

NRC Publications Archive Archives des publications du CNRC

LIBS Instrumentations Sabsabi, Mohamad

NRC Publications Archive Record / Notice des Archives des publications du CNRC : https://nrc-publications.canada.ca/eng/view/object/?id=66fa84a0-1614-4b0b-a594-7280ecf87c45 https://publications-cnrc.canada.ca/fra/voir/objet/?id=66fa84a0-1614-4b0b-a594-7280ecf87c45

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at <u>https://nrc-publications.canada.ca/eng/copyright</u> READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

L'accès à ce site Web et l'utilisation de son contenu sont assujettis aux conditions présentées dans le site <u>https://publications-cnrc.canada.ca/fra/droits</u> LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D'UTILISER CE SITE WEB.

Questions? Contact the NRC Publications Archive team at PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n'arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Distribution of LIBS papers in the literature 1143 papers published in the period 1997-2002			
Name of the periodical journal	Number of papers	Percentage	
Spectrochimica Acta B	110	9.6%	
Applied Spectroscopy	109	9.5%	
Journal of Analytical Atomic Spectrometry	63	5.5%	
SPIE Proceeding	62	5.4%	
Applied Surface Science	53	4.6%	
Analytical Chemistry	25	2.2%	
Fresenius' Journal of Analytical Chemistry	24	2.1%	
Applied Physics A	21	1.8%	
Total	467	40.8%	

$\sin \alpha \pm \sin \beta = k$	nλ	
angle, n is the g	grating density (number	er of grooves/mm), λ is t
wavelength and	I k is diffraction order.	For example, if we take
sinα+sinβ=1 ar n=3000 groove	d λ =333 nm, the prod s/mm, while for k=50, ating and an echelle grating in te	uct kn will be 3000: for k n=60 grooves/mm. rms of spectral features
sinα+sinβ=1 ar n=3000 groove Comparison of a conventional gr Feature	d λ =333 nm, the prod s/mm, while for k=50, ating and an echelle grating in te	uct kn will be 3000: for k n=60 grooves/mm. ms of spectral features
sinα+sinβ=1 ar	d λ =333 nm, the prod	uct kn will be 3000: for k
n=3000 groove	s/mm, while for k=50,	n=60 grooves/mm.
Comparison of a conventional gr	ating and an echelle grating in te	ms of spectral features
Feature	Conventional grating	Echelle grating
Focal length (m)	0.5	0.5
sinα+sinβ=1 ar	d λ =333 nm, the prod	uct kn will be 3000: for k
n=3000 groove	s/mm, while for k=50,	n=60 grooves/mm.
Comparison of a conventional gr	ating and an echelle grating in te	ms of spectral features
Feature	Conventional grating	Echelle grating
Focal length (m)	0.5	0.5
Grating density (grooves/mm)	1200	79
sinα+sinβ=1 ar	d λ =333 nm, the prod	uct kn will be 3000: for k
n=3000 groove	s/mm, while for k=50,	n=60 grooves/mm.
Comparison of a conventional gr	ating and an echelle grating in te	ms of spectral features
Feature	Conventional grating	Echelle grating
Focal length (m)	0.5	0.5
Grating density (grooves/mm)	1200	79
Diffraction angle	10°22'	63° 26'
sinα+sinβ=1 ar	d λ =333 nm, the prod	uct kn will be 3000: for k
n=3000 groove	s/mm, while for k=50,	n=60 grooves/mm.
Comparison of a conventional gr	ating and an echelle grating in te	ms of spectral features
Feature	Conventional grating	Echelle grating
Focal length (m)	0.5	0.5
Grating density (grooves/mm)	1200	79
Diffraction angle	10°22'	63° 26'
Width (mm)	52	128

NRC CNRC Resetting Materials Leading	*	Detectors	
	Interline CCD, G	Sated CCD	
VCCD photodiode	Larger wavelength cc bits dynamic range, <mark>le</mark>	overage, high quantum ess expensive.	efficiency, 12-14 ost: 1-20 k\$
	Characteristics Full-well capacity Pixel dimensions	Typical Range 10000-500000 electrons 6-30µm	Limitations Defines dynamic range Dictate spectral or spatial resolution
	Array format Number of pixels	Related to pixel size and number 58X512 to 2048X2048	Dictates the active area Dictates number of resolution elements and acquisition time
	Quantum efficiency Blooming	0-80% Present with materials having strong lines in the range 200-900nm	Defines ultimate sensitivity limit Cannot observe weak lines near strong lines, ghost lines
	Read noise	Few electrons	Excess noise limits weak light detection
Interline CCD			

NIC CNIC

	Compariso	on of son spe	ne methoc ctrochemi	ls based o istry	on plasi
Attribute	LIPS	ICP	LA-MS	LA-ICP- MS	ICP-M
Detection limits	Lowppm/ high ppb	Mid to low ppb	10 ⁻²⁰ g	ppb	ppb to ppt
Preparation	Little or none	must be liquid	Little or none	Little or none	must b liquid
Atmospheric conditions	Air, He, Ar vacuum	Air, Ar,	High vacuum	High vacuum	High vacuun
Cost	50k\$+	50k\$- 200k\$	120k\$- 500k\$	170k\$- 300k\$+	120k\$- 300k\$
Commercially available	Yes	Yes	Yes	Yes	Yes

j		C		-	a
٨	ndu	str	ari	MA	iev1i

	laser	optics (spectro)	detection detector	atmosphere
precision	X		X	х
selectivity		x	x	x
limits of detection	X	x	X	X
stability	X	X		

system on the analytical performances

luence of the various components of the LIBS

Detec	ction of Gold: moisture effect
old concentration (ppm)	Measurement conditions
64.8	Dry sample
2.2	Immediately after watering
68.3	After 5 minutes
63.2	After 10 minutes
65.4	Watering followed by blowing
	Detection (ppm) 64.8 2.2 68.3 63.2 65.4

