cannot extend past any descendent decision node,

resulting in empty q-subsets for all decision nodes. If a decision node’s q-subset is

empty, then the q-subset-mapping reduces to a single utility projection function. See

Figure 5.11 for an example of such a transformation. The utility projection function

upd, approximated by up′d (as described in section 5.6.1), for a decision node d is then

computed as follows: For each a ∈ A′
n,,

up′d(a) = MC(qs′(d), max{ω(a, k, ℓ(d)), ω(a, k, r(d))}, ε) (5.6)

where qs′(d) is the new q-set of d after the q-horizons are restricted, ℓ(d) and r(d) are

the left and right children of d, respectively, and ω is as defined in section 5.5.2.

While this method will most definitely result in some degree of inaccuracy since

not all information is being considered at the various decision points, this inaccuracy

may be insignificant compared to the accuracy gained by choosing to use simulation

95

 d1

 A d2

 d3 D d4

 B C d5 F G

 C E E H

 d1

 A d2

 d3 D d4

 B C d5 F G

 C E E H

Figure 5.11: Example of restricting the q-horizons.

over some discrete approximation, regression technique, etc. One potential problem

with this method, as is, is that it may achieve even worse results than the greedy

method of decision making that always chooses to buy an item if it is in the bundle

with greatest expected utility. Consider the example decision tree in Figure 5.12.

There are five bundles AB, AC, D, E and F and a decision has to be made on

whether to buy A. The q-sets are qs(d1) = {A}, qs(d2) = {B, C}, qs(d3) = {D, E}
and qs(d4) = {E, F}, but for the purpose of computing the expected utility of not

buying A, the restricted q-horizon method considers qs(d3) to be only {D}. Let

it be the case that, given the information known at the time d1 is to be decided,

the bundle with maximum expected utility does not include A, but the restricted

q-horizon method determines that the expected utility of buying A is higher than

that of not buying A. So, a purchaser using this more complex method would buy A,

while a purchaser using the greedy method would not. However, it is possible that

the greedy purchaser has a higher expected utility, since the complex method may

have underestimated the expected utility of not buying A, since it ignored the fact

that the cost of E will be known at the time decision d3 is to be made.

This possibility can be eliminated with a modification to the restricted q-horizon

method that incorporates the utility that a greedy purchaser would expect to achieve

in certain regions of the tree. To do so, the method for determining the expected

96

 d1

 A d3

 d2 D d4

 B C E F

Figure 5.12: Tree for the example situation where using the greedy procedure would
achieve higher expected utility than using the restricted q-horizon method.

utility of the greedy procedure must be demonstrated. This method uses only top-

down simulation, since no expected utilities of future decisions and purchases are

ever needed. The simulation process works as follows. For each random outcome of

all items in the tree, the course of action from the root to a leaf for that particular

outcome is determined. At each decision point, given the information that will be

known at the time, the expected utility of every potential bundle purchase is calcu-

lated, and the choice that leads to the bundle whose expected utility is maximized is

taken. Execution is continued until a leaf node is reached, resulting in the purchase

of some bundle at some total cost, and the utility of this bundle purchase is noted.

The average of these utilities is taken as the expected utility.

To incorporate this into the restricted q-horizon method, a function is developed

that performs the task described above.

Definition 5.6 (q-region) A subgraph R of a QR-tree T is a q-region iff the root r

of R is a decision node with qsh(r) = φ, qsh(d) is non-empty for all decision nodes

d ∈ R \ r, and for all nodes n ∈ T , n ∈ R iff there exists a decision node d ∈ R such

that n ∈ qh(d).

97

For the sake of intuition, one can view a q-region as the union of intersecting q-

horizons. That is, every q-horizon is a subgraph of exactly one q-region, and the union

of two q-horizons Q and Q′ is a subgraph of a q-region iff Q intersects a subgraph of

a q-region that includes Q′. For example, consider the QR-tree given in Figure 5.9.

The q-regions in this tree are indicated by dotted lines in Figure 5.13.

 d1

 A d2

 d3 D d4

 B C d5 F G

 C E E H

Figure 5.13: The QR-tree given in Figure 5.9 with q-regions indicated by dashed
lines.

Let greedy(R, a, k) be a function that takes q-region R in a QR-tree, an above value

a, and an outcome k for the items in R. The function returns the expected utility

of the root of R for above cost a if the greedy decision procedure were to be used

through R, given utility projection functions for the nodes in the QR-tree below R.

This function is incorporated into utility projection function computation for the

restricted q-horizon method as follows. Let d be a decision node, and let qs′(d) be

the q-set of d as used by the restricted q-horizon method. For each a ∈ A′
n,

up′d(a) = max{MC(qs′(d), max{ω(a, k, ℓ(d)), ω(a, k, r(d))}, ε),

MC(IR, greedy(R, a, k), ε)}

98

(5.7)

where R is the q-region rooted at d and IR is the set of items represented by purchase

nodes in R. If d is not the root of a q-region, then MC(Ir, greedy(R, a, k), ε) = 0.

Since the true expected utility of d for the above value a must be at least as high as

MC(qs′(d), max{ω(a, k, ℓ(d)), ω(a, k, r(d))}, ε) and MC(IR, greedy(R, a, k), ε) (since

both measures partially ignore future available information and are therefore under-

estimates of true expected utility), then up′
d(a) is taken as the maximum. Using this

method to make decisions is guaranteed to yield an expected utility at least as high

as using greedy purchasing for any instance (see section 6.2.1 for the proof).

The q-subset Discretization Method

While the restricted method provides a nice guarantee, it may not give a very accurate

estimate. A better idea might be to compute the q-subset-mapping in a manner

similar to that used in the discrete case. With this approach, the q-subset-mapping

applies only to a few outcomes for the items in the q-subset. This results in a mixture

of simulation and discrete approximation in the solution process. Here the Pearson-

Tukey three-point approximation (see section 5.3.2) is incorporated. When computing

q-subset-mappings, q-subset items are assumed to have only three possible outcomes.

An above mapping for a decision node with m q-subset items will thus be computed

for each of the 3m joint outcomes (referred to as PT-outcomes). This is a reasonable

number for fairly small m. For each PT-outcome for the items in a decision node’s

q-subhorizon, the utility projection function is computed by using simulation for the

items in the q-subset-complement that do not reside in another decision node’s q-

subset, and PT-outcomes for the remaining q-subset-complement items.

The formal technique for determining the q-subset-mapping is now given. Let d

be a decision node. The q-subset-mapping qssmd for d maps each PT-outcome for

qss(d) to an utility projection function, which is computed as follows: Let d be a

decision node with dℓ and dr the first left and right descendent decision nodes of

99

d respectively (if they exist), let qss′(d) = qss(dℓ) ∪ qss(dr) be the union of the q-

subsets for dℓ and dr (if either of dℓ or dr does not exist then treat their q-subset to be

empty), and let sim(d) = qssc(d)− qss′(d) be the subset of the q-subset-complement

of d to be simulated. The q-subset-mapping qssmd maps a PT-outcome k′ for the

q-subset of d to a utility projection function upd, approximated by up′d (as described

in section 5.6.1), where, for an a ∈ A′
d,

up′dk′(a) =
∑

k′′∈K(qss′(d))

p(k′′) · MC(sim(d), max{ω(a, k + k′ + k′′, ℓ(d)),

ω(a, k + k′ + k′′, r(d))}, ε)

(5.8)

where k + k′ + k′′ is the concatenation of the outcomes given by k, k′ and k′′ for the

set of items sim(d)∪ qss(d)∪ qss′(d) = qs(d), p(k′′) is the probability of k′′ occurring

according to the PT approximation, ℓ(d) and r(d) are the left and right children of

d, and ω is as defined in section 5.5.2.

The Classification Tree Method

One problem with the q-subset discretization method is that, because of the usage

of an approximation method, it is difficult to ascertain anything theoretically about

its results. While all methods described in this thesis give only estimates of expected

utility, it is useful to know theoretical bounds on their performance. In particular,

a method might be deemed more favourable if it was guaranteed to give an under-

estimate of the true expected utility. This is true of the restricted q-set method.

However, the reason for this guaranteed underestimate is that certain information is

ignored. This is a serious drawback as it can cause significant inaccuracy.

The classification tree method provides a guaranteed underestimate of the true

expected utility, and makes use of all information available in order to make a rea-

sonably accurate estimation. The initial stage of the method performs the same

100

calculations as the q-subset discretization method. That is, at each decision node d,

the utility projection function is calculated for each joint PT-outcome of the items

in qss(d) to produce a q-subset-mapping. The second stage involves the creation of

a decision tree [Qui86] for each decision node. This is a decision tree in the machine

learning sense. Since the term “decision tree” is already used in this thesis (as in the

decision analysis literature), this tree is hereafter referred to as a classification tree.

The purpose of a classification tree is to provide a structure for classifying new data

based what has been learned from the training data. When computing a q-subset-

mapping, the machine is essentially learning what the utility projection functions are

for a few joint outcomes for the q-subset prices. The classification tree shows how to

determine under which of these utility projection functions any other joint outcome

should be classified.

For a decision node d, a classification tree CTd is built with height |qss(d)| + 1

where each interior node has three children. Each level of nodes represent an arbitrary

but unique element of qss(d), except for the leaves which represent utility projection

functions. Each edge represents a PT outcome of the cost of the item represented

by the node from which the edge emanates. Each leaf contains the utility projection

function that would be used if the items represented by nodes on the path from the

root have the cost outcomes represented by the edges on the path from the root. The

utility projection functions are computed for each PT outcome of the items in qss(d)

in the manner used by the q-subset discretization method.

Example 5.3 Let d be a decision node with qss(d) = {A, B}, where the prices for

A and B are normally distributed, each with mean 10 and standard deviation 1. For

simplicity, let the set of above values |Ad| = 1, so each utility projection function in

the q-subset-mapping is a constant. Consider the q-subset-mapping given in Table 5.3.

The classification tree for this data is given in Figure 5.14.

The classification tree is used as a mechanism for classifying new data. Given any

101

A B upd

8.355 8.355 u1

8.355 10 u2

8.355 11.645 u3

10 8.355 u4

10 10 u5

10 11.645 u6

11.645 8.355 u7

11.645 10 u8

11.645 11.645 u9

Table 5.3: The q-subset-mapping for Example 5.3

 A

 8.355 10 11.645

 B B B

 8.355 10 11.645 8.355 10 11.645 8.355 10 11.645

 u1 u2 u3 u4 u5 u6 u7 u8 u9

Figure 5.14: Classification tree for Example 5.3

102

independent joint outcome for the q-subset item costs, the path in the classification

tree that represents this closest joint outcome is followed, and the outcome is “clas-

sified” under the utility projection function reached. Thus, this utility projection

function is used to compute the expected utility for this outcome. To do this, the

continuous space of outcomes for each variable in the tree has to be divided into three

discrete regions. This is necessary in order to clearly define to which child to move

during tree traversal. Staying consistent with the theory behind the Pearson-Tukey

approximation, the following values are chosen: Let x be a random outcome for the

cost of item in the classification tree with mean µ and standard deviation σ,

• if x < µ − .9σ, proceed to the leftmost child.

• if µ − .9σ < x < µ + .9σ, proceed to the center child.

• if µ − .9σ < x, proceed to the rightmost child.

As a result, the value of µ will be chosen with .63 probability (since the probability

that the outcome of a normally distributed random variable will lie between µ − .9σ

and µ+ .9σ is .63), and the values µ−1.645σ and µ+1.645σ will each be chosen with

.185 probability, which is consistent with Pearson-Tukey. The discretized tree for the

above example is given in Figure 5.15. The resulting estimate ctd(k) for an outcome k

on the variables in the classification tree for a decision node d is the utility projection

function labeling the leaf node reached by traversing the tree in the manner described

above. For a particular above value a for d, the estimated expected utility of d is

ctd(k)(a).

With a classification tree for every decision node in the QR-tree, the expected

utility of a decision node can be estimated for any above value and q-subset outcome.

This means that the simulation can be performed on the tree top-down. This is the

final stage in the method. For each simulation, an outcome is chosen for all items

in the QR-tree. Execution through the tree beginning at the root is then simulated.

103

 A

 < 9.1 > 10.9

 B B B

 < 9.1 > 10.9 < 9.1 >10.9 < 9.1 > 10.9

 u1 u2 u3 u4 u5 u6 u7 u8 u9

 Figure 5.15: Discretized classification tree for Example 5.3

When a purchase node is encountered, the item is assumed to be purchased at the

price for the given outcome and execution moves to the child. When a decision node

is encountered, the expected utility of proceeding to each child is estimated, and the

choice associated with the higher expected utility is chosen. The estimated expected

utility Ed(n, a) of a child node n of a decision d with above value a for a joint outcome

k on the items is computed by:

Ed(n, a) = Ed(n
′, a + k(n)) if n is a purchase node in qs(d)

= upn(a) if n is a purchase node not in qs(d) or an endpoint

= ctn(k)(a) if n is a decision node

where n′ is the child of n. Thus when a decision node d is encountered during simula-

tion where a has been spent, proceed to ℓ(d) if Ed(ℓ(d), a) > Ed(r(d), a) and proceed

to r(d) otherwise. When a leaf is reached, the utility achieved by the bundle pur-

chased is noted. The average of these achieved utilities after an appropriate number

of simulations is taken to be the expected utility.

5.7 Other Issues

This section points out a few issues that are left out of the above discussion for the

sake of simplicity in either the approach or the explanation.

104

5.7.1 “Garden Paths”

It is possible that the best choice at a decision point is a course of action that will

result in a previous purchase being wasted. This can occur if the buyer was “fooled”

at a previous decision point, and made a choice where the outcomes of subsequent

item prices turned out to be unexpectedly high. The price outcomes of future items

would be so high, in fact, that the purchaser is better off abandoning some of the

items already purchased so that different bundles can be pursued. Another cause of

this could simply be that the buyer’s situation changed after one or more purchases

had already been made. A purchaser that makes an ill-fated choice such as this can

be referred to as going “down the garden path” in the purchase procedure.

While the model described in this chapter allows the purchaser to backtrack in such

situations so that more attractive bundles can be pursued, expected utility estimation

does not, however, factor in this possibility. Consider the purchase procedure tree in

Figure 5.16 (a). If the buyer chooses A, the purchase procedure tree at time 3 will be

the as in Figure 5.16 (b) (given that no new offers have been made in the interim).

The second tree shows that, even though A has been purchased, buying C and D is

still an option.

 d0

 A C

 B D

 (a)

 d3

 B C

 D

 (b)

Figure 5.16: Purchase procedure tree before and after A is purchased

Given the fact that buying A and B was initially expected to be better than

buying C and D, it would be typically be a low-probability occurrence if, at time 3,

buying B by itself is worse than buying C and D. For this reason, this possibility

105

is not considered when the expected utility of buying A is estimated. Moreover,

considering every one of these possibilities would cause QR-trees to be too large for

larger purchase procedure trees. Accuracy would need to be sacrificed to maintain

reasonable computing times, thus defeating the purpose.

However, if one can predict a few specific cases beforehand where such an oc-

currence is a fairly reasonable possibility, some measures can be taken to have it

considered. For example, the situation described above would have been considered

more likely if A’s mean price was very small and the variance of B’s price very high.

If the expected utility of each choice was very close, since the ultimate utility of AB

was dependent almost exclusively on the outcome of B’s price, this situation could

have been more predictable and the option of pursuing CD might thus be factored

into the QR-tree at time 0 (see Figure 5.17).

 d0

 A C

 d3 D

 B C

 D

Figure 5.17: Purchase procedure tree before A is purchased that considers “garden
path” possibility

5.7.2 Minimum Allowable Utility

It is possible that the buyer might have a lower bound on the acceptable level of

utility to be achieved. That is, he/she would prefer to end up with no purchases

than to achieve a utility less than some minimum. This is very difficult to enforce

106

in the setting where partial bundle purchases are allowed, since some items may be

purchased before it is realized that the minimum utility is impossible to achieve. It

could still be encoded in the decision process that, for example, no purchase should

be made if the expected utility of that purchase is less than some minimum, unless

the buyer has already spent x dollars.

At first glance, it seems as though this type of decision-making does not fit well

in the context of the problem. In this thesis, the goal of the buyer is simply to

maximize expected utility. If the main goal was to achieve a certain minimum level

of utility, then at each decision point, one would want to choose the path such that

the probability of achieving this utility is greater. However, while this seems to be

a different decision-making criterion, if this is the desire of the buyer then such a

desire will naturally be reflected in the buyer’s two-attribute utility function. If the

utility function is properly assessed, then the expected utility maximization methods

presented in this thesis will naturally have the desired effect. Consider the extreme

case where the buyer only cares about achieving a certain level of utility, and given

that this level is met, is indifferent to all outcomes. Then the utility function will

reflect this desire since it must be that every bundle purchase that does not meet

this minimum level has utility 0 and every purchase that does meet this level has

utility 1. Maximizing expected utility in this case now has the effect of maximizing

the likelihood of achieving this minimum utility.

5.7.3 Item Cost Dependencies

If two nodes inside a q-horizon represent items for which cost outcomes are not entirely

independent, or even represent the same item for that matter, an accurate result can

be obtained as long as the randomness of the outcomes is properly modeled to be

consistent with the dependence. However, this cannot be done if the nodes are not

in the same q-horizon, for the reason that they are not simulated together.

This becomes a problem if the two nodes are on the same path in the decision

107

tree. Let n1 and n2 be two such nodes representing the purchase of items i1 and i2,

respectively, where n1 is an ancestor of n2. If the cost of i2 depends on the earlier

outcome of the cost of i1, then this dependency will be difficult to model in the tree.

The rollback solution method described simply calculates the expected utility of a

node for outcomes of the sum of item costs above it, without any consideration for

the costs of particular items above it. To include the effect that the cost of i1 will

have on the cost of i2, the utility projection function for n2 would need to consider

both the cost of i1 as well as the sum total of all item costs above n2. That is, the

utility projection function would be the function aun2
: A×K({i1}) → ℜ where A is

the set of above values and K({i1}) is the set of outcomes for the cost of i1. While

the methods described in this thesis can be extended to handle this, since it requires

much more computation, especially if there are many such influential items, it is

recommended that this be done only if the dependence is strong enough to warrant

such extra work.

108

Chapter 6

Results and Analysis

This chapter provides both theoretical and experimental results on the performance

of the methods described in the previous chapters. In the complete bundle purchasing

setting, the improved decision process is proven to yield higher expected utility than

the näıve decision process. Results on the magnitude of the expected increase and

how this increase can be approximated is also given. For the setting in which partial

bundle purchases are permitted, four methods are examined: the greedy method,

the restricted q-horizon method, the classification tree method, and the q-subset

discretization method. Three major results are given. First, the restricted q-horizon

method is shown theoretically to yield a higher expected utility than the greedy

method. Next, the estimate given by the classification tree method is proven to

be always less than or equal to the true utility expected when using this method

throughout the purchase procedure, and is demonstrated to be a tight lower bound.

Finally, the q-subset discretization method is shown experimentally to provide the

most accurate estimates of all methods. The performance of the antithetic variate

technique used in Monte Carlo simulation during testing is also assessed.

Note that, while all estimates produced by methods in this thesis are partially

generated using simulation, the results given in proofs are based on the assumption

that an appropriate number of simulations are performed to achieve the necessary

109

degree of accuracy.

6.1 Complete Bundle Purchases

6.1.1 Proofs

Recall the näıve and improved decision processes described in chapter 4. This section

provides a few proofs that show, in the setting where only complete bundle purchases

are made, 1) that the buyer always has a higher expected utility if the improved

process is used over the näıve process, 2) the expected increase in utility if the buyer

chooses to use the improved process, in the situation where there is one future com-

parison set, and 3) that the increase derived in 2) is a lower bound when there is

more than one future comparison set.

For a comparison set cover csc(B) of bundles B, let j = max{E[ũ(b)] | b ∈ B} and

k = max{E[ũ(CS)] | CS ∈ csc(B)}.

Lemma 6.1 j ≤ k.

Proof. Let CSj be a comparison set containing a bundle b such that E[ũ(b)] = j.

Since the expected utility of choosing from a number of bundles must be at least

as high as the expected utility of any one of the bundles, E[ũ(CSj)] ≥ j. So k =

max{E[ũ(CS)] | CS ∈ csc(B)} ≥ E[ũ(CSj)] ≥ j. ✷

Lemma 6.2 The expected utility Eim when using the improved decision process is

greater than or equal to k.

Proof. By induction on the size of csc(B).

Base Case. Let |csc(B)| = 1. Then Eim = k.

Induction. Let csc(B) be of arbitrary size, let CSi be the current comparison set,

and let b be the bundle in CSi available at cost z such that u(b, z) is maximized in

110

CSi. Assume that the expected utility when using the informed decision process for

csc(B) \ CSi is at least max{E[ũ(CS)] | CS ∈ csc(B) \ CSi}. Consider the two

outcomes:

1. u(b, z) ≥ k. Buy b and achieve a utility ≥ k. So Eim ≥ k.

2. u(b, z) < k. Then k = max{E[ũ(CS)] | CS ∈ csc(B) \ CSi}. Since b would

not be purchased in this case (and thus nothing from CSi is purchased, so

it expires) and by induction the expected utility for csc(B) \ CSi is at least

max{E[ũ(CS)] | CS ∈ csc(B) \ CSi}, then Eim ≥ k. ✷

Theorem 6.1 Let Eim and Ena denote the utilities expected when using the im-

proved and näıve decision processes, respectively. Then Eim ≥ Ena.

Proof. By induction on the size of csc(B).

Base Case. Let |csc(B)| = 1. Both processes will choose the bundle purchase with

the highest utility, so Eim = Ena.

Induction. Let csc(B) be of arbitrary size, let CSi be the current comparison set,

and let b be the bundle in CSi available at cost z such that u(b, z) is maximized in

CSi. Assume that the expected utility when using the improved decision process is

greater than or equal to that when using the näıve decision process for csc(B) \CSi.

By Lemma 6.1 there are three cases:

1. k ≤ u(b, z). Both processes would choose b so Eim = Ena.

2. j ≤ u(b, z) < k. The näıve process would choose b and the improved would not.

So Ena = u(b, z) < k. Since, by Lemma 6.2 Eim ≥ k, Eim > Ena.

3. u(b, z) < j. Neither process would choose b, and would thus allow CSi to pass.

By induction, Eim ≥ Ena. ✷

111

While it is necessarily the case that expected utility improves when the improved

decision process is used, one may wonder if the improvement justifies the extra work

required for computation. For this reason, the increase in utility that one would expect

to achieve when using the improved process over the näıve process for a simple case

is derived. Here we consider the situation where there is a bundle b that is about to

expire, one comparison set CS, and there is no interdependence between the utilities

of b and CS. We also assume that ci(CS) begins after tr(b) so that nothing is known

for certain about CS. The analysis is then extended to the more general case where

there are many future comparison sets, and a lower bound on the expected increase

is proven.

For the case where there is only one future comparison set, let j = max{E[ũ(b′)] |
b′ ∈ CS} and k = E[ũ(CS)]. Also, let pb : ℜ → ℜ be a probability density function

that maps utilities for the purchase of b to probabilities, and let

A1 =
∫ j

0
pb(x) dx A2 =

∫ k

j
pb(x) dx A3 =

∫ 1

k
pb(x) dx

For the sake of intuition, let an example probability density function for the outcome

of the utility of purchasing b be as depicted in Figure 6.1. Example points for j and k

are also displayed. Using these points, the area under the curve is divided into three

regions. A1, A2, and A3 represent the areas of these regions.

 pb(x)

 A1 A2
 A3

 0 j k 1

 x=u(b)

Figure 6.1: Probability density function for the utility of purchasing b

112

Theorem 6.2 The expected increase in utility to be achieved by using the improved

decision process is

∫ k

j
(k − x)pb(x) dx (6.1)

where b is the bundle that will expire first, CS is a comparison set such that ci(CS)

begins after tr(b), j = max{E[ũ(b′)] | b′ ∈ CS}, k = E[ũ(CS)], and pb(x) is the

probability density function on the utility outcomes for b.

Proof. Let Ena be the expected utility of using the näıve decision process and Eim be

the expected utility of using the improved process. Since the näıve decision process

will choose b if its utility is higher than j, and let it expire otherwise, thus expecting

utility k, then1

Ena = A1k + A2E[ũ(b) | j < ũ(b) < k] + A3E[ũ(b) | ũ(b) > k] (6.2)

Since the improved decision process will choose b if its utility is higher than k, and

let it expire otherwise, thus expecting utility k, then

Eim = A1k + A2k + A3E[ũ(b) | ũ(b) > k] (6.3)

Subtracting gives

Eim − Ena = A2k − A2E[ũ(b) | j < ũ(b) < k]

= A2k − A2 ·
∫ k

j
xpb(x) dx

A2

= k
∫ k
j pb(x) dx − ∫ k

j xpb(x) dx

=
∫ k
j (k − x)pb(x) dx ✷

(6.4)

Now consider the general case where there is a bundle b that is about to expire,

and a comparison set cover csc(B) on the remaining bundles B.

1Here E[X |C] is the expected value of X given that condition C holds.

113

Theorem 6.3 The expected increase in utility to be achieved by using the improved

decision process where csc(B) is any size is

∫ j

0
(E ′

im − E ′
na)pb(x) dx +

∫ k

j
(E ′

im − x)pb(x) dx (6.5)

where b is the bundle that will expire first, csc(B) is the comparison set cover,

ci(CS) begins after tr(b) for all CS ∈ csc(B), j = max{E[ũ(b′)] | b′ ∈ B}, k =

max{E[ũ(CS)] | CS ∈ csc(B), E ′
im and E ′

na are the expected utilities of the im-

proved and näıve method if b goes unpurchased, respectively, and pb(x) is the proba-

bility density function on the utility outcomes for b. Moreover, this value is at least
∫ k
j (k − x)pb(x) dx.

Proof. Let Ena be the expected utility of using the näıve decision process and Eim be

the expected utility of using the improved process. Since the näıve decision process

will choose b if its utility is higher than j, and let it expire otherwise, thus expecting

utility E ′
na, then

Ena = A1E
′
na + A2E[ũ(b)|j < ũ(b) < k] + A3E[ũ(b)|ũ(b) > k] (6.6)

Since the improved decision process will choose b if its utility is higher than k, and

let it expire otherwise, thus expecting utility E ′
im, then

Eim = A1E
′
im + A2E

′
im + A3E[ũ(b)|ũ(b) > k]

= A1(E
′
na + E ′

im − E ′
na) + A2(k + E ′

im − k) + A3E[ũ(b)|ũ(b) > k]

= A1E
′
na + A1(E

′
im − E ′

na) + A2k + A2(E
′
im − k) + A3E[ũ(b)|ũ(b) > k]

(6.7)

Subtracting gives

Eim − Ena = A2k − A2E[ũ(b)|j < ũ(b) < k] + A1(E
′
im − E ′

na) + A2(E
′
im − k)

= k
∫ k
j pb(x) dx − ∫ k

j xpb(x) dx + A1(E
′
im − E ′

na) + A2(E
′
im − k)

=
∫ k
j (k − x)pb(x) dx + A1(E

′
im − E ′

na) + A2(E
′
im − k)

(6.8)

114

Since E ′
im ≥ E ′

na by Theorem 6.1 and E ′
im ≥ k by Lemma 6.2, this value is greater

than or equal to
∫ k
j (k − x)pb(x) dx. Simplifying (6.8) gives,

Eim − Ena =
∫ k
j kpb(x) dx − ∫ k

j xpb(x) dx +
∫ j
0 E ′

impb(x) dx−
∫ j
0 E ′

napb(x) dx +
∫ k
j E ′

impb(x) dx − ∫ k
j kpb(x) dx

=
∫ j
0 (E ′

im − E ′
na)pb(x) dx +

∫ k
j (E ′

im − x)pb(x) dx ✷

(6.9)

6.1.2 An Example

This section shows how Theorem 6.2 is used to compute the utility increase yielded by

the improved decision method for a simple example. The performance of the theorem

is then tested for a slightly different example with a risk averse buyer. Let b1, b2 and

b3 be bundles, where b1 expires during the prequotes for b2 and b3 and CS = {b2, b3}
is a comparison set. For simplicity, let the bundle costs be independent and normally

distributed, and consider the buyer to be risk neutral. Then the bundle purchase

utilities will be normally distributed. Consider the parameters given in Table 6.1.

bi µi σi

b1 .5 .06
b2 .475 .13
b3 .484 .1

Table 6.1: Means and variances of bundle purchase utilities in the example

At time tr(b1), the buyer will know c(b1) (and therefore u(b1, c(b1))), µ2, σ2, µ3, and

σ3. A decision must be made at that time between purchasing b1, which will achieve

utility u(b1, c(b1)), and allowing b1 to expire, which will achieve the higher of the two

utility outcomes for b2 and b3.

Recall that the näıve decision process chooses b1 iff u(b1, c(b1)) > j, where j =

max{E[ũ(b)] | b ∈ CS} = .484, and the improved process chooses b1 iff u(b1, c(b1)) >

115

k, where k = E[ũ(CS)]. Using MC simulation, we find that k = .545. Then by

Theorem 6.2, the expected increase in utility is

∫ .545

.484
(.545 − x)pb1(x) dx ≈ .012 (6.10)

where pb1(x) is the normal probability density function with µ = .5 and σ = .06.

This means that we expect to achieve .012 more utility by using the improved

decision process. It is difficult to make any conclusions as to the significance of this

increase without knowing the utility function, since it is the result of some combina-

tion of more highly preferred bundles and lower costs. But, for the sake of a simple

example, assume that all bundles are preferred equally. If this is the case, then lower

costs will be completely responsible for the increase in utility. Also, assume that the

range of possible outcomes of bundle costs is [$100, $200], and therefore uz($100) = 1

and uz($200) = 0. If the buyer is risk neutral then each .01 of bundle utility represents

$1, and therefore an increase in utility of .012 represents a savings of $1.20. This is a

significant result considering that this is such a small-scale example. Consider a more

large-scale example, such as purchasing materials for a major construction project,

where the range of values spans one million dollars instead of one hundred. In this

case, the increase in utility represents $12,000 in savings.

While this example assumes that the buyer is risk neutral, this is often not the

case. Most buyers will typically show some degree of risk aversion. Consider the

utility function

uz(z) =
1 − e

z−200

200

1 − e−
1

2

(6.11)

Note that this is a risk averse function where 200 is the risk tolerance, uz(100) = 1,

and uz(200) = 0. See Keeney and Raiffa [KR76] for material on risk averse utility

functions. Again for simplicity, assume that all bundles are preferred equally and

therefore bundle purchase utility is dependent entirely on cost.

116

Testing was done using bundles with parameters as given in Table 6.2. These

values were chosen because they give the same means and standard deviations on

utility as the bundles described above. For example, using (6.11) for the utility

function, the mean utility for purchasing b1 would be .5 and the standard deviation

.06. As before, b1 expires before the costs of b2 and b3 are known, and CS = {b2, b3}
is a comparison set. Since the bundle costs are normally distributed and the utility

function is risk averse, the resulting distribution of purchase utility outcomes for

each bundle will be negatively skewed. In MC simulations for this example, the

näıve decision process achieves an average utility of .540, while the improved process

achieves an average of .552. This gives an increase of .012, as predicted by the

theorem when the utility of purchasing b was assumed to be normally distributed.

While the exact increase can be computed if the utility distribution function for b

is known, this indicates that a moderate level of risk aversion does not excessively

skew the distribution, and it is therefore reasonable in such cases to use the normal

distribution function.

bi µi ($) σi ($)
b1 156.10 5.88
b2 158.23 12.56
b3 157.51 9.71

Table 6.2: Means and variances of bundle costs in the example for a risk averse buyer

6.1.3 Adding New Choices

This section gives an idea of how much the expected utility of a comparison set rises

when a new bundle is added to the set. This can be used to obtain an estimate of the

expected utility of a comparison set without using Monte Carlo or other methods.

Note that this provides a good estimate only when bundle purchase utilities are highly

117

independent and close to normally distributed. In general, MC methods should be

used.

Let X1 and X2 be independent random variables representing the expected utility

of bundle sets B1 and B2 (each possibly consisting of a single bundle), and let X1

and X2 have parameters (µ1, σ1) and (µ2, σ2), respectively. Note that, for X1 and X2

to be independent, the cost outcomes for bundles in B1 must be independent of cost

outcomes for all bundles in B2. Also, let X1 and X2 be such that µ1 ≥ µ2. The goal

is to determine the mean µ of the utility of B = B1 ∪ B2.

Let the relative mean µr = (µ2 − µ1)/σ1 be the mean of X2 in relation to X1 in

terms of the standard deviation of X1 and the relative standard deviation σr = σ2/σ1

be the standard deviation of X2 in terms of the standard deviation of X1. The mean

µ of the new set of choices B is calculated by

µ = µ1 + ∆µ · σ1 (6.12)

where ∆µ is the increase in the mean of X1 in terms of the standard deviation of X1

when the choices from X2 are added. This can be closely approximated by

∆µ = a1µ
3
r + a2µ

2
r + a3µr + a4 (6.13)

a1 = 0.00122453σ3
r + 0.00198985σ2

r − 0.02717656σr + 0.04144293
a2 = 0.00967392σ3

r − 0.02017891σ2
r − 0.07310484σr + 0.24396784

a3 = 0.00166528σ3
r − 0.00878871σ2

r + 0.00856184σr + 0.50629631
a4 = −0.02798339σ3

r + 0.15946105σ2
r + 0.04476181σr + 0.38835235

Table 6.3: Values for ai constants in (6.13)

where the ai constants are given in Table 6.3. These constants were generated by

using simulation to determine ∆µ for several (µr, σr) pairs. Linear regression was

then used to estimate the coefficients.

118

For example, consider again b2 and b3 with parameters as in Table 6.1. This

function can be used to approximate the expected utility of CS = {b2, b3} by calcu-

lating the estimated increase in mean when the two bundles are added together. Since

µ3 > µ2, µr = (µ2−µ3)/σ3 = (.475− .484)/.1 = −.09, and σr = σ2/σ3 = .13/.1 = 1.3.

From (6.13), ∆µ = .610. Using (6.12), µ = .484 + .610 · .1 = .545, which is equal (to

3 decimal places) to E[ũ(CS)] as found by MC simulation in section 6.1.2.

Testing shows that this approximation is accurate with a standard error of less

than .001 when −2 ≤ µr ≤ 0 and 0.4 ≤ σr ≤ 2. These ranges are reasonable to

consider since, because we are typically comparing similar interchangeable items, we

expect that commonly µr stays close to 0 (and by definition is never positive), and

σr stays close to 1. Therefore, the new utility calculated by (6.12) is accurate with a

standard error of .001σ1.

Table 6.4 provides an excerpt of the accuracy tests of the approximation function.

This is simply to give the reader a rough idea of how much improvement is gained

by adding a new set of choices to an existing set, by giving the results of a few

example values. Recall that an improvement of 0.12, for example, would mean that

µ is expected to rise by 0.12 ∗ σ if the choices are added together, where µ and σ are

those of the set of choices with the higher µ.

For example, consider two bundles b1 and b2, each with means and standard

deviations (µ1, σ1) and (µ2, σ2), respectively, where µ1 = .6, σ1 = .1, µ2 = .52, and

σ2 = .15, giving a relative mean µr = .52−.6
.1

= −0.8 and a relative standard deviation

σr = .15/.1 = 1.5. From Table 6.4, we see that the increase in mean is about .39. So

the expected highest utility of the two choices put together is µ1 + .39σ1 = .6+ .039 =

.639.

119

µr σr MC µ Approx µ Difference
-1.2 0.5 0.0807 0.0807 0.0000
-1.2 1.0 0.1550 0.1560 0.0010
-1.2 1.5 0.2719 0.2729 0.0010
-0.8 0.5 0.1545 0.1559 0.0014
-0.8 1.0 0.2537 0.2521 0.0016
-0.8 1.5 0.3908 0.3889 0.0019
-0.4 0.5 0.2738 0.2744 0.0006
-0.4 1.0 0.3864 0.3860 0.0004
-0.4 1.5 0.5377 0.5367 0.0010

Table 6.4: Examples of utility increase when adding a new set of choices, where µr is
the relative mean, σr is the relative standard deviation, MC µ is the mean found using
Monte Carlo, Approx µ is the mean found using (6.12) and (6.13), and Difference is
the difference between MC µ and Approx µ.

6.2 Partial Bundle Purchases

This section provides an analysis of the performance of the three methods developed

for making decisions in the setting where partial bundle purchases are allowed. Note

that all proofs are based on the assumption that a sufficient degree of accuracy can

be achieved in results obtained through simulation. Also, while the implementation

described in this thesis strictly generates degree-three polynomials to represent utility

projection functions, results here are based on the added assumption that sufficiently

accurate functions are computed.

6.2.1 The Restricted q-horizon Method

This section shows that, in the setting where partial bundle purchases are permitted,

the buyer’s expected utility when using the restricted q-horizon method is always at

least as high as when using the greedy method. For a node n in a QR-tree, consider

the notation given in Table 6.5.

While, in reality, the buyer actually traverses the purchase procedure tree during the

120

Erq(n) the true (possibly unknown) expected utility if the restricted q-horizon
method is used from n until the end

Egr(n) the true (possibly unknown) expected utility if the greedy method is
used from n until the end

θrq(n) the expected utility at n estimated by the restricted q-horizon method

θ′rq(n) the expected utility at n estimated by the restricted q-horizon method
if all q-horizons in n’s q-region are eliminated (i.e. for any decision
node d in the q-region, qsh(d′) is subtracted from qh(d) for every
descendent d′)

θgr−rq(n) the estimated expected utility at n if the greedy method is used
throughout n’s q-region, and the restricted q-horizon method is used
afterward

Table 6.5: Notation used in proofs where n is a node in a QR-tree

process of making decisions and purchases towards the goal of procuring a bundle,

for simplicity in this section the QR-tree is used to guide the purchase procedure.

This is sufficient since, because all decision nodes are the same in each tree (decision

times are the same, and the information known at decision time is the same for each)

and each path represents the same purchases (albeit possibly in a different order),

the expected utilities for choices at decisions are the same in each tree. To avoid

the confusion of changing the context from purchase procedure trees to QR-trees and

back again, only the QR-tree is used in this discussion.

Definition 6.1 (fringe) Let R be a q-region in a QR-tree T . The fringe F of R is

a set of nodes from T such that a node n is in F iff n’s parent is in R but n is not.

Lemma 6.3 For the root node n in the QR-tree, θgr−rq(n) ≥ Egr(n).

Proof. If n is a purchase node, then θgr−rq(n) = θrq(n). Since θrq(n) is always greater

than or equal to Egr(n) (since it is always at least as high the expected utility of using

121

the greedy method through any region), then, in the case where n is a purchase node,

θgr−rq(n) ≥ Egr(n). Let n then be a decision node with q-region R. For any node f

in the fringe F of R, by definition θrq(f) ≥ Egr(f) for any above value in Af . Since

θgr−rq(n) is the utility expected by the greedy method given that the expected utility

of each f ∈ F is θrq(f) for above values in Af and Egr(n) is the utility expected by

the greedy method given that the expected utility of each f ∈ F is Egr(f) for above

values in Af , then θgr−rq(n) ≥ Egr(n). ✷

Theorem 6.4 For the root node n in the QR-tree, the expected utility Erq(n) when

using the restricted q-horizon method is greater than or equal to the expected utility

Egr(n) when using the greedy method.

Proof. Since by Lemma 6.3 θgr−rq(n) ≥ Egr(n), showing that Erq(n) ≥ θgr−rq(n) is

sufficient. This is done by induction on the height of the QR-tree.

Base Case. Let n be a leaf. Using any method will simply result in the purchase of

the item represented by n, so Erq(n) = θgr−rq(n).

Induction. Assume that, for any child n′ of n, Erq(n
′) ≥ θgr−rq(n

′) for any above

value in An′. If n is a purchase node, then using any method will result in the

purchase of the item represented by n, and execution will move to the child n′.

By induction, Erq(n
′) ≥ θgr−rq(n

′). Let n be a decision node. If the each method

suggests the same choice then, by induction, Erq(n
′) ≥ θgr−rq(n

′). Assume then that

the restricted q-horizon method suggests proceeding to n′ while the greedy method

suggests proceeding to n′′. Then

θrq(n
′) ≥ θrq(n

′′) (6.14)

Since θrq(n
′′) = max{θ′rq(n

′′), θgr−rq(n
′′)},

θrq(n
′′) ≥ θgr−rq(n

′′) (6.15)

122

and therefore

θrq(n
′) ≥ θgr−rq(n

′′) (6.16)

Since θ′rq(n
′) is the estimated expected utility of n′ if the q-horizons are restricted

throughout the q-region of n, then the true expected value of n′ where all info is

known at each decision must be higher. Thus

Erq(n
′) ≥ θ′rq(n

′) (6.17)

Using the induction hypothesis with (6.17)

Erq(n
′) ≥ θgr−rq(n

′)

≥ max{θ′rq(n
′), θgr−rq(n

′)}
≥ θrq(n

′)
(6.18)

Then by (6.16) and (6.18)

Erq(n
′) ≥ θgr−rq(n

′′) (6.19)

So, whenever the restricted q-horizon method suggests n′ and the greedy method

suggests n′′,

Erq(n) = Erq(n
′) ≥ θgr−rq(n

′′) ≥ Egr(n
′′) = Egr(n) (6.20)

and therefore Erq(n) ≥ Egr(n). ✷

6.2.2 The Classification Tree Method

The goal of this section is to show that the expected utility estimate provided by the

classification tree method for some choice is an underestimate of the true utility that

one would expect if this method is used throughout the purchase procedure. It is clear

from the nature of the solution method that, if choices are made at each decision node

in the purchase procedure tree using classification trees in the initial QR-tree, then

123

the estimate computed for a choice is equal to its expected utility. This is the case

since this decision-making process is exactly what is simulated by the classification

tree method. However, this is not likely to be the way decisions are ultimately

made. It does not make sense to use previously constructed classification trees if new

information has been obtained in the interim. In fact, any time any new information is

obtained (e.g. prices become known, new prequotes are received, other quotes expire),

purchase procedure trees and their corresponding QR-trees should be reconstructed.

If this is done, however, the classification tree method is not guaranteed to provide

an underestimate. It is possible that when attempting to solve some decision point d

in the purchase procedure tree, even though more information may be available at d’s

decision time than when the classification trees were initially determined, the decision-

maker may make a “mistake” that was not made during the initial simulation. Here,

a mistake refers to the act of opting for the choice with the lower true expected utility.

A possibility such as this could, in theory, result in the buyer’s true expected utility

actually being less than that originally estimated.

That said, it is still interesting to be able to declare that expected utility is at

least some value θct, given the condition that the buyer only uses these classification

trees to solve future decisions. It should also be stated that previously constructed

classification trees need only be used at a decision node d if there exists a descendent

decision node d′ such that qss(d′) in the QR-tree includes an item for which the price

is unknown at time t(d). At any other decision time, new trees can be constructed

and expected utilities recomputed, and the underestimation property still holds. This

method is formally described in Algorithm 6.1, and the underestimation property is

subsequently proven.

Algorithm 6.1 (ctMethod(d)) Let Tpp and Tqr be the purchase procedure tree and

QR-tree rooted at decision node d, respectively. For each decision node d′ in Tpp, let

qr(d′) be the corresponding decision node in Tqr. Also, let DCT be the subset of the

decision nodes in Tpp where dct ∈ DCT iff there exists a descendent decision d′′ of dct

124

such that there is an item i ∈ qss(qr(d′′)) for which the price outcome is unknown at

time t(dct). Finally, let θct(ℓ(d)) and θct(r(d)) be the expected utility estimated for

the left and right choice at d, respectively. The following dictates how to traverse Tpp:

1. If θct(ℓ(d)) > θct(r(d)), then let curNode = ℓ(d). Else, curNode = r(d). Pro-

ceed to curNode.

2. Let n = curNode. If n is null, then end. Else if n is a purchase node, buy n, let

curNode be the child of n, and repeat 2. Else n is a purchase node. If n ∈ DCT ,

let curNode be the child of n with the higher expected utility estimated using

Tqr with the current price outcomes (see section 5.6.2), and repeat 2. Else, do

ctMethod(n). ✷

Theorem 6.5 Let d be the root decision node in a purchase procedure tree T . The

expected utility θct(d) = max{θct(ℓ(d)), θct(r(d))} of a choice n at d estimated by the

classification tree method is less than or equal to the utility one is expected to achieve

if ctMethod(d) as given in algorithm 6.1 is used in the traversal of T .

Proof. Consider the abstract representation of the purchase procedure tree rooted at

d depicted in Figure 6.2. The tree is divided into two main areas: the area where

decision nodes are in DCT and the area where they are not (referred to as DCT). A

portion of DCT referred to as the fringe of DCT is also shown. A decision node df is

in the fringe of DCT iff df is the first decision node on the path from the root to be

in DCT . Since there are no q-subsets for decision nodes below qr(df) in the QR-tree

Tqr containing items for which prices are unknown at time t(df) and the therefore

expected utilities can be computed exactly, the buyer will know exactly which choice

at df will maximize expected utility. The buyer will therefore make decisions in the

fringe at least as well as was done during simulations at t(d) using Tqr. Thus the

buyer’s expected utility at df , for any above value a ∈ Adf
, is at least as high as that

estimated at t(d). And since decisions occurring before the fringe is reached are done

125

in exactly the same manner as they were in Tqr simulations, then the buyer’s true

expected utility if ctMethod(d) is used is greater than or equal to θct(d). ✷

 d

 DCT

 fringe

 __

 DCT

Figure 6.2: Abstract representation of a QR-tree for the proof of Theorem 6.5

6.2.3 The q-subset Discretization Method

Since the q-subset discretization method uses approximation to discretize the out-

comes for q-subset items, it is difficult to prove anything theoretically about its per-

formance. Before any solid conclusions can be made, therefore, the technique must

endure thorough testing. This is done in section 6.3. However, to give the reader an

understanding of how accurately this method estimates expected utility, this section

presents an analysis of its performance on a simple case where the true expected

utility can be computed. Consider the QR-tree given in Figure 6.3.

The purpose of this analysis is to compare how accurately the q-subset discretiza-

tion method estimates the expected utility of the right subtree of d1, compared to

simply restricting the q-horizon of d2 and ignoring the fact that B is included (thus

eliminating the q-subhorizon of d3. This can be done here since the problem is small

enough that the true expected utility can be computed quite accurately. The test

will attempt to answer the question of whether considering B to be part of qh(d2) is

worth the tradeoff associated with accuracy loss due to the PT-approximation of B’s

outcomes.

For all tests, A, B and C are considered to be items in singleton bundles, each

126

 d1

 . d2
 .
 .

 A d3

 B C

 Figure 6.3: A simple QR-tree used to demonstrate the performance of the q-subset

discretization method.

bundle with equal utility (so only the cost has any effect on the outcome of utility).

Also, for simplicity, a risk-neutral utility function is used. For the first test, the

utility outcome for each of B and C have equal mean (say 0, but the actual number

chosen is irrelevant), and as well as equal standard deviation (0.05). A is also given

a standard deviation of 0.05 and its mean is incremented by 0.01 from -0.2 to 0.4.

For each of these values, the restricted q-horizon estimate, the q-subset discretization

estimate and the true expected utility (with a standard error ≤ 0.001) were computed.

Figure 6.4 shows the results of these tests.

This shows that, while the q-subset discretization estimate stays within .001 of the

true value, the restricted method gives a higher error particularly when the mean of

A is between 0 and 0.1. Next, the performance is tested when each of the µB, µc, σB,

and σC values are increased. These effects are demonstrated in Figure 6.5

When the mean of B is increased, the error in the restricted estimate rises dra-

matically, since the outcome of B is much more influential and it is thus much worse

to ignore the fact that this outcome will be known before the decision at d2 is made.

Increasing the mean of C on the other hand is not very interesting, because it makes

the outcome of B less important. Increasing the standard deviation of C does not

127

0

0.002

0.004

0.006

0.008

0.01

-0.2 -0.1 0 0.1 0.2 0.3 0.4

Mean of A
E

r
r
o

r

Figure 6.4: Estimation error for each method where σA = σB = σC = 0.5 and
µB = µc = 0. The black line indicates the restricted q-horizon error while the white
line indicates the q-subset discretization error.

seem to have much effect. However, increasing the standard deviation of B provides

a very interesting case. The q-subset discretization estimate is poor, especially when

µA < 0. This is the area where A will almost never be purchased, so the expected

utility of the right subtree is equal to the expected utility of the subtree starting at d3.

Naturally, the q-subset discretization estimate will not be as accurate here. However,

as A rises, the restricted estimate becomes as much as 5 times worse. This is due

to the fact that, since the variability of the outcome of B is high, it is important to

consider that this outcome will be known before the decision at d2 is made.

For completion, Figure 6.6 demonstrates the effect of increase combinations. Note

that no results are given for increases in both µB and µC , since only the levels of these

means in relation to each other are relevant. Note that, while the only case above

where the PT estimate was poor is when σB was increased and µA was low, the error

seems to disappear when σC is increased to the same level (as shown in Figure 6.6(e)).

128

0

0.002

0.004

0.006

0.008

0.01

-0.2 -0.1 0 0.1 0.2 0.3 0.4

Mean of A

E
r
r
o

r

 a) �

B = .1 �
C = 0

 ✁ B = .05 ✁ C = .05

0

0.002

0.004

0.006

0.008

0.01

-0.2 -0.1 0 0.1 0.2 0.3 0.4

Mean of A

E
r
r
o

r

 c) ✂ B = 0 ✂ C = .1
 ✄ B = .05 ✄ C = .05

0

0.002

0.004

0.006

0.008

0.01

-0.2 -0.1 0 0.1 0.2 0.3 0.4

Mean of A

E
r
r
o

r

 b) ☎ B = 0 ☎ C = 0
 ✆ B = .1 ✆ C = .05

0

0.002

0.004

0.006

0.008

0.01

-0.2 -0.1 0 0.1 0.2 0.3 0.4

Mean of A
E

r
r
o

r

 d) ✝ B = 0 ✝ C = 0
 ✞ B = .05 ✞ C = .1

Figure 6.5: The effects of individually increasing (a) µB to .1 (b) µC to .1 (c) σB to
.1 (d) σC to .1.

6.3 Testing of QR-Tree Solution Methods

This section discusses the implementation of the QR-tree solution techniques de-

scribed in this thesis, as well as results of tests performed using these methods on an

example QR-tree. The purpose of this section is merely to provide a demonstration

of how well these methods perform in a semi-random simulated environment when

compared to the greedy decision procedure. No serious claims regarding the statis-

tical significance of the performance results are made here. Such a test would be

pointless since it is possible that in some rare situations a buyer could actually do

worse by using one of these techniques. This is due to the fact that approximation

techniques are used. However, the results of the previous section (i.e. the proofs that

the restricted q-horizon method is always better than the greedy method and that

129

0

0.002

0.004

0.006

0.008

0.01

-0.2 -0.1 0 0.1 0.2 0.3 0.4

Mean of A

E
r
r
o

r

 a) � B = 0 � C = .1
 ✁ B = .05 ✁ C = .1

0

0.002

0.004

0.006

0.008

0.01

-0.2 -0.1 0 0.1 0.2 0.3 0.4

Mean of A

E
r
r
o

r

 b) ✂ B = .1 ✂ C = 0
 ✄ B = .05 ✄ C = .1

0

0.002

0.004

0.006

0.008

0.01

-0.2 -0.1 0 0.1 0.2 0.3 0.4

Mean of A

E
r
r
o

r

 c) ☎ B = 0 ☎ C = .1
 ✆ B = .1 ✆ C = .05

0
0.002
0.004
0.006
0.008

0.01
0.012
0.014
0.016
0.018

0.02

-0.2 -0.1 0 0.1 0.2 0.3 0.4

Mean of A

E
r
r
o

r

 d) ✝ B = .1 ✝ C = 0
 ✞ B = .1 ✞ C = .05

0

0.002

0.004

0.006

0.008

0.01

-0.2 -0.1 0 0.1 0.2 0.3 0.4

Mean of A

E
r
r
o

r

 e) ✟ B = 0 ✟ C = 0
 ✠ B = .1 ✠ C = .1

0

0.002

0.004

0.006

0.008

0.01

-0.2 -0.1 0 0.1 0.2 0.3 0.4

Mean of A

E
r
r
o

r

 f) ✡ B = 0 ✡ C = .1
 ☛ B = .1 ☛ C = .1

0
0.002
0.004
0.006
0.008

0.01
0.012
0.014
0.016
0.018

0.02

-0.2 -0.1 0 0.1 0.2 0.3 0.4

Mean of A

E
r
r
o

r

 g) ☞ B = .1 ☞ C = 0
 ✌ B = .1 ✌ C = .1

Figure 6.6: The effects of increasing (a) µC ,σC (b) σB,σC (c) σB,µC (d) σB,µC ,σC (e)
µB,σC (f) µB,σB (g) µB,σB,σC .

130

the classification tree method always gives a lower bound on the expected utility)

combined with the evidence presented in this section make a solid case in favour of

the techniques presented in this thesis.

Each of the three methods were implemented and tested, as well as the greedy

method for the sake of comparison. Two results are examined for each method: the

accuracy of the estimated expected utility produced and the overall utility achieved.

Tests were carried out over 100 random instances of the means and standard devia-

tions of items in the QR-tree. For each instance, the expected utility was estimated

using each technique. The purchase procedure was then run 10000 times to determine

an accurate estimate of the true utility expected for each instance.

6.3.1 Implementation

Implementation was done using Java 2 Standard Edition (J2SE) 1.4.0. All tests

were run on a Dell LATITUDE C840 PC with a Pentium 4 CPU on the Microsoft

Windows XP platform. Each of the restricted q-horizon, q-subset discretization and

classification tree methods were implemented. A few details on each implementation

are presented here.

Input

The file qrtree.java can use any of the three methods to estimate the expected utility

of each choice at a decision point. The program requires:

• the choice of method to use

• the standard error to use in simulations

• the QR-tree

• the utility function for money and the two-attribute utility function for bundle

purchases

131

The estimation method to use is set in the first line of main using method type.

The values used are: 0 for the q-subset discretization method (referred to as PT in

the program), 1 for the classification tree method (referred to as CT) and 2 for the

restricted q-horizon method (referred to as RQ).

int method type = ‘‘PT’’; //PT, CT, RQ

In the second line in main, the standard error is set. This value is used for

every part of the algorithm in which simulation is done, determining the number of

simulations that need to be performed. Each time a series of simulations is needed

to estimate the average result of some function, 1000 runs are carried out in order

to estimate the variance s2. Since the standard error of the mean of n simulations is
√

s2

n
, the number of simulations needed to determine the mean with standard error

se is s2

se2 .

double sterr = 0.0005;

The QR-tree is entered in the method createTree. An Item object is first created

for each item. The values given to construct the object are the item name, the mean

price, standard deviation, and quote and rescind times. A single dummy item is

created for decisions.

//Item(ItemName,meanPrice,stDev,q,r)

Item A = new Item("A",345,0,0,1);

Item B = new Item("B",350,15,2,5);

Item C = new Item("C",340,11,6,8);

Item D = new Item("D",315,10,3,7);

Item E = new Item("E",370,13,4,8);

Item F = new Item("F",360,10,5,9);

Item G = new Item("G",350,15,4,9);

Item d = new Item("d",0,0,0,0);

Node objects are then created to build the tree. Purchase nodes require the item,

the child node, and the bundle utility (if it is the final purchase node on a path, 0

132

otherwise). Decision nodes require the item (always d), the left child node, the right

child node, and the decision time.

//Node = new Node(item, child , bundleUtil);

//Node = new Node(decItem, leftchild, rightchild,decTime);

Node pB1 = new Node(B,null,0.45);

Node pC = new Node(C,null,0.4);

Node d2 = new Node(d,pB1,pC,5);

Node pA = new Node(A,d2,0);

Node pE1 = new Node(E,null,0.6);

Node pF = new Node(F,null,0.55);

Node d4 = new Node(d,pE1,pF,8);

Node pE2 = new Node(E,null,0.3);

Node pG = new Node(G,null,0.25);

Node d5 = new Node(d,pE2,pG,8);

Node pB2 = new Node(B,d4,0);

Node pD = new Node(D,d5,0);

Node d3 = new Node(d,pB2,pD,5);

Node d1 = new Node(d,pA,d3,1);

Finally, the utility functions must be entered. This is done with the uz and u

methods.

public static double uz (double z){

//range 600-800

//risk averse; tolerance=500

return (1-Math.exp((z-800)/500))/(1-Math.exp(-0.4));

}

public static double u (double ub, double z){

double uz=uz(z);

double kb=0.4;

double kz=0.6;

double kbz=0;

return kb*ub + kz*uz + kbz*ub*uz;

}

When executed, the system begins by preprocessing the QR-tree. This involves

the construction of the q-sets, q-subsets and q-subset-complements for each decision

node, as well as the set A′ of above values (the 19 chosen values as discussed in

133

section 5.6.1) for each node. Each of the left and right subtrees of the root (which

must be a decision node in this implementation) are then printed before the specified

estimation method is employed.

The Restricted q-horizon Method

The restricted q-horizon method starts at the leaves and moves to the root. Each time

a purchase node n is encountered that does not reside in a q-horizon, the expected

utility of n is determined for each above value a ∈ A′
n by simulating the outcome

for n’s item, as described in chapter 5. After an appropriate number of simulations,

the average result is taken to be the expected utility of n given a. Each a and the

corresponding expected utility are stored in a 2× 19 array. Once the expected utility

is determined for all 19 values in A′
n, the regression method is called to fit a degree-

three polynomial function for the utility projection function of n. This function is

stored in a 1 × 4 array where the ith column contains the coefficient for xi.

Any purchase node that does reside in a q-horizon is skipped.

When a decision node d is encountered, for each a ∈ A′
n the outcomes for re-

stricted q-set items (i.e. the items represented by nodes in the restricted q-horizon)

are simulated and a temporary expected utility u′ of d given a is determined. The

greedy method is then simulated throughout the q-region of d, and the maximum of

this result and u′ is taken to be the expected utility of d given a. After all 19 values

are determined, the regression method is called and the utility projection function

is determined. Since there is only a single above value for each child of the root of

the tree, the expected utility of each child given this above value is taken to be the

expected utility of each choice. These values are then output to the user.

The q-subset Discretization Method

The q-subset discretization method computes utility projection functions for purchase

nodes in exactly the same manner as the restricted q-horizon method, but decision

134

nodes are handled quite differently. Let K(qss(d)) be the set of joint PT-outcomes for

the items in the q-subset of a decision node d. For each k ∈ K(qss(d)), the expected

utility of d for each a ∈ A′
n is determined as described in section 5.6.2, and an utility

projection function is constructed. These utility projection functions are used to

make up the q-subset-mapping. The q-subset-mapping is stored in a |K(qss(d))| × 4

array, where the ith row contains the utility projection function that corresponds to

the outcome k as follows: Let i3 be the number i in base 3 and let qss array be the

array of items in qss(d). If x is the jth digit in i3, then the outcome for the item

qss array[j] in k, where µ and σ are the mean and standard deviation of the price

of qss array[j] respectively, is

µ − 1.645σ if x = 0

µ if x = 1

µ + 1.645σ if x = 2

An array of length |K(qss(d))| is also kept to hold the probability of each k occurring.

The q-subset-mapping and the corresponding probabilities are then used to compute

q-subset-mappings for ancestor decision nodes. Once the expected utility of each child

of the root given the single is above value is computed, the values are output to the

user.

The Classification Tree Method

The classification tree method traverses the QR-tree entirely in a top-down manner.

Items are bought whenever purchase nodes are encountered, and the utility projection

functions and q-subset-mappings constructed by the q-subset discretization method

(which must be run first) are used to make decisions, as described in section 5.6.2.

The classification tree for each decision node is represented by the same array used to

store the q-subset-mappings. When determining which path in the classification tree

to follow for a given q-subset outcome k, the appropriate PT-outcome is determined

for each item in qss array to form a string of digits. This string is then considered

135

to be a base 3 number which is converted to base 10, yielding the index of the

appropriate utility projection function (the utility projection function at the leaf of

the corresponding path in the classification tree) in the q-subset-mapping.

Each of the left and right subtrees at the root is simulated in this manner an

appropriate number of times, and the average of each is returned as their respective

expected utilities.

Output

The program displays the subtree of the QR-tree for each choice at the root, as well

as the expected utility estimated for each choice. For the example input given above,

the program determines that the first decision to make is that of whether or not to

buy item A, and gives information necessary for the decision as shown in Figure 6.7.

cd c:/MyFiles/JavaFiles/cs1073/qrtree/

c:/MyFiles/JavaFiles/java/jdk/bin/javaw.exe -classpath c:/MyFiles

/JavaFiles/cs1073/qrtree/ -Xdebug -Xrunjdwp:transport=dt_shmem,

address=javadebug,server=y,suspend=n qrtree

A subtree:

- A(1) - d(5) - B(5)

- C(8)

~A subtree:

- d(5) - B(5) - d(8) - E(8)

- F(9)

- D(7) - d(8) - E(8)

- G(9)

Expected utility of buying A: 0.5465410308495285

Expected utility of buying d: 0.5615281672860315

Process qrtree finished

Figure 6.7: Sample output for qrtree.java for given input

136

For each purchase node, the number in parentheses indicates the rescind time, while

for each decision node (represented by “d”) the decision time is indicated. This

shows that, using the q-subset discretization method, the expected utility of buying

A is estimated to be about .5465, while the expected utility of not buying A is about

.5615.

6.3.2 Test Bed

Testing was done on the bundle set B = {ACE, ACF, ADG, ADH, BCK, BJL, X}.
The quote and rescind times for each item are given in Table 6.6. All prequote times

occur at or before time 0. For simplicity, these quote periods are chosen so that the

purchase procedure tree and the QR-tree are identical. This tree is given in Figure 6.8.

Item tq tr
A 1 5
B 2 6
C 3 6
D 6 8
E 4 8
F 7 9
G 7 9
H 8 9
J 4 7
K 5 7
L 7 9
X 0 1

Table 6.6: Quote and rescind times for items used in testing

While the bundles and quote periods for items are kept static, the means, stan-

dard deviations, and actual outcomes are chosen at random for each test. The task

for each instance is to accurately estimate the expected utility of the right subtree

at the decision time of d1 (1), and compare the estimate to the certain utility of pro-

ceeding to the left subtree (simply purchasing X). The right subtree contains many

137

 d1

 X0,1 d2

 A1,5 B2,6

 d3 d4

 C3,6 D5,8 C3,6 J4,7

 d5 d6 K5,7 L7,9

 E4,8 F7,9 G7,9 H8,9

Figure 6.8: QR-tree for experiments. The subscripts for each purchase node denote
the tq and tr times, respectively. The q-sets for each decision node are d1 : X,
d2 : ABCEJ , d3 : CDE, d4 : CJK, d5 : EF , d6 : GH .

138

q-subhorizons, since if there were no q-subhorizons all three methods would produce

the same result. In particular, the subtree includes a decision node with a singleton

q-subhorizon (d5), a decision node with a size 2 q-subhorizon that does not intersect

another q-subhorizon (d4), a decision node with a size 2 q-subhorizon that does in-

tersect another q-subhorizon (d3) (i.e. the q-horizon for d2 includes two consecutive

subsequent decisions), as well as two decision nodes with empty q-subhorizons (d2 and

d6). In addition, the outcomes for all purchase nodes that reside in a q-subhorizon

will be known at d2. Therefore, given that d2 is chosen, all three methods will give

the same result. This will help when comparing performances.

One hundred random instances were chosen for testing. For each instance, the

means were chosen from a uniform distribution with range [0.9, 1.1] and standard

deviations from a uniform distribution with range [0, 1
3
] for the costs of items A-L. All

bundle utilities were considered to be equal and therefore could be ignored, and the

risk neutral utility function

uz(z) = 1 − z − 2

2
(6.21)

for money was used. Thus, the two-attribute utility function was simply u(b, z) =

0(ub(b))+1(uz(z)) = uz(z). For each instance, the expected utility of the right subtree

was calculated using each of the four methods. Since the primary concern is to test

the performance of the q-subset discretization method versus the restricted q-horizon

method (the greedy method is expected to be much worse than all others and the

classification tree method is expected to be quite close to the q-subset discretization

method), the mean of item X (the left child of d1) was taken as the cost that would

make the utility of buying X equal to the average of these two estimates for the

right subtree. That is, for the q-subset discretization estimate θPT and restricted

q-horizon estimate θrq, the mean µX of the cost of X was chosen so that u(X, µX) =

(θPT + θrq)/2. This was done for the following reason: If the expected utility of

the left subtree is either less than or greater than both expected utilities estimated

139

for the right subtree, then a decision-maker using either method will make the same

choice, making for an irrelevant test case. Setting the left mean utility to be exactly

in between the two right estimates with a relatively small standard deviation ensures

that most test runs will be relevant. The standard deviation σX of the cost of X

was chosen so that u(X, µX + σX) = max{θPT , θrq} (and therefore u(X, µX − σX) =

min{θPT , θrq}). This means that the restricted q-horizon method and the q-subset

discretization method will suggest a different choice at d1 (and therefore produce a

different result) 68% of the time. Monte Carlo simulations in calculating the expected

utilities made use of antithetic variate sampling [HM56], and calculations used a

standard error threshold of .001. The values used for each instance are given in

Table A.1 in Appendix A.

6.3.3 Accuracy of Each Method

For each instance, the expected utility at time 1 of the subtree rooted at d2 was

estimated using each method. 10000 simulations of the purchase procedure beginning

at d2 were then executed out to closely determine the true average utility (with

standard error ranging from .001 to .0015). Table A.2 in Appendix A gives the

estimated expected utility for each method as well as the average utility achieved for

each instance. Table 6.7 summarizes the results by giving the average utility estimated

and achieved for each method over all 100 cases. Table 6.8 gives the standard error,

which is calculated as
√

sse/99 where sse is the sum of squared errors over the 100

cases.

All three methods work quite well when compared to greedy estimation, which

is simply just the highest expected utility over all bundles that can be purchased in

the right subtree. The q-subset discretization method performed the best, producing

only about 4/5 the error of the classification tree method and about 1/3 that of the

restricted method.

140

Method Estimate
Greedy 0.5464
Restricted q-horizon 0.6372
Classification Tree 0.6429
q-subset Discretization 0.6445
Utility Achieved 0.6468

Table 6.7: Average expected utility estimates for right subtree compared with the
true utility achieved (average over 10000 runs per instance)

Method Standard Error
Greedy 0.1046
Restricted q-horizon 0.0120
Classification Tree 0.0050
q-subset Discretization 0.0040

Table 6.8: Standard error for each estimation method over the 100 test cases

6.3.4 Utility Achieved by Each Method

10000 simulations of the entire purchase procedure were performed for each instance

to determine the actual utility achieved by using each method through the entire

purchase procedure starting at d1. The results for each test are given in Table A.3 in

Appendix A. Table 6.9 summarizes the results by giving the average utility achieved

by each method over all 100 cases.

Method Utility
Greedy 0.6408
Restricted q-horizon 0.6427
Classification Tree 0.6464
q-subset Discretization 0.6467

Table 6.9: Average utility achieved using each method with µX and σX such that
u(X, µX) = (θPT + θrq)/2 and u(X, µX + σX) = max{θPT , θrq}.

141

To complete the analysis, a test was carried out to determine how much better the

q-subset discretization is over the greedy method. To do this, the mean and standard

deviation for the cost of X were set as above, except in relation to the greedy estimate,

instead of the restricted q-horizon method. The results are given in Table 6.10.

Method Utility
Greedy 0.6149
q-subset Discretization 0.6506

Table 6.10: Average utility achieved using each method with µX and σX such that
u(X, µX) = (θPT + θgr)/2 and u(X, µX + σX) = max{θPT , θgr}.

6.4 The Effect of the Antithetic Variate Technique

A simple experiment was performed to test the effectiveness of the antithetic variate

sampling technique used in MC simulation, where the expected higher utility of two

purchases was estimated. In the case where only complete bundle purchases can

be made (chapter 4), this test is similar to the problem of calculating the expected

utility of a comparison set (where each purchase represents a bundle purchase). In

the case where partial bundle purchases can be made (chapter 5), the test can be

viewed as solving the problem of computing the expected utility of a future decision

point (where each purchase represents a choice at that point).

Recall the concepts of relative mean and relative standard deviation as discussed

in section 6.1.3. In the test, one item had varying relative means and standard

deviations, while the other’s parameters were fixed at (0,1). The test bed consisted of

every pair (µr, σr) where µr was raised by increments of 0.05 from -2 to 0, and σr was

raised by increments of 0.05 from 0.4 to 2. These ranges are consistent with those

used in section 6.1.3. Simulations were run to compute the expected higher value for

each case within a standard error of .001. Table 6.11 shows the average variance over

all test cases for each of crude MC and MC with antithetic variate sampling. Note

142

that to achieve a standard error of
√

s2

n
= .001, the sample size n must be 106 times

the sample variance s2. MC with antithetic variate sampling therefore required an

average sample size of about 160,000, as opposed to 904,000 for crude MC, or roughly

a little more than 1/6. Taking into consideration the fact that this method requires

twice as much work since a second estimator is used, we see that the total amount of

work required with antithetic sampling is only about 1/3 that of crude MC.

Average variance with crude MC: 0.904
Average variance with antithetic variate MC: 0.160

Table 6.11: Average variance during testing

143

Chapter 7

Conclusions

7.1 Thesis Results

This thesis describes a theory for decision-making in a dynamic purchasing environ-

ment where one of possibly many bundles of items must be purchased from possibly

many suppliers. The online combinatorial purchasing problem is defined as the prob-

lem with which a purchase agent in such an environment is faced when deciding which

items, from whom and at what time to buy in order to maximize overall satisfaction.

Expected utility maximization is used as the criterion on which decision-making is

based. To facilitate the exchange of probabilistic and temporal information between

suppliers and purchasers, the PQR protocol is defined. This protocol dictates when

information will be known by the purchaser about items such as cost, distribution of

possible outcomes on cost, the time a quote will be obtained, and the time a quote

will expire. The theory considers two distinct situations: 1) the situation in which

only complete bundle purchases are made (i.e. a bundle is chosen in which all items

have open quotes, and all items are purchased at once) and 2) the situation in which

partial bundle purchases are allowed.

In the situation where only complete bundle purchases can be made, a technique

is presented that provably yields higher expected utility than simply pursuing the

best bundle. This method capitalizes on the variability of item prices in bundles that

144

are available during the same time, and the influence of this variability on the utility

one can expect to achieve when purchasing during this time. Each time a bundle b is

about to expire, the buyer is instructed to make the purchase iff there does not exist

a period of time (referred to as a comparison interval) such that the expected highest

utility of all bundles available during that entire period (referred to as a comparison

set) is higher than that of the current bundle purchase. The technique is shown to

provide a minimum improvement of
∫ k
j (k − x)pb(x) dx over the strategy of buying a

bundle iff it has the highest expected utility over all bundles, where j is the highest

expected utility over all bundles, k is the expected utility over all comparison sets,

and pb is the probability distribution function for the utility of buying the current

bundle.

The problem is shown to be much more difficult when partial bundle purchases

are permitted. The purchase procedure tree is introduced as a structure for modeling

the sequence of decisions and purchases that must be made on the way to ultimately

procuring a bundle. Conventional decision trees are shown to be unnecessarily large

when used to solve decisions in the purchase procedure, and therefore a new type of

decision tree referred to as the QR-tree is proposed. This tree models the future deci-

sions and purchases that will affect the value of each choice at the present decision, but

orders the purchase nodes by quote time, rather than the actual purchase (rescind)

time. This reordering is done in such a way that the expected utility of the resulting

tree is equal to that of the original purchase procedure tree. As a result, purchases for

which the costs will be known at a particular decision time will be grouped together

with that decision. These groupings are done for convenience in the proposed compu-

tation methods. There are three such methods: the restricted q-horizon method, the

q-subset discretization method, and the classification tree method. Each uses Monte

Carlo simulation to estimate the expected utility of each choice in a decision. The

restricted q-horizon method simplifies the problem of computing the expected utility

145

of a future decision by only considering the price outcomes for items that do not ex-

tend past subsequent decisions. The inaccuracy induced by ignoring this part of the

q-horizon (i.e. the q-subhorizon of the next descendent decision node) is then resolved

näıvely by using a greedy algorithm. The expected utility of this decision procedure

is proven to be at least as high as the expected utility of using the greedy method

of always pursuing the bundle with the highest expected utility. The q-subset dis-

cretization method considers each item represented by nodes in the q-subhorizons (i.e.

the q-subsets) to have three discrete outcomes, as developed by Pearson and Tukey.

This technique is shown experimentally to yield the most accurate estimates of all

methods tested. The classification tree method uses data compiled by the q-subset

discretization method at each decision node to build a classification tree (referred to

as a decision tree in machine learning). The QR-tree is then simulated top-down, us-

ing these classification trees to classify outcomes into utilities to make decisions. This

method is shown to provide an underestimate of the true utility when a reasonable

restriction is placed on the execution of the purchase procedure. Testing shows that

this estimate is also very close to the true expected utility.

The approach and techniques described in this thesis are novel in that the utility

of future decision points are considered when assessing the utility of current choices.

While decision trees accomplish this for less complex decision problems, for reasons

described in this thesis they are not feasible in this context. Recent literature on

decision-making in dynamic purchasing environments supports the claim that this

approach is novel by arguing that computing expected utility of future choices is too

difficult and error-prone, and therefore not worthwhile given the fact that ignoring

future information has the desirable quality of guaranteeing a lower bound on ex-

pected utility (see [PBBP01, BPJ02, PBB03] for example). The techniques presented

in this thesis therefore advance the state-of-the-art by demonstrating efficient and

effective methods for including incomplete information on future decisions in utility

computation of current choices, giving the purchaser more precise information as to

146

the value of a choice.

7.2 Thesis Contributions

The main contributions of this thesis are as follows:

• The problem of deciding which of possibly many bundles to purchase, referred

to as the online combinatorial purchasing problem (OCPP), is formalized. Tech-

niques for determining utility functions in this domain, as well as computing

expected utilities of bundle purchases and times during which multiple choices

are available, are developed.

• The Prequote-Quote-Rescind (PQR) protocol is proposed. This protocol allows

for the exchange of information necessary for a purchase agent to make informed

decisions in the OCPP. It defines the communication rules under which buyers

learn about a potential quote, the time a quote will be offered and time a quote

will be rescinded, as well as the rules for communicating the quote itself and

acceptance/rejection of the quote.

• A decision procedure is developed that leads the buyer to buy during the period

of time during which the expected highest purchase utility of the bundles avail-

able during that entire time is maximized. This decision procedure is proven

to always yield higher expected utility to the buyer than simply pursuing the

bundle with the highest expected purchase utility.

• The QR-tree is introduced as a structure for making purchasing decisions. The

tree is shown to be exponentially smaller than a conventional decision tree used

in this domain. Three Monte Carlo (MC) algorithms are presented to solve

the tree to closely estimate the buyer’s expected utility of each choice. These

methods are shown to have a run time that grows linearly with the size of the

tree, and are thus more computationally feasible than any method that solves

147

conventional decision trees. Basing decisions on estimates computed using the

restricted q-horizon method is proven to always give the buyer a higher expected

utility than the greedy approach of pursuing the best bundle. The classification

tree method is shown to provide a tight lower bound on the true expected utility

of any choice. Finally, the q-subset discretization method is shown to provide

the most accurate estimate of all, with a standard error just 1
26

that of the

greedy method that judges the expected utility of a choice to be the maximum

expected utility of all bundles that can potentially be procured as a result of

that choice.

• Antithetic variate sampling is shown to be an effective variance reduction tech-

nique in Monte Carlo simulation in this domain. For the simple case of finding

the expected highest utility of two simultaneous choices, antithetic variate sam-

pling is shown to reduce the variance (and thus the number of simulations

needed) to 1
6

that of crude Monte Carlo.

7.3 Future Work

One idea for future work is to explore the addition of negotiation to the PQR protocol.

Not only could the quoted prices be negotiated but also the quote and rescind times

themselves. Consider the situation where a buyer may have to decide between buying

item A or item B, and the decision must be made at A’s rescind time, which happens

to be just before B’s quote time. Since it would be desirable to delay the decision until

after B’s quote time when both outcomes are known so a more informed decision can

be made, then this delay must therefore increase expected utility. Thus it would be

beneficial to the buyer to obtain either a later rescind time for A or an earlier quote

time for B. In fact, a rational buyer should be willing to offer money in return for this

time change, if the decrease in expected utility caused by this extra expenditure is less

than the increase caused by the time change. Thus the opportunity for negotiation

148

occurs.

Another addition to the PQR protocol that is worth investigation is to allow

for more probabilistic parameters in information exchange. Thus far, the only such

parameter considered is the price outcome, while tq and tr values are always known

for certain. However, one could allow for the possibility that a quote may not be

submitted at all after the prequote time. The supplier could say (or the buyer could

subjectively decide), for example, that there is a 75% chance that a price will be

quoted at time tq. Another alternative is that a quote may be promised, but perhaps

only a probability measure is known for the outcomes of the quote and rescind times.

A supplier agent could say “I’ll give you a quote sometime between day 3 and day 5,

and it will be open for exactly 4 days from the time it is offered.” A new theory would

have to be developed to solve purchasing problems in this domain, since comparison

sets, comparison intervals, q-horizons and q-subhorizons would be uncertain, but the

work in this thesis would certainly provide a good starting point.

A different direction in which to take this research is into the domain of multiple

auction decision making. Recent work by Preist et al. [PBB01], Anthony and Jen-

nings [AJ02] and Byde et al. [BPJ02] has begun to concentrate efforts on determining

strategies for participating in several auctions at once. Here the buyer has the prob-

lem of deciding whether to participate in an auction and how much to bid, based on

the auctions into which he has already entered, and what new auctions are expected.

These decisions are subject to the constraint that the buyer often prefers not to win

more than one auction in which he has bid on the same item. Making this even more

difficult is the fact that there may be different auction types (e.g. English, Dutch,

sealed-bid). To see how the research presented in this thesis can be applied to such

a problem, one can view each auction in the multi-auction problem as a quote. Like

quotes, each auction has a known start time, a known finish time and can result in

the purchase of an item. Unlike the OCPP, however, the buyer is not in complete

control of whether he will get the item if he chooses. On the other hand, with enough

149

knowledge of the type of auction and the behaviour of the participants, the buyer may

be able to construct a reasonable probability measure on the outcome of the auction.

Instead of judging the probability of price outcomes, as is done in the OCPP, one

could instead judge the probability of winning the auction for each bid amount. This

transformation could allow for the development of decision making techniques similar

to those presented in this thesis.

150

Bibliography

[AA63] F. J. Anscombe and R. J. Aumann. A definition of subjective probability.

Annals of Mathematical Statistics, 34:199–205, 1963.

[AJ02] P. Anthony and N. R. Jennings. Evolving bid strategies for multiple

auctions. In Proc. 15th European Conf. on AI (ECAI-2002), pages 178–

182, Lyon, France, 2002.

[ATY00] A. Andersson, M. Tenhunen, and F. Ygge. Integer programming for com-

binatorial auction winner determination. In International Conference on

Multiagent Systems (ICMAS), pages 39–46, 2000.

[BAD03] A. Baklizi and W. Abu-Dayyeh. Shrinkage estimation of p(y < x) in the

exponential case. Communications in Statistics, Simulation and Compu-

tation, 32(1):31–42, 2003.

[Ber38] D. Bernoulli. Specimen theoriae novae de mensura sortis. Commentarii

Acasemia Scientiarum Imperialis Petropolitanae, 5:175–192, 1738.

[Ber54] D. Bernoulli. Exposition of a new theory on the measurement of risk.

Econometrica, 22, 1954. Translation of 1738 version [Ber38].

[BEY98] A. Borodin and R El-Yaniv. Online Computation and Competitive Anal-

ysis. Cambridge University Press, 1998.

151

[BPJ02] A. Byde, C. Preist, and N. R. Jennings. Decision procedures for multiple

auctions. In Proc. 1st Int Joint Conf. on Autonomous Agents and Multi-

Agent Systems (AAMAS’02), pages 613–620, Bologna, Italy, 2002.

[BRT88] D. E. Bell, H. Raiffa, and A. Tversky. Decision Making: Descriptive,

Normative, and Prescriptive Interactions. Cambridge University Press,

1988.

[BS03a] S. Buffett and B. Spencer. A decision procedure for bundle purchasing

with incomplete information on future prices. International Journal of

Electronic Commerce, 2003. Accepted December 2003. To appear.

[BS03b] S. Buffett and B. Spencer. Efficient monte carlo decision tree solution in

dynamic purchasing environments. In Proc. International Conference on

Electronic Commerce (ICEC2003), pages 31–39, Pittsburgh, PA, USA,

2003.

[BSZ02] A. Blum, T. Sandholm, and M. Zinkevich. Online algorithms for market

clearing. In ACM-SIAM Symposium on Discrete Algorithms (SODA),

pages 971–980, 2002.

[CH99] B. Chandra and M. M. Halldórsson. Greedy local search and weighted

set packing approximation. In 10th Annual SIAM-ACM Symposium on

Discrete Algorithms (SODA), January 1999.

[Cre01] CreativeGood. Web page: http://www.creativegood.com. Date accessed:

Aug 1, 2001, 2001.

[DDN01] H. M. Deitel, P. J. Deitel, and T. R. Nieto. E-Business and E-Commerce:

How to Program. Prentice Hall, Inc., Upper Saddle River, NJ, USA, 2001.

[dVV00] S. de Vries and R. Vohra. Combinatorial auctions: A survey. url =

”citeseer.nj.nec.com/devries01combinatorial.html”, 2000.

152

[Fis65] P. C. Fishburn. Independence in utility theory with whole product sets.

Operations Research, 13:28–45, 1965.

[Fis68] P. C. Fishburn. Utility theory. Management Science, 14:335–378, 1968.

[Fis70] P. C. Fishburn. Utility Theory for Decision Making. John Wiley and

Sons, Inc., 1970.

[FLBS99] Y. Fujishima, K. Leyton-Brown, and Y. Shoham. Taming the combi-

natorial complexity of combinatorial auctions: optimal and approximate

approaches. In International Joint Conference on Artificial Intelligence

(IJCAI-99), 1999.

[FR01] Inc Forrester Research. Web page: http://www.forrester.com. Date ac-

cessed: Aug 1, 2001, 2001.

[GC01] J. Greene and P. Cohen. Idc bulletin: ecommerce in canada: 2000-2005,

icmm v7.3. Document #: CA070IEH, Publication Date: Dec 2001, 2001.

[GW99] P. Goodwin and G. Wright. Decision Analysis for Management Judgment.

Chichester John Wiley & Sons, Ltd., New York, NY, 1999.

[Hal98] M. M. Halldórsson. Approximations of independent graphs in sets. In The

First International Workshop on Approximation Algorithms for Combi-

natorial Optimization Problems, pages 1–14, 1998.

[HH64] J. M. Hammersley and D. C. Handscombe. Monte Carlo Methods. Wiley,

New York, 1964.

[HL97] M. M. Halldórsson and H. C. Lau. Low-degree graph partitioning via

local search with applications to constraint satisfaction, max cut, and

3-coloring. Journal of Graph Algo. Applic., 1(3):1–13, 1997.

153

[HM56] J. M. Hammersley and K. W. Morton. A new Monte Carlo technique:

antithetic variates. In Cambridge Phil. Soc., volume 52, pages 449–475,

1956.

[Hoc83] D. S. Hochbaum. Efficient bounds for the stable set, vertex cover, and

set packing problems. Discrete Applied Mathematics, 6:243–254, 1983.

[Hor02] J. Horton. Personal communication, Aug 12, 2002.

[HS65] R. F. Hespos and P. A. Strassmann. Stochastic decision trees for the anal-

ysis of investment decisions. Management Science, 11(10):B244–B259,

1965.

[KB83] D. L. Keefer and S. E. Bodily. Three point approximations for continuous

random variables. Management Science, 29(5):595–609, 1983.

[Kee03] F. Keenan. The price is really right. BusinessWeek Online, March 31,

2003.

[Kor85] R. E. Korf. Depth-first iterative deepening: an optimal admissible tree

search. Artificial Intelligence, 27:97–109, 1985.

[KR76] R. L. Keeney and H. Raiffa. Decisions with Multiple Objectives: Prefer-

ences and Value Tradeoffs. John Wiley and Sons, Inc., 1976.

[Kre88] D. M. Kreps. Notes on the Theory of Choice. Westview Press, 1988.

[LBST00] K. Leyton-Brown, Y. Shoham, and M. Tennenholtz. An algorithm for

multi-unit combinatorial auctions. In AAAI, pages 56–61, 2000.

[Lub01] F. Luban. Integrated decision analysis procedure for investment projects.

In Proceedings of the International Conference on Modeling and Simu-

lation in Distributed Applications (MS2001), pages 776–780, Changsha,

Hunan, China, 2001.

154

[Mag64] J. F. Magee. Decision trees for decision making. Harvard Business Review,

42 (July-August):126–139, 1964.

[MMV95] J. K. MacKie-Mason and H. R. Varian. Generalized vickrey auctions.

Technical report, University of Michigan, 1995.

[MP68] R. F. Meyer and J. W. Pratt. The consistent assessment and fairing of

preference functions. IEEE Systems Science and Cybernetics, SSC-4:270–

278, 1968.

[MS73] W. Mendenhall and R. L. Scheaffer. Mathematical Statistics with Appli-

cations. Duxbury Press, Mass., 1973.

[MU49] N. Metropolis and S. Ulam. The Monte Carlo method. Journal of the

American Statistical Association, 44(247):335–341, 1949.

[Par99] D. C. Parkes. ibundle: An efficient ascending price bundle auction. In

ACM Conference on E-commerce, 1999.

[PBB01] C. Preist, A. Byde, and C. Bartolini. Economic dynamics of agents in

multiple auctions. In AGENTS’01, pages 545–551, Montreal, Quebec,

Canada, 2001.

[PBB03] C. Preist, C. Bartolini, and A. Byde. Agent-based service composition

through simultaneous negotiation in forward and reverse auctions. In

Proceedings of the 4th ACM Conference on Electronic Commerce, pages

55–63, San Diego, California, USA, 2003.

[PBBP01] C. Priest, A. Byde, C. Bartolini, and G. Piccinelli. Towards agent-based

service composition through negotiation in multiple auctions. In AISB’01

Symp. on Inf. Agents for Electronic Commerce, 2001.

155

[PBF91] P.E. Pfeifer, S.E. Bodily, and S.C. Frey. Pearson-tukey three-point ap-

proximations versus monte carlo simulation. Decision Sciences, 22(1):74–

90, 1991.

[PT65] E. S. Pearson and J. W. Tukey. Approximating means and standard devi-

ations based on distances between percentage points of frequency curves.

Biometrika, 52(3-4):533–546, 1965.

[PU00a] D. C. Parkes and L. H. Ungar. Iterative combinatorial auctions: Theory

and practice. In AAAI, pages 74–81, 2000.

[PU00b] D. C. Parkes and L. H. Ungar. Preventing strategic manipulation in

iterative auctions: proxy agents and price-adjustment. In AAAI, pages

82–89, 2000.

[Qui86] J. R. Quinlan. Induction of decision trees. Machine Learning, 1:81–106,

1986.

[Rai68] H. Raiffa. Decision Analysis: Introductory Lectures on Choices under

Uncertainty. Addison-Wesley Publishing Company Inc., Massachusetts,

USA, 1968.

[RPH98] M. H. Rothkopf, A. Pekec, and R. M. Harstad. Computationally man-

ageable combinatorial auctions. Management Science, 44(8):1131–1147,

1998.

[RSB82] S. J. Rassenti, V. L. Smith, and R. L. Bulfin. A combinatorial auction

mechanism for airport time slot allocation. Bell J. of Economics, 13:402–

417, 1982.

[San00] T. Sandholm. emediator: A next generation electronic commerce server.

In International Conference on Autonomous Agents (AGENTS), pages

73–96, June 2000.

156

[San02] T. Sandholm. An algorithm for optimal winner determination in combi-

natorial auctions. Artificial Intelligence, 135:1–54, 2002.

[Sav54] L. J. Savage. The Foundations of Statistics. Wiley, New York, USA, 1954.

[SDP03] M.S. Shell, P.G. Debenedetti, and A.Z. Panagiotopoulos. An improved

monte carlo method for the direct calculation of the density of states.

Journal of Chemical Physics, 119(18):9406–9411, 2003.

[SS01] T. Sandholm and S. Suri. Market clearability. In International Joint

Conference on Artificial Intelligence (IJCAI-01), 2001.

[SSGL01] T. Sandholm, S. Suri, A. Gilpin, and D. Levine. Cabob: A fast optimal

algorithm for combinatorial auctions. In International Joint Conference

on Artificial Intelligence (IJCAI-01), pages 1102–1108, 2001.

[Ten00] M. Tennenholtz. Some tractable combinatorial auctions. In AAAI, pages

98–103, 2000.

[Vic61] W. Vickrey. Counterspeculation, auctions, and competitive sealed ten-

ders. Journal of Finance, 16:8–37, 1961.

[vNM47] J. von Neumann and O. Morgenstern. Theory of games and economic

behaviour, 2nd ed. Princeton University Press, Princeton NJ, USA, 1947.

[Wal50] A. Wald. Statistical Decision Functions. Wiley, New York, 1950.

[WWW98] P. R. Wurman, M. P. Wellman, and W. E. Walsh. The michigan internet

auctionbot: A configurable auction server for human and software agents.

In AGENTS, pages 301–308, 1998.

157

Appendix A

Tables

Table A.1: Item price means and standard deviations for each instance in tests de-
scribed in section 6.3.3 (mean appears above standard deviation)

1 A 1.046 B 1.027 C 1.020 D 0.977 E 1.076 F 0.955
0.080 0.183 0.111 0.328 0.314 0.043

G 0.929 H 1.009 J 0.921 K 0.982 L 1.098 X 2.729
0.008 0.321 0.208 0.259 0.162 0.007

2 A 0.975 B 1.098 C 0.996 D 0.982 E 1.043 F 1.027
0.022 0.187 0.183 0.060 0.150 0.262

G 1.043 H 1.017 J 0.933 K 1.059 L 1.015 X 2.754
0.219 0.206 0.104 0.221 0.242 0.012

3 A 1.088 B 0.912 C 1.026 D 1.087 E 1.077 F 1.040
0.071 0.066 0.076 0.082 0.069 0.184

G 0.954 H 1.044 J 0.939 K 1.042 L 0.982 X 2.891
0.047 0.141 0.199 0.153 0.258 0.002

4 A 1.050 B 1.076 C 0.989 D 1.092 E 0.927 F 0.982
0.168 0.131 0.080 0.060 0.026 0.252

G 0.954 H 0.913 J 0.968 K 0.989 L 0.921 X 2.776
0.280 0.081 0.044 0.252 0.217 0.003

5 A 0.985 B 1.098 C 1.093 D 1.037 E 0.942 F 0.938
0.224 0.267 0.178 0.194 0.029 0.323

G 1.016 H 1.075 J 1.057 K 0.909 L 0.946 X 2.728
0.332 0.004 0.014 0.229 0.320 0.006

158

6 A 0.947 B 1.063 C 1.057 D 1.042 E 0.992 F 1.081
0.320 0.332 0.182 0.172 0.319 0.058

G 1.017 H 0.944 J 1.086 K 1.056 L 1.085 X 2.676
0.231 0.277 0.192 0.328 0.280 0.006

7 A 1.054 B 1.058 C 1.089 D 0.987 E 1.010 F 0.959
0.005 0.199 0.155 0.012 0.147 0.209

G 0.910 H 0.959 J 0.969 K 0.985 L 1.088 X 2.839
0.121 0.268 0.031 0.033 0.319 0.011

8 A 1.016 B 1.023 C 1.052 D 0.991 E 1.060 F 0.901
0.101 0.264 0.159 0.323 0.104 0.278

G 0.911 H 1.028 J 0.997 K 0.932 L 1.027 X 2.699
0.021 0.207 0.210 0.132 0.279 0.002

9 A 0.933 B 1.041 C 0.975 D 1.016 E 1.003 F 1.088
0.029 0.085 0.273 0.105 0.018 0.305

G 0.971 H 0.968 J 1.033 K 0.977 L 1.077 X 2.674
0.021 0.262 0.299 0.167 0.257 0.006

10 A 1.095 B 1.006 C 0.939 D 1.021 E 1.053 F 1.031
0.125 0.150 0.277 0.083 0.308 0.040

G 0.972 H 1.037 J 1.061 K 0.924 L 1.016 X 2.716
0.254 0.202 0.144 0.266 0.217 0.006

11 A 1.008 B 1.020 C 0.968 D 0.926 E 1.088 F 1.043
0.174 0.029 0.170 0.105 0.227 0.294

G 1.083 H 1.064 J 1.068 K 0.907 L 0.983 X 2.745
0.081 0.137 0.239 0.198 0.233 0.013

12 A 1.037 B 0.978 C 1.058 D 1.051 E 1.005 F 0.929
0.088 0.009 0.189 0.308 0.116 0.102

G 1.071 H 1.009 J 0.987 K 0.901 L 1.056 X 2.806
0.252 0.273 0.016 0.172 0.048 0.003

13 A 1.098 B 0.988 C 1.038 D 0.916 E 0.936 F 1.008
0.296 0.218 0.019 0.034 0.096 0.331

G 0.928 H 1.083 J 1.063 K 0.921 L 0.982 X 2.766
0.095 0.056 0.131 0.047 0.319 0.003

14 A 1.061 B 0.952 C 1.002 D 0.921 E 0.985 F 0.950
0.059 0.283 0.022 0.012 0.052 0.066

G 0.928 H 0.952 J 1.091 K 1.068 L 0.921 X 2.712
0.328 0.328 0.309 0.146 0.279 0.001

15 A 0.974 B 0.967 C 1.032 D 1.026 E 1.020 F 0.962
0.108 0.162 0.249 0.034 0.305 0.320

G 1.039 H 0.979 J 1.097 K 1.051 L 1.089 X 2.734
0.156 0.264 0.071 0.078 0.295 0.017

159

16 A 0.916 B 1.094 C 1.025 D 0.990 E 1.017 F 1.074
0.325 0.112 0.112 0.123 0.194 0.193

G 1.026 H 0.980 J 1.081 K 1.094 L 0.931 X 2.743
0.096 0.113 0.019 0.203 0.095 0.009

17 A 0.959 B 0.901 C 1.024 D 0.936 E 1.077 F 0.983
0.070 0.006 0.291 0.165 0.085 0.044

G 1.082 H 1.032 J 0.903 K 1.039 L 1.083 X 2.680
0.220 0.027 0.253 0.136 0.243 0.001

18 A 1.085 B 1.037 C 0.954 D 0.944 E 1.046 F 1.014
0.164 0.273 0.190 0.279 0.141 0.080

G 0.947 H 0.909 J 0.923 K 1.068 L 0.935 X 2.688
0.169 0.256 0.082 0.125 0.090 0.003

19 A 1.071 B 1.063 C 0.907 D 0.929 E 0.965 F 0.904
0.061 0.079 0.018 0.043 0.084 0.177

G 1.063 H 1.025 J 0.944 K 0.952 L 1.001 X 2.793
0.206 0.332 0.032 0.159 0.270 0.012

20 A 1.034 B 1.028 C 1.070 D 0.934 E 1.015 F 1.046
0.158 0.144 0.022 0.020 0.040 0.245

G 1.063 H 1.093 J 0.972 K 1.099 L 0.940 X 2.803
0.105 0.271 0.211 0.258 0.230 0.008

21 A 1.095 B 1.037 C 1.050 D 0.999 E 0.946 F 0.925
0.032 0.020 0.185 0.080 0.020 0.141

G 0.920 H 0.967 J 1.047 K 0.919 L 1.066 X 2.871
0.282 0.054 0.326 0.133 0.168 0.001

22 A 1.057 B 1.002 C 1.014 D 1.003 E 0.995 F 1.067
0.129 0.085 0.188 0.058 0.310 0.209

G 0.921 H 1.036 J 1.075 K 1.066 L 1.005 X 2.792
0.182 0.327 0.171 0.232 0.128 0.019

23 A 1.064 B 1.085 C 0.960 D 1.068 E 0.964 F 0.959
0.119 0.261 0.109 0.035 0.191 0.282

G 1.089 H 0.988 J 1.066 K 0.912 L 0.964 X 2.748
0.031 0.236 0.224 0.282 0.236 0.008

24 A 0.973 B 1.098 C 0.944 D 0.993 E 1.081 F 1.029
0.302 0.228 0.089 0.220 0.088 0.192

G 0.950 H 0.960 J 0.908 K 1.026 L 0.988 X 2.654
0.096 0.288 0.016 0.229 0.054 0.002

25 A 1.069 B 1.056 C 0.923 D 1.018 E 1.073 F 1.011
0.294 0.220 0.291 0.054 0.039 0.201

G 0.945 H 0.909 J 0.916 K 1.004 L 1.055 X 2.671
0.055 0.089 0.304 0.314 0.010 0.002

160

26 A 1.051 B 1.082 C 1.030 D 1.023 E 1.075 F 0.958
0.326 0.114 0.207 0.313 0.292 0.288

G 1.011 H 0.969 J 0.973 K 1.019 L 0.977 X 2.679
0.329 0.282 0.284 0.030 0.325 0.012

27 A 1.018 B 1.047 C 1.039 D 1.008 E 1.042 F 1.043
0.288 0.091 0.123 0.129 0.271 0.034

G 1.062 H 1.093 J 0.965 K 1.035 L 1.060 X 2.823
0.325 0.105 0.099 0.114 0.150 0.007

28 A 0.920 B 1.042 C 1.026 D 0.973 E 0.942 F 0.979
0.107 0.046 0.184 0.130 0.077 0.174

G 0.905 H 1.052 J 1.084 K 1.095 L 0.919 X 2.707
0.118 0.212 0.301 0.166 0.325 0.005

29 A 1.035 B 1.002 C 0.986 D 0.918 E 1.006 F 0.930
0.228 0.020 0.037 0.317 0.117 0.227

G 0.902 H 1.024 J 0.945 K 0.947 L 0.960 X 2.665
0.130 0.216 0.136 0.194 0.072 0.003

30 A 0.924 B 0.979 C 1.000 D 1.003 E 1.070 F 0.969
0.198 0.206 0.210 0.279 0.279 0.275

G 0.949 H 0.928 J 0.944 K 0.958 L 1.088 X 2.582
0.235 0.178 0.030 0.167 0.064 0.008

31 A 1.090 B 0.944 C 1.009 D 0.987 E 1.038 F 1.054
0.160 0.183 0.127 0.095 0.258 0.021

G 1.000 H 1.052 J 0.935 K 0.974 L 0.970 X 2.743
0.231 0.001 0.179 0.251 0.221 0.005

32 A 0.947 B 0.953 C 0.943 D 1.073 E 1.050 F 0.991
0.169 0.146 0.044 0.317 0.216 0.239

G 1.007 H 1.070 J 1.047 K 0.924 L 0.953 X 2.620
0.311 0.233 0.324 0.141 0.295 0.004

33 A 0.969 B 0.928 C 1.095 D 1.017 E 1.031 F 0.983
0.184 0.069 0.245 0.188 0.129 0.117

G 1.061 H 1.061 J 1.000 K 0.966 L 0.959 X 2.739
0.130 0.328 0.113 0.052 0.159 0.005

34 A 1.071 B 0.922 C 1.082 D 0.982 E 0.931 F 0.919
0.003 0.023 0.305 0.190 0.268 0.257

G 0.904 H 1.021 J 0.919 K 1.026 L 1.019 X 2.720
0.257 0.102 0.315 0.104 0.001 0.033

35 A 1.068 B 1.097 C 0.928 D 1.003 E 0.962 F 0.982
0.270 0.120 0.074 0.019 0.056 0.266

G 1.074 H 0.924 J 0.996 K 0.905 L 1.023 X 2.764
0.266 0.025 0.224 0.071 0.295 0.008

161

36 A 0.925 B 0.906 C 1.063 D 1.089 E 0.975 F 0.918
0.279 0.083 0.324 0.241 0.014 0.150

G 1.080 H 0.943 J 0.908 K 1.055 L 1.006 X 2.613
0.013 0.257 0.035 0.294 0.036 0.002

37 A 0.965 B 1.084 C 0.995 D 0.953 E 1.027 F 1.080
0.090 0.321 0.176 0.131 0.016 0.072

G 0.936 H 0.956 J 0.914 K 0.972 L 0.987 X 2.674
0.218 0.221 0.038 0.148 0.024 0.001

38 A 1.073 B 1.097 C 0.979 D 1.078 E 0.944 F 0.950
0.273 0.288 0.156 0.316 0.246 0.316

G 0.997 H 0.927 J 0.957 K 1.086 L 1.011 X 2.679
0.283 0.273 0.164 0.094 0.176 0.015

39 A 1.034 B 1.044 C 0.991 D 0.903 E 1.095 F 0.901
0.204 0.253 0.153 0.282 0.134 0.292

G 1.030 H 1.039 J 1.025 K 1.048 L 0.929 X 2.686
0.008 0.152 0.056 0.284 0.024 0.010

40 A 1.090 B 1.052 C 0.926 D 0.988 E 0.908 F 1.038
0.213 0.216 0.070 0.171 0.092 0.176

G 1.037 H 1.057 J 0.937 K 0.999 L 0.911 X 2.739
0.088 0.051 0.200 0.174 0.098 0.004

41 A 0.912 B 1.027 C 1.077 D 0.933 E 1.088 F 1.030
0.228 0.139 0.271 0.042 0.005 0.054

G 1.091 H 1.048 J 1.090 K 1.041 L 0.918 X 2.698
0.241 0.146 0.323 0.085 0.295 0.001

42 A 1.021 B 1.040 C 1.062 D 1.058 E 1.005 F 0.900
0.078 0.105 0.251 0.226 0.235 0.298

G 0.952 H 1.020 J 0.933 K 0.955 L 0.941 X 2.721
0.305 0.198 0.115 0.032 0.113 0.020

43 A 0.988 B 1.006 C 1.071 D 1.043 E 0.973 F 0.985
0.040 0.083 0.167 0.042 0.214 0.043

G 1.003 H 0.944 J 0.924 K 0.971 L 1.024 X 2.797
0.301 0.021 0.264 0.116 0.271 0.013

44 A 1.024 B 0.977 C 1.035 D 1.088 E 0.933 F 1.090
0.169 0.265 0.278 0.042 0.104 0.066

G 0.996 H 1.095 J 0.992 K 1.018 L 0.910 X 2.713
0.088 0.163 0.178 0.032 0.185 0.002

45 A 0.958 B 1.048 C 1.057 D 1.073 E 1.017 F 0.905
0.310 0.181 0.263 0.278 0.295 0.296

G 0.959 H 0.959 J 0.968 K 0.963 L 0.971 X 2.609
0.062 0.265 0.043 0.313 0.129 0.012

162

46 A 0.920 B 1.013 C 1.021 D 1.077 E 1.067 F 1.047
0.073 0.246 0.266 0.256 0.252 0.031

G 0.960 H 1.027 J 0.996 K 0.910 L 0.910 X 2.640
0.295 0.204 0.222 0.078 0.089 0.007

47 A 1.033 B 1.027 C 1.050 D 0.982 E 0.902 F 1.060
0.122 0.125 0.159 0.278 0.171 0.285

G 1.071 H 1.054 J 1.002 K 1.093 L 1.077 X 2.793
0.123 0.140 0.317 0.011 0.105 0.014

48 A 1.017 B 0.999 C 1.088 D 1.027 E 0.932 F 0.946
0.226 0.114 0.035 0.034 0.211 0.171

G 1.022 H 1.059 J 0.914 K 0.978 L 1.073 X 2.820
0.247 0.067 0.036 0.155 0.151 0.012

49 A 0.912 B 1.010 C 0.937 D 1.012 E 1.095 F 0.989
0.146 0.011 0.277 0.038 0.042 0.048

G 0.932 H 1.064 J 1.067 K 1.085 L 1.066 X 2.706
0.023 0.134 0.251 0.145 0.043 0.001

50 A 1.067 B 0.956 C 0.903 D 1.057 E 0.929 F 0.997
0.212 0.064 0.028 0.167 0.241 0.013

G 0.915 H 0.920 J 0.972 K 0.978 L 1.040 X 2.687
0.318 0.129 0.173 0.016 0.026 0.005

51 A 1.054 B 0.983 C 1.056 D 1.042 E 1.048 F 1.087
0.109 0.203 0.189 0.263 0.183 0.110

G 1.031 H 1.036 J 0.993 K 1.062 L 0.906 X 2.806
0.021 0.205 0.124 0.051 0.206 0.009

52 A 0.935 B 0.933 C 0.933 D 0.970 E 0.930 F 0.918
0.059 0.146 0.278 0.265 0.058 0.223

G 1.059 H 0.972 J 1.005 K 0.983 L 1.082 X 2.566
0.257 0.225 0.228 0.210 0.286 0.005

53 A 1.048 B 0.947 C 0.963 D 1.075 E 0.964 F 0.931
0.108 0.025 0.170 0.287 0.311 0.144

G 0.970 H 0.999 J 1.011 K 0.966 L 1.050 X 2.720
0.084 0.161 0.324 0.142 0.301 0.013

54 A 1.010 B 0.912 C 0.927 D 1.080 E 1.014 F 1.073
0.204 0.090 0.174 0.265 0.267 0.212

G 0.971 H 1.068 J 1.039 K 0.913 L 0.988 X 2.609
0.317 0.100 0.169 0.241 0.261 0.005

55 A 0.990 B 0.919 C 1.082 D 0.905 E 0.916 F 1.029
0.071 0.217 0.083 0.179 0.119 0.207

G 1.069 H 0.971 J 0.937 K 0.943 L 1.090 X 2.682
0.083 0.232 0.196 0.048 0.132 0.005

163

56 A 0.901 B 1.079 C 0.997 D 1.070 E 1.062 F 1.038
0.326 0.279 0.023 0.194 0.136 0.249

G 1.015 H 1.087 J 1.035 K 0.926 L 0.988 X 2.664
0.331 0.019 0.060 0.090 0.014 0.001

57 A 0.995 B 1.090 C 1.045 D 1.055 E 1.026 F 1.081
0.246 0.176 0.265 0.198 0.300 0.126

G 0.926 H 1.092 J 0.987 K 1.034 L 0.980 X 2.751
0.107 0.085 0.275 0.080 0.239 0.011

58 A 0.937 B 1.018 C 1.039 D 1.020 E 1.023 F 0.992
0.130 0.126 0.129 0.287 0.188 0.332

G 0.913 H 1.093 J 0.971 K 1.077 L 1.023 X 2.675
0.047 0.268 0.223 0.205 0.039 0.008

59 A 0.999 B 1.027 C 1.019 D 1.085 E 0.953 F 1.071
0.004 0.002 0.292 0.013 0.168 0.227

G 0.969 H 0.967 J 1.046 K 1.097 L 0.949 X 2.816
0.223 0.051 0.004 0.080 0.311 0.030

60 A 0.961 B 0.992 C 0.982 D 1.089 E 1.003 F 1.013
0.101 0.067 0.295 0.324 0.125 0.295

G 0.970 H 1.036 J 1.075 K 1.044 L 1.088 X 2.689
0.123 0.323 0.183 0.179 0.271 0.004

61 A 1.068 B 0.987 C 1.014 D 1.035 E 1.021 F 1.092
0.119 0.267 0.269 0.164 0.287 0.113

G 1.064 H 1.051 J 0.958 K 0.973 L 1.091 X 2.751
0.013 0.315 0.022 0.217 0.310 0.009

62 A 0.903 B 0.964 C 0.902 D 0.919 E 0.955 F 0.911
0.064 0.259 0.208 0.216 0.266 0.024

G 1.069 H 1.008 J 1.001 K 1.021 L 0.929 X 2.553
0.121 0.061 0.055 0.085 0.101 0.009

63 A 0.965 B 0.974 C 1.082 D 0.984 E 1.086 F 0.990
0.271 0.135 0.038 0.276 0.246 0.253

G 0.926 H 1.082 J 1.076 K 1.040 L 1.055 X 2.712
0.298 0.177 0.170 0.294 0.040 0.006

64 A 0.927 B 0.938 C 1.046 D 0.989 E 0.936 F 0.933
0.034 0.200 0.041 0.254 0.203 0.321

G 0.926 H 0.951 J 0.904 K 0.987 L 0.994 X 2.626
0.198 0.117 0.015 0.059 0.333 0.016

65 A 1.095 B 0.962 C 1.018 D 1.054 E 0.983 F 1.053
0.136 0.024 0.219 0.332 0.056 0.041

G 1.041 H 1.044 J 1.071 K 0.996 L 1.085 X 2.851
0.182 0.325 0.085 0.151 0.055 0.001

164

66 A 1.024 B 1.032 C 0.994 D 1.059 E 0.950 F 0.925
0.079 0.028 0.291 0.064 0.225 0.261

G 0.954 H 1.052 J 1.083 K 1.073 L 1.002 X 2.766
0.060 0.209 0.313 0.113 0.134 0.019

67 A 0.939 B 0.993 C 0.954 D 1.004 E 1.014 F 1.076
0.200 0.002 0.144 0.250 0.265 0.314

G 0.951 H 1.023 J 0.944 K 0.925 L 1.043 X 2.636
0.071 0.213 0.148 0.141 0.215 0.010

68 A 1.048 B 1.006 C 0.938 D 0.929 E 0.931 F 0.946
0.049 0.302 0.124 0.101 0.162 0.224

G 1.012 H 0.995 J 0.987 K 1.039 L 1.067 X 2.692
0.136 0.264 0.273 0.087 0.033 0.010

69 A 0.918 B 0.993 C 0.907 D 1.030 E 1.046 F 1.086
0.165 0.325 0.162 0.005 0.306 0.076

G 0.986 H 0.987 J 1.078 K 1.019 L 0.970 X 2.633
0.020 0.328 0.037 0.156 0.158 0.005

70 A 1.026 B 1.007 C 1.092 D 0.955 E 0.963 F 0.956
0.015 0.292 0.142 0.189 0.203 0.319

G 1.047 H 0.959 J 0.921 K 0.933 L 0.994 X 2.711
0.085 0.046 0.162 0.103 0.309 0.015

71 A 0.941 B 0.968 C 1.051 D 1.100 E 1.026 F 0.907
0.136 0.266 0.328 0.043 0.243 0.039

G 1.043 H 0.930 J 0.982 K 0.986 L 1.035 X 2.667
0.097 0.050 0.330 0.130 0.056 0.000

72 A 1.043 B 0.962 C 1.038 D 1.065 E 0.926 F 1.043
0.289 0.221 0.055 0.044 0.049 0.180

G 1.087 H 1.089 J 0.901 K 1.046 L 1.094 X 2.796
0.224 0.157 0.198 0.183 0.231 0.004

73 A 0.972 B 1.087 C 1.096 D 1.089 E 0.970 F 0.928
0.242 0.102 0.181 0.286 0.204 0.019

G 0.923 H 0.924 J 0.995 K 1.083 L 0.906 X 2.726
0.208 0.022 0.236 0.018 0.105 0.012

74 A 1.080 B 0.901 C 1.080 D 1.015 E 1.087 F 0.998
0.092 0.069 0.161 0.137 0.101 0.263

G 0.984 H 1.095 J 1.038 K 0.997 L 0.930 X 2.798
0.272 0.074 0.028 0.298 0.256 0.003

75 A 0.995 B 1.061 C 1.040 D 0.959 E 0.951 F 0.949
0.213 0.043 0.014 0.324 0.141 0.316

G 0.980 H 1.067 J 1.099 K 1.049 L 0.971 X 2.712
0.284 0.077 0.196 0.325 0.003 0.009

165

76 A 0.977 B 1.087 C 0.948 D 0.964 E 0.952 F 1.096
0.245 0.270 0.263 0.249 0.061 0.069

G 1.046 H 0.927 J 0.956 K 1.064 L 1.094 X 2.635
0.224 0.270 0.176 0.041 0.318 0.001

77 A 0.937 B 1.034 C 0.959 D 0.989 E 0.903 F 1.047
0.176 0.235 0.260 0.215 0.282 0.045

G 1.079 H 1.039 J 1.025 K 1.026 L 1.012 X 2.639
0.282 0.149 0.068 0.231 0.167 0.011

78 A 1.046 B 1.047 C 0.943 D 0.914 E 1.020 F 0.917
0.026 0.202 0.240 0.066 0.179 0.289

G 0.940 H 1.010 J 1.067 K 0.940 L 1.035 X 2.701
0.014 0.200 0.193 0.178 0.318 0.003

79 A 0.961 B 1.008 C 0.903 D 1.059 E 1.083 F 1.068
0.147 0.176 0.093 0.253 0.219 0.009

G 0.937 H 0.982 J 0.928 K 0.993 L 1.077 X 2.691
0.025 0.204 0.028 0.205 0.065 0.000

80 A 0.943 B 1.034 C 1.011 D 1.064 E 1.084 F 1.016
0.179 0.069 0.009 0.178 0.139 0.095

G 1.002 H 1.042 J 0.986 K 1.008 L 0.999 X 2.791
0.299 0.063 0.008 0.254 0.047 0.002

81 A 1.092 B 0.996 C 1.039 D 0.929 E 0.981 F 0.931
0.012 0.065 0.274 0.309 0.029 0.130

G 1.052 H 0.944 J 0.924 K 0.948 L 0.907 X 2.738
0.242 0.018 0.276 0.063 0.080 0.003

82 A 0.993 B 0.990 C 1.026 D 1.094 E 1.081 F 1.067
0.164 0.019 0.002 0.310 0.168 0.271

G 1.095 H 0.903 J 1.043 K 1.008 L 0.966 X 2.815
0.036 0.125 0.145 0.116 0.255 0.008

83 A 0.982 B 0.963 C 0.909 D 0.918 E 1.029 F 1.095
0.134 0.254 0.124 0.238 0.230 0.167

G 1.097 H 0.963 J 0.919 K 0.962 L 0.906 X 2.570
0.256 0.270 0.167 0.245 0.167 0.007

84 A 1.091 B 0.977 C 1.093 D 1.044 E 0.946 F 0.966
0.317 0.220 0.104 0.089 0.128 0.077

G 0.957 H 0.934 J 0.961 K 1.076 L 0.930 X 2.705
0.321 0.321 0.293 0.192 0.318 0.003

85 A 1.028 B 0.932 C 1.065 D 0.992 E 1.050 F 1.073
0.307 0.078 0.168 0.224 0.298 0.226

G 1.090 H 1.079 J 1.068 K 1.029 L 1.090 X 2.787
0.304 0.044 0.015 0.060 0.006 0.010

166

86 A 0.936 B 0.946 C 1.049 D 0.917 E 0.967 F 0.943
0.157 0.045 0.148 0.075 0.195 0.137

G 0.951 H 1.050 J 0.911 K 0.943 L 0.914 X 2.669
0.036 0.096 0.140 0.007 0.157 0.015

87 A 1.031 B 1.069 C 1.039 D 1.022 E 0.977 F 1.063
0.065 0.238 0.194 0.040 0.166 0.328

G 0.934 H 0.955 J 0.928 K 1.092 L 1.059 X 2.819
0.087 0.010 0.077 0.061 0.078 0.011

88 A 0.960 B 0.940 C 1.015 D 1.026 E 0.944 F 0.935
0.007 0.242 0.267 0.105 0.002 0.214

G 1.047 H 0.963 J 0.940 K 0.968 L 0.976 X 2.626
0.298 0.228 0.306 0.023 0.157 0.001

89 A 1.055 B 0.951 C 1.064 D 1.012 E 0.908 F 0.978
0.260 0.139 0.176 0.108 0.166 0.091

G 0.957 H 0.967 J 1.092 K 1.076 L 0.969 X 2.725
0.074 0.294 0.188 0.013 0.049 0.009

90 A 1.039 B 0.923 C 0.902 D 1.056 E 0.937 F 1.064
0.031 0.128 0.052 0.198 0.206 0.309

G 0.908 H 0.972 J 1.004 K 0.961 L 0.965 X 2.659
0.198 0.222 0.240 0.157 0.095 0.008

91 A 0.952 B 0.937 C 0.931 D 0.961 E 0.972 F 1.077
0.080 0.007 0.278 0.220 0.125 0.231

G 1.019 H 0.999 J 1.011 K 0.944 L 0.933 X 2.664
0.026 0.157 0.002 0.089 0.111 0.006

92 A 0.914 B 0.902 C 1.095 D 0.966 E 1.022 F 1.019
0.176 0.072 0.281 0.198 0.082 0.299

G 1.020 H 1.067 J 1.039 K 1.091 L 1.071 X 2.696
0.259 0.097 0.181 0.188 0.071 0.005

93 A 1.020 B 1.097 C 0.927 D 0.911 E 1.040 F 1.098
0.194 0.272 0.255 0.038 0.244 0.117

G 0.914 H 1.082 J 0.922 K 1.019 L 1.074 X 2.689
0.149 0.088 0.020 0.226 0.110 0.003

94 A 1.004 B 1.069 C 0.965 D 0.956 E 1.070 F 0.984
0.298 0.261 0.130 0.127 0.284 0.002

G 1.065 H 1.087 J 1.034 K 0.904 L 1.071 X 2.713
0.273 0.015 0.072 0.037 0.157 0.003

95 A 0.918 B 1.083 C 0.994 D 1.061 E 0.905 F 0.996
0.014 0.140 0.023 0.150 0.203 0.257

G 0.976 H 0.914 J 1.040 K 1.087 L 1.038 X 2.719
0.100 0.284 0.168 0.302 0.173 0.015

167

96 A 1.080 B 1.048 C 0.958 D 1.066 E 0.954 F 0.938
0.110 0.205 0.027 0.127 0.160 0.325

G 0.976 H 0.982 J 1.068 K 1.034 L 0.977 X 2.760
0.333 0.223 0.013 0.068 0.133 0.007

97 A 1.048 B 1.072 C 0.930 D 0.931 E 1.002 F 1.059
0.212 0.029 0.205 0.205 0.013 0.045

G 1.091 H 1.076 J 1.035 K 1.043 L 1.068 X 2.801
0.318 0.098 0.083 0.160 0.188 0.002

98 A 0.959 B 1.031 C 1.045 D 1.095 E 0.948 F 1.068
0.134 0.091 0.145 0.221 0.030 0.087

G 1.037 H 0.992 J 0.933 K 1.026 L 0.966 X 2.776
0.233 0.218 0.281 0.202 0.071 0.001

99 A 1.065 B 1.027 C 1.077 D 1.040 E 0.966 F 0.946
0.152 0.291 0.118 0.060 0.192 0.239

G 0.931 H 1.006 J 1.016 K 0.955 L 0.969 X 2.763
0.123 0.209 0.119 0.240 0.110 0.006

100 A 1.027 B 0.991 C 1.040 D 1.045 E 1.016 F 1.088
0.248 0.022 0.122 0.038 0.149 0.307

G 0.932 H 1.075 J 1.044 K 0.902 L 0.908 X 2.769
0.022 0.148 0.298 0.005 0.070 0.004

168

Table A.2: Expected utility of right subtree of Figure 6.8 in section 6.3.3 for each
instance, as well as mean and variance of utility achieved over 10,000 runs/instance.

Instance Greedy Res q-horzn Class Tree q-subst Disc. Achvd µ Achvd σ2

1 0.5279 0.6323 0.6366 0.6389 0.6390 0.0255
2 0.5550 0.6173 0.6257 0.6289 0.6280 0.0099
3 0.5144 0.5537 0.5538 0.5551 0.5578 0.0109
4 0.5377 0.6093 0.6122 0.6131 0.6194 0.0161
5 0.5070 0.6337 0.6380 0.6395 0.6473 0.0303
6 0.5334 0.6585 0.6633 0.6651 0.6635 0.0369
7 0.5003 0.5768 0.5813 0.5857 0.5839 0.0082
8 0.5150 0.6496 0.6518 0.6517 0.6572 0.0195
9 0.5606 0.6603 0.6631 0.6656 0.6680 0.0156
10 0.5653 0.6382 0.6429 0.6445 0.6424 0.0272
11 0.5520 0.6222 0.6319 0.6339 0.6411 0.0167
12 0.5310 0.5948 0.5985 0.5989 0.6009 0.0138
13 0.5471 0.6135 0.6177 0.6194 0.6251 0.0236
14 0.5704 0.6429 0.6443 0.6439 0.6449 0.0252
15 0.5161 0.6231 0.6412 0.6419 0.6531 0.0220
16 0.5566 0.6246 0.6303 0.6326 0.6346 0.0205
17 0.6013 0.6590 0.6609 0.6603 0.6586 0.0156
18 0.5312 0.6554 0.6564 0.6571 0.6574 0.0204
19 0.5593 0.5969 0.6097 0.6095 0.6156 0.0075
20 0.5305 0.5958 0.6000 0.6027 0.5991 0.0141
21 0.4967 0.5643 0.5657 0.5652 0.5678 0.0105
22 0.5037 0.5961 0.6116 0.6137 0.6165 0.0175
23 0.5215 0.6220 0.6278 0.6301 0.6385 0.0242
24 0.5669 0.6716 0.6732 0.6738 0.6765 0.0242
25 0.5313 0.6652 0.6677 0.6657 0.6674 0.0313
26 0.4801 0.6538 0.6642 0.6665 0.6676 0.0385
27 0.5047 0.5858 0.5889 0.5919 0.5898 0.0191
28 0.5744 0.6449 0.6495 0.6490 0.6510 0.0160
29 0.5511 0.6651 0.6659 0.6695 0.6711 0.0174
30 0.5729 0.7055 0.7113 0.7126 0.7159 0.0214
31 0.5369 0.6256 0.6309 0.6311 0.6326 0.0203
32 0.5898 0.6869 0.6896 0.6927 0.6942 0.0189

169

Instance Greedy Res q-horzn Class Tree q-subst Disc. Achvd µ Achvd σ2

33 0.5410 0.6273 0.6334 0.6327 0.6333 0.0151
34 0.5640 0.6235 0.6512 0.6562 0.6602 0.0175
35 0.5351 0.6148 0.6214 0.6225 0.6294 0.0151
36 0.5566 0.6917 0.6935 0.6945 0.6964 0.0233
37 0.5838 0.6647 0.6638 0.6634 0.6667 0.0120
38 0.4985 0.6554 0.6643 0.6679 0.6707 0.0321
39 0.5373 0.6531 0.6597 0.6620 0.6661 0.0210
40 0.5644 0.6287 0.6322 0.6323 0.6352 0.0130
41 0.5532 0.6491 0.6510 0.6516 0.6516 0.0204
42 0.5086 0.6297 0.6436 0.6492 0.6528 0.0183
43 0.5227 0.5949 0.6046 0.6082 0.6046 0.0113
44 0.5897 0.6424 0.6456 0.6447 0.6469 0.0205
45 0.5402 0.6909 0.7004 0.7018 0.7076 0.0339
46 0.5496 0.6752 0.6803 0.6830 0.6804 0.0220
47 0.4970 0.5969 0.6069 0.6104 0.6129 0.0202
48 0.5207 0.5833 0.5944 0.5963 0.5974 0.0120
49 0.6097 0.6475 0.6470 0.6463 0.6464 0.0182
50 0.5813 0.6528 0.6561 0.6592 0.6573 0.0121
51 0.5316 0.5908 0.5965 0.6006 0.5977 0.0182
52 0.6068 0.7147 0.7180 0.7197 0.7229 0.0235
53 0.5622 0.6331 0.6432 0.6464 0.6481 0.0209
54 0.6245 0.6933 0.6954 0.6983 0.7029 0.0234
55 0.5839 0.6562 0.6607 0.6622 0.6619 0.0139
56 0.5437 0.6656 0.6686 0.6688 0.6751 0.0278
57 0.5170 0.6171 0.6258 0.6300 0.6277 0.0266
58 0.5557 0.6585 0.6638 0.6666 0.6716 0.0176
59 0.5350 0.5773 0.6033 0.6072 0.6137 0.0239
60 0.5431 0.6530 0.6571 0.6578 0.6586 0.0261
61 0.5128 0.6204 0.6268 0.6279 0.6294 0.0276
62 0.6419 0.7187 0.7260 0.7279 0.7297 0.0127
63 0.5138 0.6409 0.6456 0.6486 0.6473 0.0240
64 0.5900 0.6781 0.6910 0.6948 0.7016 0.0169
65 0.5122 0.5741 0.5742 0.5761 0.5761 0.0143
66 0.5284 0.6079 0.6285 0.6265 0.6351 0.0164

170

Instance Greedy Res q-horzn Class Tree q-subst Disc. Achvd µ Achvd σ2

67 0.5780 0.6784 0.6835 0.6868 0.6897 0.0177
68 0.5339 0.6495 0.6558 0.6582 0.6602 0.0149
69 0.5945 0.6810 0.6860 0.6867 0.6874 0.0218
70 0.5489 0.6377 0.6499 0.6520 0.6525 0.0184
71 0.5499 0.6666 0.6699 0.6669 0.6711 0.0187
72 0.5085 0.5994 0.6023 0.6036 0.6035 0.0214
73 0.5181 0.6295 0.6394 0.6428 0.6436 0.0217
74 0.5412 0.6003 0.6017 0.6023 0.6099 0.0189
75 0.5084 0.6384 0.6461 0.6479 0.6515 0.0193
76 0.5657 0.6827 0.6837 0.6825 0.6832 0.0295
77 0.5283 0.6773 0.6834 0.6867 0.6865 0.0236
78 0.5468 0.6488 0.6541 0.6509 0.6639 0.0180
79 0.5996 0.6547 0.6538 0.6548 0.6547 0.0117
80 0.5220 0.6031 0.6043 0.6055 0.6048 0.0129
81 0.5583 0.6302 0.6322 0.6331 0.6329 0.0194
82 0.5049 0.5872 0.5958 0.5962 0.6000 0.0180
83 0.5905 0.7107 0.7161 0.7176 0.7160 0.0200
84 0.5739 0.6454 0.6483 0.6495 0.6498 0.0313
85 0.4868 0.6029 0.6076 0.6120 0.6130 0.0176
86 0.6182 0.6606 0.6695 0.6730 0.6737 0.0086
87 0.5099 0.5867 0.5945 0.5956 0.5997 0.0106
88 0.5701 0.6872 0.6883 0.6883 0.6935 0.0179
89 0.5865 0.6336 0.6387 0.6413 0.6402 0.0142
90 0.6074 0.6670 0.6727 0.6740 0.6809 0.0101
91 0.5941 0.6659 0.6712 0.6710 0.6787 0.0119
92 0.5406 0.6469 0.6537 0.6549 0.6583 0.0203
93 0.5734 0.6555 0.6555 0.6538 0.6586 0.0178
94 0.5309 0.6419 0.6435 0.6445 0.6431 0.0190
95 0.5562 0.6330 0.6441 0.6475 0.6498 0.0110
96 0.5119 0.6168 0.6230 0.6237 0.6329 0.0154
97 0.4930 0.5988 0.5985 0.5987 0.6009 0.0187
98 0.5273 0.6117 0.6092 0.6129 0.6129 0.0159
99 0.5192 0.6122 0.6206 0.6215 0.6246 0.0181
100 0.5425 0.6111 0.6167 0.6168 0.6219 0.0096

171

Table A.3: Average utility achieved by each method in each instance over 10,000
runs/instance (as described in Section 6.3.4)

Instance Greedy Res q-horzn Class Tree q-subst Disc.
1 0.6356 0.6370 0.6390 0.6393
2 0.6230 0.6252 0.6285 0.6286
3 0.5544 0.5551 0.5553 0.5574
4 0.6112 0.6130 0.6176 0.6185
5 0.6366 0.6390 0.6450 0.6463
6 0.6617 0.6628 0.6641 0.6640
7 0.5813 0.5827 0.5843 0.5845
8 0.6507 0.6520 0.6565 0.6564
9 0.6629 0.6644 0.6666 0.6678
10 0.6414 0.6423 0.6432 0.6430
11 0.6281 0.6314 0.6396 0.6404
12 0.5968 0.5980 0.6007 0.6008
13 0.6164 0.6185 0.6233 0.6245
14 0.6434 0.6438 0.6449 0.6448
15 0.6326 0.6380 0.6519 0.6521
16 0.6286 0.6306 0.6341 0.6347
17 0.6596 0.6596 0.6586 0.6589
18 0.6563 0.6566 0.6572 0.6574
19 0.6031 0.6067 0.6152 0.6152
20 0.5991 0.6000 0.6005 0.5999
21 0.5647 0.5653 0.5678 0.5674
22 0.6047 0.6089 0.6165 0.6168
23 0.6261 0.6289 0.6357 0.6375
24 0.6727 0.6736 0.6757 0.6761
25 0.6654 0.6658 0.6674 0.6671
26 0.6602 0.6629 0.6678 0.6680
27 0.5888 0.5897 0.5905 0.5904
28 0.6469 0.6481 0.6510 0.6509
29 0.6673 0.6684 0.6690 0.6710
30 0.7091 0.7110 0.7153 0.7157
31 0.6283 0.6297 0.6325 0.6326
32 0.6898 0.6912 0.6931 0.6942

172

Instance Greedy Res q-horzn Class Tree q-subst Disc.
33 0.6300 0.6312 0.6334 0.6334
34 0.6398 0.6469 0.6604 0.6609
35 0.6186 0.6212 0.6280 0.6286
36 0.6931 0.6939 0.6956 0.6962
37 0.6640 0.6664 0.6652 0.6646
38 0.6616 0.6645 0.6700 0.6708
39 0.6575 0.6600 0.6650 0.6659
40 0.6305 0.6317 0.6348 0.6349
41 0.6504 0.6508 0.6516 0.6517
42 0.6395 0.6440 0.6519 0.6531
43 0.6015 0.6036 0.6060 0.6057
44 0.6435 0.6444 0.6469 0.6467
45 0.6964 0.6996 0.7067 0.7071
46 0.6791 0.6803 0.6814 0.6812
47 0.6037 0.6068 0.6124 0.6131
48 0.5897 0.5926 0.5976 0.5977
49 0.6469 0.6467 0.6469 0.6470
50 0.6560 0.6570 0.6579 0.6579
51 0.5958 0.5973 0.5988 0.5986
52 0.7173 0.7187 0.7217 0.7226
53 0.6397 0.6426 0.6479 0.6483
54 0.6957 0.6975 0.7000 0.7024
55 0.6592 0.6604 0.6621 0.6622
56 0.6672 0.6688 0.6741 0.6743
57 0.6235 0.6256 0.6286 0.6286
58 0.6625 0.6650 0.6697 0.6712
59 0.5926 0.5993 0.6133 0.6140
60 0.6554 0.6565 0.6586 0.6587
61 0.6241 0.6259 0.6293 0.6295
62 0.7233 0.7254 0.7295 0.7298
63 0.6448 0.6461 0.6477 0.6478
64 0.6865 0.6909 0.7000 0.7012
65 0.5751 0.5755 0.5755 0.5762
66 0.6170 0.6223 0.6349 0.6345

173

Instance Greedy Res q-horzn Class Tree q-subst Disc.
67 0.6826 0.6847 0.6884 0.6896
68 0.6539 0.6560 0.6597 0.6602
69 0.6838 0.6851 0.6875 0.6875
70 0.6448 0.6478 0.6529 0.6530
71 0.6667 0.6674 0.6711 0.6704
72 0.6015 0.6023 0.6036 0.6037
73 0.6361 0.6389 0.6436 0.6440
74 0.6013 0.6029 0.6074 0.6088
75 0.6431 0.6456 0.6508 0.6513
76 0.6826 0.6831 0.6832 0.6827
77 0.6820 0.6838 0.6866 0.6869
78 0.6499 0.6523 0.6639 0.6620
79 0.6547 0.6547 0.6547 0.6547
80 0.6043 0.6047 0.6050 0.6050
81 0.6316 0.6322 0.6330 0.6330
82 0.5917 0.5941 0.5996 0.5997
83 0.7141 0.7153 0.7166 0.7166
84 0.6475 0.6484 0.6498 0.6499
85 0.6074 0.6094 0.6121 0.6132
86 0.6668 0.6694 0.6737 0.6741
87 0.5912 0.5937 0.5991 0.5994
88 0.6877 0.6888 0.6928 0.6927
89 0.6374 0.6388 0.6406 0.6407
90 0.6705 0.6730 0.6794 0.6802
91 0.6685 0.6707 0.6778 0.6777
92 0.6510 0.6531 0.6578 0.6581
93 0.6546 0.6581 0.6581 0.6555
94 0.6432 0.6435 0.6436 0.6434
95 0.6402 0.6435 0.6495 0.6501
96 0.6202 0.6230 0.6312 0.6317
97 0.5987 0.6006 0.5987 0.5991
98 0.6123 0.6125 0.6123 0.6130
99 0.6169 0.6192 0.6243 0.6245
100 0.6139 0.6159 0.6213 0.6213

174

Vita
Scott Christopher Buffett

Universities Attended

1998 - Present University of New Brunswick
Candidate for Doctor of Philosophy

1996-1998 University of New Brunswick
Master of Computer Science (May 1998)

1991-1996 University of New Brunswick
Bachelor of Computer Science (May 1996)

Publications

S. Buffett and B. Spencer. A Decision Procedure for Bundle Purchasing with Incomplete
Information on Future Prices. In the International Journal of Electronic Commerce. To
appear.

S. Buffett, K. Jia, S. Liu, B. Spencer and F. Wang. Negotiating Exchanges of P3P-labeled
Information for Compensation. In Computational Intelligence, 20(4), 2004. To appear.

S. Buffett and A. Grant. A Decision-Theoretic Algorithm for Bundle Purchasing in Multiple
Open Ascending Price Auctions. In Proceedings of the Seventeenth Canadian Conference
on Artificial Intelligence (AI’2004), London, ON, Canada, 2004. To appear.

S. Buffett and B. Spencer. Efficient Monte Carlo Decision Tree Solution in Dynamic Pur-
chasing Environments. In Proceedings of the 5th International Conference on Electronic
Commerce (ICEC’03), Pittsburgh, PA, USA, pp. 31-39, 2003.

S. Buffett, K. Jia, S. Liu, B. Spencer and F. Wang. Negotiating Exchanges of P3P-labeled
Information for Measurable Benefits. In Proceedings of the 2nd Business Agents and the
Semantic Web (BASeWEB’03) workshop, Halifax, NS, Canada, pp. 25-34, 2003.

S. Buffett and B. Spencer. Planning and Procurement in Multi-Agent Systems. In proceed-
ings of the Novel E-Commerce Applications of Agents workshop, Ottawa, ON, Canada, pp.
29-36, June 8, 2001.

S. Buffett and B. Spencer. Reducing the Search Space Required in Implicit AND/OR
Tree Solution Search. In Proceedings of the APICS Mathematics, Statistics and Computer
Science Conference, St. Mary’s University, Halifax, NS, Canada, Oct 1998.

S. Buffett. Investigating Iterative Deepening in Top Down Automated Reasoning. Master’s

Thesis, University of New Brunswick, 1998.

