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Abstract— A hybrid stochastic-deterministic approach for solv-
ing NDA problems on very high dimensional biological data is
investigated. It is based on networks trained with a combination
of simulated annealing and conjugate gradient within a broad
scale, high throughput computing data mining environment. High
quality networks from the point of view of both discrimination
and generalization capabilities are discovered. The NDA map-
pings generated by these networks, together with unsupervised
representations of the data, lead to a deeper understanding of
complex high dimensional data like Leukemia and Alzheimer
gene expression microarray experiments.

I. INTRODUCTION

Humans are capable of perceiving vast quantities of sensor

information at very high input rates through vision systems

in the brain that outperform current computer capabilities.

Including such human processing power in the knowledge

discovery process is one way to help uncover the important

concepts from large amounts of (possibly space or time

dependant) information contained in i) real world data sets

ii) results obtained from computer procedures.

Several reasons make Virtual Reality (VR) a suitable para-

digm: is flexible: it allows the choice of different representation

models to better accommodate different human perception

preferences; allows immersion: the user can navigate inside

the data, interact with the objects in the world, change scales,

perspectives, etc.; creates a living experience: the user is not

merely a passive observer or an outsider, but an actor in the

world; is broad and deep: the user may see the VR world as

a whole, and/or concentrate the focus of attention on specific

details or portions of the world; is user friendly: no specialized

knowledge is required.

Constructing VR spaces for visual data mining of databases

and symbolic knowledge requires the solution of a multivariate

data projection problem, which in turn can be performed

according to different criteria (unsupervised, or supervised).

Neural networks are natural choices for feature extraction

and multivariate data projection [6], [7], [5]. VR spaces

constructed using an underlying unsupervised paradigm have

proven to be successful tools for understanding both data and

knowledge structures, from a visual data mining perspective

[10], [12]. In particular, very good results have been obtained

with this technique (unsupervised mode) in both the analysis

of gene expression data, and in the evaluation of the results

obtained by other data mining algorithms [14], [13].

The purpose of this paper is: i) to explore the construction of

VR spaces for visual data mining from a supervised perspec-

tive, by using nonlinear discriminant analysis neural networks

(NDA), in order to generate a few new nonlinear features

(e.g. 3), with good class membership approximation capability;

therefore, conventional classifiers would not be appropriate.

These new features will be used as a base for an Euclidean

space based virtual world suitable for data visualization, ii)

to introduce a variant of NDA with respect to the classical

approach. Instead of using feedforward networks trained with

backpropagation, hybrid stochastic-deterministic networks are

used, which works with a combination of simulated annealing

and conjugate gradient. These kinds of networks are more

robust, and less prone to local extrema entrapment. As part

of a broader data mining objective, thousands of NDA’s are

constructed and evaluated in a High Throughput Computing

environment, and iii) to study the behavior of these networks

in processing gene expression data. This kind of data has a

great importance in bioinformatics and medicine, and presents

great challenges because of its complexity due to its high

dimensionality (in the order of thousands).

II. VIRTUAL REALITY REPRESENTATION OF RELATIONAL

STRUCTURES

A virtual reality, visual, data mining technique extend-

ing the concept of 3D modelling to relational struc-

tures was introduced [10], [12], (see also http://www.

hybridstrategies.com). It is oriented to the under-

standing of large heterogeneous, incomplete and imprecise

data, as well as symbolic knowledge. The notion of data is

not restricted to databases, but includes logical relations and

other forms of both structured and non-structured knowledge.

In this approach, the data objects are considered as tuples from

a heterogeneous space [11]. An example of a heterogeneous

database is shown in Fig.1.



Fig. 1. An example of a heterogeneous database. Nominal, ordinal, ratio,
fuzzy, image, signal, graph, and document data are mixed. The symbol ?
denotes a missing value.

Different information sources are associated with the at-

tributes, relations and functions, and these sources are associ-

ated with the nature of what is observed (e.g. point measure-

ments, signals, documents, images, etc). They are described by

mathematical sets (of the appropriate kind) called source sets

(Ψi), constructed according to the nature of the information

source to represent (e.g. point measurements of continuous

variables by subsets of the reals in the appropriate ranges,

structural information by directed graphs, etc). Source sets also

account for incomplete information. A heterogeneous domain

is a Cartesian product of a collection of source sets: Ĥn =
Ψ1 × · · · × Ψn , where n > 0 is the number of information

sources to consider. For example, in a domain where objects

are described by attributes like continuous crisp quantities,

discrete features, fuzzy features, time-series, images, and

graphs (missing values are allowed). They can be represented

as Cartesian products of subsets of real numbers(R̂), nominal

(N̂ ) or ordinal sets(Ô), fuzzy sets(F̂ ), sets of images (Î) ,

sets of time series (Ŝ) and sets of graphs (Ĝ), respectively (all

extended for allow missing values). The heterogeneous domain

is Ĥn = N̂nN × ÔnO × R̂nR × F̂nF × ÎnI × ŜnS × ĜnG ,

where nN is the number of nominal sets, nO of ordinal sets,

nR of real-valued sets , nF of fuzzy sets , nI of image-

valued sets, nS of time-series sets, and nG of graph-valued

sets, respectively (n = nN +nO +nR +nF +nI +nS +nG).

A virtual reality space is the tuple Υ =<
O, G, B,ℜm, go, l, gr, b, r >, where O is a relational

structure (O =< O,Γv > , the O is a finite set of objects,

and Γv is a set of relations), G is a non-empty set of

geometries representing the different objects and relations. B
is a non-empty set of behaviors of the objects in the virtual

world. ℜm ⊂ Rm is a metric space of dimension m (euclidean

or not) which will be the actual virtual reality geometric

space. The other elements are mappings: go : O → G,

l : O → ℜm, gr : Γv → G, b : O → B.

Of particular importance is the mapping l. If the objects are

in a heterogeneous space, l : Ĥn → ℜm. Several desiderata

can be considered for building a VR-space. One may be to

preserve one or more properties from the original space as

much as possible (for example, the similarity structure of the

data [2]). From an unsupervised perspective, the role of l could

be to maximize some metric/non-metric structure preservation

criteria [1], or minimize some measure of information loss.

From a supervised point of view l could be chosen as to

emphasize some measure of class separability over the objects

in O [12]. Hybrid requirements are also possible.

III. NONLINEAR DISCRIMINANT NEURAL NETWORKS

In the supervised case, a natural choice for representing

the l mapping is an NDA neural network [15], [6], [7], [5].

One strong reason is the nature of the class relationships

in complex, high dimensional problems like gene expression

data, where objects are described in terms of several thousands

of genes, and classes are often either only separable with

nonlinear boundaries, or not separable at all. Another is the

generalization capabilities of neural networks which will allow

the classification of new incoming objects, and their immediate

placement within the created VR spaces. Of no less importance

is that when learning the mapping, the neural network hidden

layers create new nonlinear features for the mapped objects,

such that they are separated into classes by the output layer.

However, these nonlinear features could be used independently

with other data mining algorithms. The typical architecture of

such networks is shown in Fig.2

Fig. 2. Network Architecture in which the NDA network is learned.
∫

means

nonlinear activation, / linear activation , and Σ aggregation

This is a feedforward network with one or more hidden

layers where the number of input nodes is set to the number

of features of the data objects, and the number of neurons

in the output layer to be the number of pattern classes.

The number of neurons in the last hidden layer to m; the

dimensionality of the projected space (for a VR space this

is typically 3). From input layer to the last hidden layer, the

network implements a nonlinear projection from the original

n-dimensional space to an m-dimensional space. If the entire

network can correctly classify a linearly-nonseparable data set,

this projection actually converts the linearly-nonseparable data

to separable data. The backpropagation learning algorithm is



used to train the feedforward network with two hidden layers

in a collection of epochs, such that in each, all the patterns in

the training data set are seen once, in a random order.

This classical approach to building NDA networks suffers

from the well known problem of local extrema entrapment.

In this paper a variant in the construction of NDA networks

is introduced by using hybrid stochastic-deterministic feed

forward networks (SD-FFNN). The SD-FFNN is a hybrid

model where training is based on a combination of simu-

lated annealing with the powerful minima seeking conjugate

gradient [8], which improves the likelihood of finding good

extrema while containing enough determinism. The global

search capabilities of simulated annealing and the improved

local search properties of the conjugate gradient reduces the

risk of entrapment, and the chances of finding a set of neuron

weights with better properties than what is found by the

inherent steepest descent implied by pure backpropagation.

In the SD-FFNN network, simulated annealing (SA) is

used in two separate, independent ways. First it is used for

initializing (at high temperature with the weights centered at

zero), in order to find a good initial approximation for the

conjugate gradient (CG). Once it has reached a local minimum,

SA is used again, this time at lower temperature, in order to

try to evade what might be a local minimum, but this time

with the weights centered at the values found by CG.

IV. APPLICATION TO LEUKEMIA AND ALZHEIMER GENE

EXPRESSION DATA

Gene expression is the process by which a gene’s coded

information is translated into the structures present and operat-

ing in the cell (either proteins or RNAs). Current technologies

measures the level of gene expression of tissue samples for

a particular set of targeted genes. In this study, the following

datasets from research into the corresponding diseases were

used:

• Leukemia gene expression data for 7129 genes.

• Leukemia gene expression data for 7 selected genes.

• Alzheimer gene expression data for 9600 genes.

• Alzheimer gene expression data for 4 selected genes.

A. Experimental settings

For simplicity, and due to the restrictions imposed by printed

materials, in all of the VR spaces constructed no behavior

was associated to the objects; the only relation included was

class membership (expressed as grey level). Geometries were

spheres, and only in some cases, cubes; with the dimension of

the space fixed at 3. For each of the data sets, NDA networks

with one input layer, two hidden, and an output layer were

used in all of the experiments. In contradistinction with the

classical NDA training as a classification network, the training

here was oriented to learn a remapped characteristic function

of the classes associated with the datasets, where membership

was set to 0.9 and non-membership to −0.9 in order to

maximize performance w.r.t the hyperbolic tangent bahavior.

The Mean Squared Error between the network outputs and

the modified characteristic function of the classes was the

error measure used. A total of 1600 NDA networks were

computed for each of the four datasets processed, and the

computations were performed in a Condor pool (http://

www.cs.wisc.edu/condor/). The experimental settings

used for the NDA networks are shown in Table.I.

TABLE I

EXPERIMENTAL SETTINGS USED FOR THE NDA NETWORKS

No. Neurons in Input Layer [7129, 7, 9600, 4]

No. Neurons in First Hidden Layer [1, 2, 3, ..., 10]

No. Neurons in Second Hidden Layer 3

No. Neurons in Output Layer [2]

Aggregation Function Scalar Product

Activation Function Hyperbolic Tangent

Seed 1 [1, 301, 601, 901]

Seed 2 [3, 303, 603, ..., 2703]

Allowable MSE [0.004, 0.003, 0.002, 0.001]

Maximum No. of Annealing Trials 15

For comparison purposes, unsupervised VR spaces using

Sammon’s original algorithm for computing the l mapping,

but using a dissimilarity in the space of the original attributes

(genes) given by δij = (1 − ŝij)/ŝij , where ŝij is Gower’s

similarity coefficient [4] was used, with Euclidean distance set

as the measure used as dissimilarity in the VR space.

B. Leukemia data

Cancer can potentially kill a human through disabling the

normal function of tissues and/or organs. One such cancer is

Leukemia, which originates in the bone marrow of humans.

The cause of leukemia is not known.

For the study, 72 patients from [3] were used. They are

separated into two groups, i) a training set containing 38 bone

marrow samples: 27 acute lymphoblastic leukemia (ALL) and

11 acute myeloid leukemia (AML), obtained from patients

at the time of diagnosis, and ii) a testing set containing 34
samples (24 bone marrow and 10 peripheral blood samples),

where 20 are ALL and 14 AML.

In this paper no explicit preprocessing of the data was

performed, in order to not introduce bias and to be able

to expose the behavior of the data processing strategy, the

methods used, and their robustness. That is, no background

subtraction, deletions, filtering, or averaging of samples/genes

were applied.

In [13], a methodology was proposed for gene discovery

from many noisy and potentially unrelated genes. It consists

of two configurable learning stages. In Stage-I, a partition

clustering algorithm is configured to either i) select a gene to

represent a set of closely related genes (in terms of expression

proximity), or ii) construct a synthetic gene by aggregating the

properties of a set of genes. The representatives are then Stage-

II processed in order to find the most discernibility preserving

genes (i.e. the set of genes contained in the union of all

discovered reducts). The learned knowledge may then be used

for discretizing and classifying future leukemia samples.



Two sets of experiments were performed; 1600 for the

original 7129-dimensional space and 1600 on the reduced

(using the aforementioned methodology) 7-dimensional space,

yielding 3200 leukemia experiments executed in a distributed

computing environment using Condor.

The performance of each network on training and test sets

is in Fig.3 for the 7129 case and Fig.4 for the 4 gene case.

Networks with a balanced training/test MSE and low test

MSE are located around (0.8, 0.9) in Fig.3, and around

(10−7, 10−7) in Fig.4.

Table.II contains sample mean and ranges for the MSE

for each of the experiments for both training and test set.

The effect of reducing the number of genes per sample can

be readily seen. The mean MSE on the test set has been

reduced from 0.8762 down to 0.3711, a factor of over 2.3, the

maximum MSE has been reduced by a factor of 2, and the

minimum MSE has been reduced by a factor of over 38, 000.

An unsupervised 3D projection using Sammon’s algorithm

[9] (Fig.5) illustrates the complexity of this data. The ALL

and AML classes appear completely interleaved for both the

training and test sets. An NDA network result with balanced

training/test as well as low test MSE, is shown in Fig.6.

Only in a small region of the space do the two classes

overlap (6 ALL and 2 AML samples), whereas the rest of

the space contains well differentiated samples. Clearly, the

NDA result substantially improves the unsupervised projec-

tion. When samples are described only in terms of the 7
selected genes, a Sammon projection Fig.7 shows a class

differentiated structure. The NDA counterpart sharing the same

training/test and test MSE properties (Fig.8), exhibits an even

clearer differentiation.

TABLE II

MEAN AND RANGES OF MSE FOR LEUKEMIA DATA

Training Set Test Set

Exp-1 x = 0.00691 x = 0.8762

(all genes) [0.00000..0.08222] [0.071471..1.84182]

Exp-2 x = 0.00012 x = 0.37114

(7 genes) [1.67705 10−16
..0.00398] [1.8445 10−07

..0.96931]

C. Alzheimer data

Alzheimer’s disease (AD) is an incurable, chronic, pro-

gressive, debilitating condition which, along with other neu-

rodegenerative diseases, represents the largest area of unmet

need in modern medicine [14]. In that study, a total of 4

clinically diagnosed AD patients and 5 normal patients of

similar age were investigated. A total of 23 samples were taken

from them, each characterized by 9600 genes. Despite such

a high dimensionality in the original space, an unsupervised

VR representation with low Sammon error (Fig.9), success-

fully portrays a structure in which Alzheimer’s samples are

clustered. They are wrapped by the class of normal samples,

which appears more irregular. In the supervised case, due to

Fig. 3. Leukemia: Mean squared errors for 1600 runs, each with 38 train
and 34 test samples, respectively. Samples described in terms of 7129 genes.

Fig. 4. Leukemia: Mean squared errors for 1600 runs, each with 38 train
and 34 test samples, respectively. Samples described in terms of 7 selected
genes.

Fig. 5. Leukemia: Unsupervised (Sammon) representation of the original
training and test data, in terms of 7129 genes. Dark objects= ALL, Light
objects=AML. Spheres = training, Cubes = test. Sammon error = 0.143.



Fig. 6. Leukemia: Supervised (NDA) representation of the original training
and test data, in terms of 7129 genes. Dark objects= ALL, Light ob-
jects=AML. Training error = 0.0710, test error = 0.0715.

Fig. 7. Leukemia: Unsupervised (Sammon) representation of the original
training and test data, in terms of 7 selected genes. Convex hulls wrap the
classes. Dark objects= ALL, Light objects=AML. Spheres = training, Cubes
= test. Sammon error = 0.103.

the small number of samples, the whole dataset was used when

computing the NDA projections.

For the sample described in terms of 9600 genes, even the

output of the NDA network with the worst MSE (2.4581 10−1)

produced a total class differentiation Fig.10.

The data mining procedures applied in [14] reported a

subset of 20 most relevant genes. From them, a subset of 4
were found to individually differentiate the classes with zero

error. An unsupervised VR space constructed using Sammon’s

algorithm is shown in Fig.11 where the two classes are

wrapped with their corresponding convex hulls. The quality

of the representation is evidenced by both the value of the

Sammon error (0.002), and the clear separation of the two

classes. The effect of incorporating the class information into

the analysis is shown in Fig.12, where the results of applying

Fig. 8. Leukemia: Supervised (NDA) representation of the original training
and test data, in terms of 7 selected genes. Dark objects= ALL, Light
objects=AML. Training error = 1.1236 10−07, test error = 1.8445 10−07.

Fig. 9. Alzheimer: Unsupervised (Sammon) representation of the original
training and test data, in terms of 9600 genes. Dark objects= ALL, Light
objects=AML. A boundary delimiting the Alzheimer class was added for
clarity. Sammon error = 0.103.

the worst NDA network are shown. Again, there is a total class

differentiation.

V. CONCLUSIONS

The hybrid stochastic-deterministic approach used for solv-

ing NDA problems proves to be very effective at differ-

entiating the classes existing in the very high dimensional

biological data investigated. Broad scale, high throughput

computing environments for data mining, enable the discovery

of high quality NDA networks from the point of view of both

discrimination and generalization capabilities. The joint use

of NDA and unsupervised mappings provides more insight

towards comprehensive interpretation and understanding of

gene expression data. These are important features of these

kinds of networks when applied to bioinformatic problems.



Fig. 10. Alzheimer: Supervised (NDA) representation of the original data,
in terms of 9600 genes. Dark objects = Alzheimer, Light objects = Normal.
Training error = 2.4581 10−1 (the worst of 1600 networks).

Fig. 11. Alzheimer: Unsupervised (Sammon) representation of the original
training and test data, in terms of 4 selected genes. Convex hulls wrap the
classes. Dark objects = Alzheimer, Light objects = Normal. Sammon error =
0.002.

These results are encouraging and further experimentation with

other data sets are required.
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