
Publisher’s version / Version de l'éditeur:

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez

la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous
n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the
first page of the publication for their contact information.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

Canadian Semantic Web, Semantic Web and Beyond; Volume 2, pp. 171-187,
2006

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

NRC Publications Archive Record / Notice des Archives des publications du CNRC :
https://nrc-publications.canada.ca/eng/view/object/?id=548c03fb-7f86-4990-9e38-ec94bc479b4a

https://publications-cnrc.canada.ca/fra/voir/objet/?id=548c03fb-7f86-4990-9e38-ec94bc479b4a

NRC Publications Archive
Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version.
/ La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version
acceptée du manuscrit ou la version de l’éditeur.

For the publisher’s version, please access the DOI link below./ Pour consulter la version de l’éditeur, utilisez le lien
DOI ci-dessous.

https://doi.org/10.1007/978-0-387-34347-1_12

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

DatalogDL: datalog rules parameterized by description logics
Mei, J.; Boley, Harold; Li, J.; Bhavsar, V.; Lin, Z.

DatalogDL: Datalog Rules Parameterized by

Description Logics *

Mei, J., Boley, H., Li, J., Bhavsar, V., and Lin, Z.
August 28-31, 2006

* published in “Canadian Semantic Web”. Springer Series: Semantic Web
and Beyond. Vol. 2. pp. 171-187. 2006. NRC 49312.

Copyright 2006 by
National Research Council of Canada

Permission is granted to quote short excerpts and to reproduce figures and tables
from this report, provided that the source of such material is fully acknowledged.

DatalogDL: Datalog Rules Parameterized by

Description Logics

Jing Mei
1
, Harold Boley

3
, Jie Li

2,3
, Virendrakumar C. Bhavsar

2
, Zuoquan Lin

1

1
Department of Information Science, Peking University

Beijing 100871, China

{mayyam, lz} AT is.pku.edu.cn

2
Faculty of Computer Science, University of New Brunswick

Fredericton, NB, E3B 5A3, Canada

{Jie.Li, bhavsar} AT unb.ca

3
Institute for Information Technology - e-Business

National Research Council of Canada

Fredericton, NB, E3B 9W4, Canada

{Harold.Boley, Jie.Li} AT nrc.gc.ca

Abstract

Combining ontologies with rules has become a central topic in the

Semantic Web. Bridging the discrepancy between these two knowledge

representations, this paper introduces DatalogDL as a family of hybrid

languages, where Datalog rules are parameterized by various DL

(description logic) languages ranging from ALC to SHIQ . Making

DatalogDL a decidable system with complexity of EXPTIME, we propose

independent properties in the DL body as the restriction to hybrid rules,

and weaken the safeness condition to balance the trade-off between

expressivity and reasoning power. Building on existing well-developed

techniques, we present a principled approach to enrich (RuleML) rules

with information from (OWL) ontologies, and develop a prototype system

integrating a rule engine (OO jDREW) with a DL reasoner (RACER).

1. Introduction

Alternative architectures for the Semantic Web were proposed by several
groups at the W3C Workshop on Rule Languages for Interoperability, and
follow-up discussions helped to establish the Rule Interchange Format
Working Group [20]. Whether, in the Semantic Web's layered structure,
there should be only one homogeneous hierarchy for ontologies and rules
[13], or these should stand heterogeneously (hybridly) side by side under a
logic framework [10], the combination of ontologies and rules, within a
practical and feasible framework, is an interesting topic deserving more
investigation.

Description logics (DLs) have been recognized as the logical foundation
of ontologies in the Semantic Web, and the Web Ontology Language,
namely OWL [18], has two species: OWL-Lite and OWL-DL, closely
related to the DL languages (D)SHIQ and (D)SHOIN , respectively.

On the other hand, Datalog is a wide-spread rule-based language, even
popular in the industry. That is, both of these two knowledge
representations have reached a certain level of maturity, which make them
suitable candidates for combination.

Among the integration frameworks for combining rules and DLs (see
Table 1), one is the homogeneous approach (like DLP [8], SWRL [11],
and KAON2 [17]), while the other is the hybrid approach (like AL-log [6],
CARIN [14], dl-programs [7], and r-hybrid KBs [19]). However, there
exists the usual trade-off between the expressivity of languages and the
complexity of their reasoning services.

Table 1. Comparison of Approaches

 Safeness Condition
Strong Weak

Information Flow
Uni-directional Bi-directional

Strategy

Homogeneous
Approach

DLP
SWRL
KAON2

X
X

X

X
X
X

Reduction
–
Reduction

Hybrid
Approach

AL-log
CARIN
dl-programs
r-hybrid KBs
DatalogDL

X
X

X
X

X

X
X

X
X

X

SLD-resolution
Entailment
Fixpoint iteration
–
SLD-resolution

AL-log, the earlier and simpler case, integrates standard Datalog rule

inference procedures with intermediate ALC DL satisfiability checking.
It adopts backward chaining (based on SLD-resolution), first collecting the
disjunction of the obtained DL-queries, and then using classical DL
tableaux algorithms to check the consistency of those DL atoms. As a
result, AL-log is a complete and sound system, whose complexity is

EXPTIME stemming from those of ALC and Datalog. But, the binary
predicates (i.e., properties) are not considered in AL-log, and it requires
that each variable appearing in the DL component also appears in the
Datalog component (we call this a strong safeness condition, and a formal
definition is presented below), s.t. only unary predicates without variables
(i.e., ground classes) will be submitted to the DL tableaux reasoner.

More generally, CARIN is a family of languages, each of which
combines (a sublanguage of) ALCNR DL and Datalog rules. Unlike
AL-log, CARIN first computes the entailments of the DL component
based on DL tableaux algorithms, and one step of the standard forward
chaining is then done for each augmented rule component, using the added
DL assertions as new facts. Besides, CARIN allows ground or open DL-
queries with unary and binary predicates, and the variables appearing in
the head of a rule are required also to appear in the body but not necessary
of being in the DL body (we call this a weak safeness condition, and a
formal definition is presented below) -- this is a general safeness condition
for rule-based languages, weaker than that of AL-log. As to non-recursive
CARIN- ALCNR , a sound and complete inference procedure has been

established, while reasoning in recursive CARIN- ALCNR is un-
decidable, and there are two ways of restricting expressivity to regain
soundness and completeness: one is to remove some DL constructors and
allow an acyclic terminology only, and the other is to make the safeness
condition strong.

It should be pointed out that bi-directional information flows are not
permitted in the above two systems, and the predicate symbols in the head
of hybrid rules are disjoint from those in the DL component. Two other
well-known hybrid systems, dl-programs and r-hybrid KBs, are less
restricted, and the stable model semantics performs well for both systems;
also, they each provide a decidable strategy. In these systems, negation as
failure is investigated as an important feature, which is beyond this scope
of the current paper.

Being homogeneous approaches, DLP and SWRL share all of the
predicate symbols between the rule component and the DL component.
However, DLP has more expressivity restrictions, while SWRL is
undecidable. KAON2 seems a novelty as to reasoning support for both
OWL-DL and rules, reducing the DL knowledge bases to disjunctive
programs. But such reduction pushes the task of DL reasoning completely
into rule engines, not gaining the benefits from the existing tableaux DL
reasoners. Also, a strong safeness condition, similar to the one in AL-log
and r-hybrid KBs, is required by KAON2, where this restriction covers
some of the common usages of DL expressivity.

In this paper, our objective is to generalize the framework of AL-log,
combining (any sublanguage of) a decidable DL system with Datalog, and
provide less restricted hybrid rules with DL-query to both classes and
properties. Although CARIN is similar in this respect, it requires some
built-in coding into a DL reasoner, to obtain a complete entailment for
hybrid rules; otherwise, anonymous individuals (e.g., introduced by
existence restrictions) and uncertain assertions (e.g., derived from
disjunction descriptions) in the DL component will just be kept inside of
the primitive DL reasoner, with no access to rule engines. Aiming at
developing a feasible strategy for the reasonable Semantic Web
community by employing existing techniques as much as possible, we
attempt to balance the trade-off of the expressivity and the reasoning
power, and consider SHIQ as our bottom line, whose practical and

efficient tools are available (such as RACER [9]). Here, we adopt the weak
safeness condition, and the problems introduced by the pure-DL variables
in DL-queries, beyond the strong safeness condition, will be handled
cautiously, provided that those expressive statements would be kicked out
by the bottom line of SHIQ DL. By defining independent properties, we

clarify our current reasoning services: hybrid rules with DL-query to
classes and independent properties in weak safeness condition are fully
supported.

As a result, this paper presents DatalogDL as a family of hybrid
representation languages, where Datalog rules are parameterized by a
specific DL language L, namely DatalogL, where L ranges from ALC to

SHIQ . On the theoretical side, we show a sound and complete algorithm

for reasoning in DatalogDL, with the complexity of EXPTIME in any case of
its parameterized DL language L. On the practical side, while keeping a
DL reasoner unchanged, a typical rule engine (e.g., OO jDREW [4]) will
be extended to incorporate hybrid rules, where the collection of DL-
queries, after a so-called constrained SLD-resolution for hybrid rules, will
be submitted to an external DL reasoner (e.g., RACER).

Next, DatalogDL will be introduced in section 2 with its syntax and
semantics, while its reasoning will be described in section 3 together with
proofs of soundness and completeness. Section 4 is meant to clarify
technical problems of decidability underlying in hybrid rules, and finally
conclusions are drawn in section 5.

2. The DatalogDL Languages

The matured languages, Datalog and DL, will be combined in a hybrid
approach: DatalogDL is a family of languages, each of which parameterizes
Datalog with some variety of DL-query.

Consider the main layers of the DL family bottom-up [3], ALC is a

basic and simple language, permitting class descriptions via C D ,

C D , C¬ , .R C∀ , and .R D∃ where C, D are classes and R is a

property. Augmented by transitive properties, ALC becomes +R
ALC in

the following denoted by S . SI is an extension to S with inverse
properties, followed by SHI with property hierarchies. It becomes

SHIF if extended by functional restrictions, SHIN if extended by

cardinality restrictions, and SHIQ if extended by qualified number

restrictions. Support for datatype predicates (e.g. string, integer) leads to
the concrete domain of D , and using nominals O allows to construct
classes from singleton sets.

Assuming the usual definitions of DLs and rules are familiar to readers,
we introduce the syntax and semantics for DatalogDL with no need for
preliminaries. However, we adopt the so-called unique named assumption
(UNA), a convention of Datalog not normally used by DLs.

2.1 Syntax

In order to preserve decidability, we fix the rule language to Datalog, so
that terms must be variables or constants. Undecidable extensions to Horn
logic, where terms can also be function applications, have been considered
as well, but are beyond the scope of this paper.

Given a specific decidable DL language L (here, it ranges from ALC

to SHIQ), we denote by DatalogL a subset of the function-free first-

order Horn logic language over an alphabet of predicates T PA A A= ∪ ,
with T PA A∩ = ∅ , and an alphabet of constants C. Note that, the

predicates in PA can be of arbitrary arity, while those of TA should be
either unary (also called class in DL) or binary (also called property in
DL).

Definition 1. A DatalogL knowledge base K is a pair (Σ,Π), where: Σ is a L-

based description logic knowledge base with predicates in TA ; Π is a Datalog
program with DL-query to Σ, s.t. each hybrid rule r in Π is

1 1 1 1() : (), , () & (), , ()m m n nh X b Y b Y q Z q Z−

where X, Y1, ..., Ym are n-ary sequences of terms while Z1, ..., Zn are unary/binary
sequences of terms, h(X) and bi(Yi) (1≤i≤m) are Datalog atoms with predicates

in PA while each qj(Zj) (1≤j≤n) is a DL-query with a predicate in TA .
Two safeness conditions are introduced for hybrid rules:

Weak safeness: a variable occurring in X must occur in one of the Yi|Zj's.
Strong safeness: a variable occurring in r must occur in one of the Yi's.

For simplicity, in the rest of the paper “rule” means “hybrid rule”, while
“Datalog rule” refers to a hybrid rule after deletion of the DL body.
Besides, making rules strongly safe has been introduced in [17], that is: (1)
For each rule r whose variable w does not occur in any of the Yi's, we add
an atom O(w) to the Datalog body of r, where O is a special predicate
symbol, O PA∈ ; (2) For each constant c occurring in K = (Σ,Π), we add a
fact O(c) to Π.

As mentioned in section 1, we prefer to the weak safeness condition
rather than the strong one. Below, pure-DL variables are defined.

Definition 2. A pure-DL variable in a rule r is a variable that only occurs in one
of the Zj's.

Pure-DL variables lead to the violation of the strong safeness condition
in cases where the weak safeness condition is obeyed. Note that, without
the presence of pure-DL variables (i.e., under the strong safeness
condition), our system appears to be Datalog extended with ground DL-
queries, which is a simple and straightforward extension to AL-log.

According to the classical SLD-resolution with rules, non-pure-DL
variables in (the DL body of) r will be bound to ground values, still leaving
pure-DL variables free in the DL body. This situation is similar to
conjunctive query answering in DL containing both constants and
variables [12]. Instantiation (“Is an individual an instance of a class?”) can
be reduced to KB unsatisfiability by transforming the query into a negated
assertion. However, queries involving properties and variables are non-
trivial given that the negation of properties is not supported by most DLs.
Hence, a candidate technique is folding (called rolling-up in [12]), whose
objective is to eliminate properties from queries.

Following this route, we encounter another problem: the simple
procedure of folding cannot be applied to parts of the query that contain
cycles, or where more than one arc enters a node that corresponds to a
variable (e.g. P(u, x)∧Q(v, x)). Tree-shaped DL queries appear to be a
solution to this problem by exploiting the tree model property of the DL
[12]; however, the undecidability of an unrestricted combination of DLs
with rules is exactly due to the fact that adding rules to DLs causes the loss
of any form of tree model property [17]. Hence, strong safeness is imposed
by DL-safe rules [17] and other approaches [6][7][19], while we define
independent properties, which address the trade-off as mentioned above.

Definition 3. A property P is said to be independent in a rule r, if no P
occurrence shares any pure-DL variable with other property occurrences
(including other P occurrences).

Now, suppose r is a hybrid rule violating the strong safeness condition, γ
being its head, α being its Datalog body, and β being its DL body.
Specifically, it has the form γ:-α&β, where β contains a pure-DL variable
x having a class description C (C can be the DL top class). We classify the
possibilities for β into four cases:

1. If x does not participate (as the first or second argument) in any property,
then the DL-query of C(x) is reduced to checking whether C is nonempty.

2. If there exists exactly one property occurrence of P relating x with a term u,
then the DL-query of P(u, x)∧C(x) or P(x, u)∧C(x) becomes its folding

result ∃P.C(u) or ∃P-.C(u), respectively.
3. If there exists exactly two property occurrences of P and Q relating x with

terms u and v, respectively, where P and Q, u and v can be identical, then the
DL-queries become the results of following foldings (chaining can start with
either u or v):
(a) P(u, x)∧Q(v, x)∧C(x) becomes

.(.{ })()P Q v C u
−∃ ∃ or .(.{ })()Q P u C v

−∃ ∃

(b) P(u, x)∧Q(x, v)∧C(x) becomes

.(.{ })()P Q v C u∃ ∃ or .(.{ })()Q P u C v
− −∃ ∃

(c) P(x, u)∧Q(v, x)∧C(x) becomes

.(.{ })()P Q v C u
− −∃ ∃ or .(.{ })()Q P u C v∃ ∃

(d) P(x, u)∧Q(x, v)∧C(x) becomes

.(.{ })()P Q v C u
−∃ ∃ or .(.{ })()Q P u C v

−∃ ∃

4. If there exists three or more property occurrences, nested foldings might be
employed by iterating case 3 chainings.

Case 3 requires support by using nominals O (i.e., classes with a
singleton extension), as known from the DL literature, whose interaction
with cardinality restrictions N and inverse properties I makes the
complexity jump from EXPTIME (for SHIN) to NEXPTIME (for

SHOIN). Although the operator {u} could be ‘simulated’ by its
representative concept Cu [12], we still focus on cases 1 and 2 in this
paper, not introducing different fresh concept names for different
individuals. Another consideration is following the requirement of
independent properties in a hybrid rule r, which is fulfilled by cases 1 and
2, excluding cases 3 and 4 where the pure-DL variable x is a variable
shared among properties in r.

Proposition 1. For hybrid rules with independent properties according to
case 2, the folding results are equivalent to the original DL-queries.

Proof. For a set of closed formulas S and a closed formula F of a first
order language, F is a logical consequence of S iff S∪{¬F} is
unsatisfiable. Applied to logic programming, consider a Datalog program
Π with a goal G of the form G1∧ ...∧Gn with variables y1,...,ym.

Showing that the set of clauses Π∪{G} is unsatisfiable is exactly the same
as showing that ∃y1 ... ∃ym (G1∧...∧Gn) is a logical consequence of Π.
Note that DL languages are variable-free, where any free variables are
hidden within ∀, ∃, etc., such as u∈∃P.C meaning u∈{x | ∃y. P(x, y) ∧

C(y)}. So, the folding results, e.g., ∃P.C(u), are equivalent to the original
DL-queries, e.g., P(u, x) ∧C(x) with an independent property of P.

2.2 Semantics

The semantics of DatalogDL derives in a natural way from the semantics of
its component languages, based on the first-order semantics. As follows,
we define an interpretation and a model of our language DatalogL,
including the satisfying conditions for ground Datalog atoms, ground DL-
queries, and hybrid rules. We direct readers to the description logic
handbook [3] and the foundations of logic programming [16] for those
related definitions.

Definition 4. An interpretation I = (△, •I) of a language DatalogL consists of

the following: (1) A nonempty domain △; (2) For each constant a in C, the

assignment of an element in △, i.e.,aI ∈ △; (3) For each n-ary predicate p in the

alphabet of predicates T PA A A= ∪ , the assignment of a relation of arity n over
the domain △, i.e., a relation on △n.

Definition 5. Let I be an interpretation for a language DatalogL, and for a given
hybrid rule r,
A variable assignment Vr w.r.t I is an assignment to each variable in r of an
element in the domain of I.
A term assignment Tr w.r.t I is defined: (1) Each variable is given its assignment
according to Vr; (2) Each constant is given its assignment according to I.

Definition 6. Let I be an interpretation for a language DatalogL. (1) A ground

Datalog atom α = p(C), p∈ PA , is satisfied by I if CI ∈ pI, written as I |= α. (2) A

ground DL-query β = q(C), q ∈ TA , is satisfied by I if CI ∈ qI, written as I |= β.

(3) A hybrid rule r that 1 1 1 1() : (), , () & (), , ()m m n nh X b Y b Y q Z q Z− is

satisfied by I if, whenever Tr is a term assignment w.r.t I, such that Tr (Yi) ∈ bi
I

and Tr (Zj) ∈ qj
I (1≤i≤m, 1≤j≤n) for every atom in the body of r, then Tr (X) ∈

hI for the head of r, written as I |= r.
Definition 7. Let I be an interpretation for a language DatalogL. I is a model of

the DatalogL knowledge base (Σ,Π), consisting of a Datalog program Π with DL-
queries to Σ, if I satisfies each hybrid rule in Π and I is a model of Σ according to
the description logic L.

3. Reasoning in DatalogDL

Deviating from AL-log, the algorithm in CARIN is meant to test DL
entailment but not satisfiability, resulting in forward chaining being
employed as the strategy for the rule component. On the other hand, not
concerned with the internals of DL's tableaux calculus, our DatalogDL
family is in the tradition of AL-log, making use of the constrained SLD-
resolution, so that backward chaining plays the role of our principal
reasoning strategy.

3.1 Algorithm

Below is the definition of an algorithm, in pseudo-code, for reasoning in
DatalogL, where L is a DL language ranging from ALC to SHIQ ,

restricted to independent properties in the DL body of hybrid rules under
the weak safeness condition.

Input: DatalogL KB K=(Σ,Π) and a query q.
Output: TRUE if q is satisfied by K, FALSE otherwise.
BEGIN:

1. Apply SLD-resolution for q with Datalog rules. Use the resulting
substitution to ground the hybrid rules (no assignment can be made to pure-
DL variables). If there is no such grounded version, then return FALSE.
Otherwise, collect the disjunction of the obtained DL-queries, after folding
in step-2 for each rule r having pure-DL variables left.

2. For each pure-DL variable x in the rule r, where C is the class description of
x, and P is an independent property relating x with a term u, output the
folding results of ∃P.C(u) from P(u, x) ∧C(x), and of ∃P-.C(u) from P(x, u)

∧C(x).

3. Apply the DL tableaux algorithm to (the step-2 folding results of) the DL-

queries from step-1. We build a disjunctive DL class 1 mD D such
that its class descriptions Di are collected from the involved hybrid rules ri,
where 1≤i≤m. For an individual a, the separate DL-queries Di(a) will be

replaced by a single new one, 1 ()mD D a . If the DL-query

1 ()mD D a in addition to at least one of the remaining disjuncts are

satisfiable in every model, then return TRUE, else return FALSE.
END.

The hybrid rules from the DatalogL KB K input obey the restriction of
only having independent properties, as imposed by our definition of K, s.t.
step-2 produces ground rules under the weak safeness condition. For rules
fulfilling the strong safeness condition, step-2 will be skipped due to the
non-appearance of pure-DL variables. That is, our algorithm introduces a

method to re-establish strong safeness by eliminating all pure-DL
variables, while a collection of ground DL-queries will be submitted to a
DL reasoner for satisfiability checking.

Instead of processing the rule bodies separately, step-3 evaluates them
as a single disjunction. As a simple example consider a DL TBox with one
axiom A B as well as two hybrid rules that C(x) :- & A(x). and

C(x) :- & B(x). In addition, there is an individual a in the DL top class .
Given a query C(a), neither A(a) nor B(a) holds, while step-3 allows to
finalize this query via ()A B a to which the DL reasoner replies ‘True’.

3.2 Query Answering

In general, a substitution θ is a finite set of the form {X1/t1, ..., Xn/tn},
where Xi is a variable, ti is a term, and Xi ≠ Xj for i ≠ j. A ground
substitution is a substitution where ti is a constant for every i ∈ {1, ..., n}.
Below is the technical details for query answering, using the notions
inherited from AL-log but with extensions to DL properties.

Definition 8 [Constrained SLD-resolution]. Let L be a specific DL language,
K=(Σ,Π) be a DatalogL knowledge base, q = α1,…,αs & β1,…, βt be a query to K
where αi is a Datalog atom and βj is a DL atom, and r be a hybrid rule of the form
α’ :- α’1,…,α’m & β’1,…, β’n . Suppose θ is the most general substitution such that
α’θ = αkθ, where αk is one of {α1,…,αs}. The resolvent of q and r with
substitution θ is the query q’=μ&ν, where μ=(α1,…,αk-1, α’1,…,α’m, αk+1,…,αs)θ
and ν=(β1,…, βt, β’1,…, β’n)θ with simplification: if there are two constraints of

the form t:C, t:D, they are replaced by the equivalent constraint t: C D .
Definition 9 [Constrained SLD-derivation]. A constrained SLD-derivation for a

query q0 in K is a derivation constituted by:
1. A sequence of queries q0, q1, ..., qn
2. A sequence of hybrid rules r1, ..., rn
3. A sequence of substitutions θ1, ..., θn

such that for each i ∈ {0, 1, ..., n-1}, qi+1 is the resolvent of qi and ri+1 with
substitution θi+1. We call n the length of the derivation.

A derivation may terminate with the last query of the form qDL = ∅ &
β1,…,βl, which is called constrained empty clause. For strong safeness
conditions, the constrained empty clause should have not any variable,
while for weak safeness conditions, pure-DL variables appear as being
existentially quantified in some of “β1,…,βl”. In this sense, we currently
only consider independent properties in hybrid rules, with folding results
fully supported by existing DL reasoners.

Proposition 2. Let q0, q1, ..., qn be a constrained SLD-derivation for q0 in K. If I
is a model of K such that I |= qi+1, then I |= qi, for i= 0, ..., n-1.

Proof. It follows from the soundness of SLD-resolution as well as the fact that
the simplification of constraints preserves validity. In particular, Proposition 1
states the folding results are equivalent to the original DL-queries, also applying to
the last query qn, i.e., the constrained empty clause qDL with pure-DL variables.
Together with DL classical tableaux algorithms, it holds that

K |- ∅ & C(x) iff CI is nonempty, where I is the model of K
K |- ∅ & P(u, x) ∧ C(x) iff K |= ∃P.C(u)

K |- ∅ & P(x, u) ∧ C(x) iff K |= ∃P-.C(u)
Definition 10 [Constrained SLD-refutation]. A constrained SLD-refutation for a

query q in K is a finite set of constrained SLD-derivations d1,...,dm for q in K such
that, denoting as q0

i,...,qni
i the sequence of queries of the ith derivation di, the

following conditions hold:
1. For each i, qni

i is one of the form “∅ & β1
i,…,βli

i”, i.e., the last query of each
derivation is a constrained empty clause.

2. For each qni
i with pure-DL variables, obtain the folding results of qni

i.
3. For each model I of K, there exists at least one i∈{1,...,m} s.t. I |= qni

i; we
write this condition K |= disj(qn1

1, ..., qnm
m).

We write K |- q, if there is a constrained SLD-refutation for q in K.
Lemma 1. Let q be a ground query to a DatalogL knowledge base K = (Σ,Π).

K |- q if and only if K |= q.
Proof. With restriction to independent properties in hybrid rules, we present our

proof based on the correctness and completeness of SLD-resolution and DL
tableaux algorithms, similar as AL-log does.

=>: Suppose K |- q, i.e., the ground query q has a constrained SLD-refutation.
Then, for each derivation, if I is a model of K that satisfies the constrained empty
clause qDL then it satisfies q (by repeated application of Proposition 2 with qDL as
qn and q as q0); moreover, each model I of K satisfies at least one of the
constrained empty clauses. Then each model of K satisfies q, that is K |= q.

<=: Suppose K |- q fails, we have no constrained SLD-refutation for q in K,
resulting from three possibilities according to Definition 10.

1. If there is no constrained empty clause, then from the completeness of SLD-
resolution, we have the failure of K |= q.

2. If there is no folding results of the constrained empty clause, then this query
q is beyond our consideration, having a natural conflict with K |= q.

3. If there is a model I of K, then for any derivation of q whose last query is a
constrained empty clause (written as qni

i = ∅ & β1
i,…,βni

i), it makes I |= qni
i

a failure. That is, there is a model I of Σ such that I |= β1
i,…,βni

i fails.
Characterized by I, we can construct another model J, and it can be shown --
by induction on the construction of J -- that J |= q fails, and K |= q fails.

Referring to AL-log, DatalogL also provides a decidable procedure. Note
that satisfiability of an ALC class (without any TBox) is PSPACE-
complete; while the same problem is EXPTIME -complete, if a TBox with
general inclusion axioms is present [3]. For the rule component, Datalog is
data complete for P while program complete for EXPTIME [5]. As a result,

the computational complexity of DatalogL is EXPTIME, where L ranges from
ALC to SHIQ .

Theorem 1. Query answering in DatalogL is a decidable problem in EXPTIME.

4. Re-obtaining Decidability

As pointed in CARIN, the problem of determining whether K |= q is
undecidable, where K is a DatalogL knowledge base with recursive
Datalog rules, and its L-based DL component allows arbitrary inclusion
statements while L itself includes only the constructor ∃P.C. In short, the
recursive Datalog rules extended with cyclic TBox including only one DL
constructor of ∃P.C will destroy decidability, while ∃P.C is the most basic
DL constructor, introduced first by the simpler ALC DL. This theorem
has been proved in [14], by reducing the halting problem of a Turing
machine to the entailment problem of K. Below, we rewrite them:

- DL ABox: integer(1)
- DL TBox: integer ∃succ.integer

- rule-primitive: lessThan(x, y) :- & succ(x, y).
- rule-recursive: lessThan(x, y) :- lessThan(z, y) & succ(x, z).
Below, we identify two ways of restricting the expressivity in the

knowledge base as to re-obtain a decision procedure, where the first one is
in the view of DL and the second is of rules:

(1) To remove some DL constructors: Not obtaining the benefits from
the current mature DL techniques as much as possible, we backtrack to the
systems of nearly 10 years ago -- actually, CARIN has a (maximal)
decidable sublanguage, namely CARIN-MARC, which includes the
constructors , , (), .nR R C≥ ∃ and negation on primitive classes, with

the terminology consisting of acyclic class definitions (i.e., no inclusions
or property definitions). DLP has another solution: it requires that the
existential DL constructor of ∃P.C can only occur on the left hand side of
an inclusion axiom, that is, it allows the form of being .P C D∃ but

disallows that of .D P C∃ .

(2) To enforce stronger safeness conditions: Generally speaking, rules
are required to be safe, i.e., a variable that appears in the head must also
appear in the body -- we call it as the weak safeness condition in this
paper, and the above undecidable encoding is a case of weakness. As
mentioned in Table 1, CARIN, DLP and SWRL obey this weak safeness,
but either CARIN or DLP has its respective restrictions under other
considerations as to obtain decidability, while SWRL admits itself
undecidable. For the other systems, strong safeness conditions have to be

emphasized, such as r-hybrid KBs and KAON2 (demanding that “x” must
occur in “lessThan(z, y)” given our above KB example); moreover, AL-
log only permits DL-query to classes without admission to DL properties.
Regarding our proposal of DatalogDL, weak safeness conditions are fine,
but the above rules will obtain such DL queries as “succ(x, z), succ(z, y)”
provided by “lessThan(x, y)” with length of two steps. Here, no
independent properties are guaranteed, due to sharing the pure-DL variable
of “z”, s.t. a folding result like ∃succ.∃succ.{y}(x) will be submitted to a
DL reasoner. Considering that it lacks full provision to the nominals O in
existing DL systems, and our framework conforms to the available
techniques, we exclude the above hybrid rules with requirement of
independent properties. Thus, we also define some expressivity restrictions
to avoid undecidability, driven by considerations to existing DL reasoners
rather than strong safeness conditions. Actually, for simplicity, we deal
little with the recursive rules in our prototype system [1], but having been
scoped in our ongoing work, this aspect will be paid more attention.

5. Conclusion

AL-log has combined Datalog with ALC , regarded as DatalogALC in our
proposal. To provide an efficient tool in practice and a sound and complete
system in theory, our DatalogDL concerns any sublanguage L of SHIQ

as its parameter, namely DatalogL, and the practical SLD-resolution and
DL tableaux algorithms act well in an integrated framework, beyond what
AL-log has done. Like CARIN, both class and property predicates are
allowed in DL-queries, with weak safeness conditions instead of strong
ones. And the unique requirement is the admission of independent
properties in hybrid rules, which conforms to support for reasoning in
existing DL reasoners. Besides, different from CARIN, which prefers to
forward chaining for modeling an entailment completion, our prototype
system [1] performs query answering in backward chaining with
improvements to a rule engine (e.g., OO jDREW), making the hybrid rules
processable, while keeping the DL reasoner (e.g., RACER) unchanged to
act as an external service. And we assume such adaptation is more
straightforward to users that the non-trivial DL algorithms would be
regarded as a black box.

It should be pointed out how our folding technique is related to ‘rolling-
up’ in [12]. There, (conjunctive) queries to the ABox of a DL knowledge
base, perhaps containing variables in DL classes or DL properties, can be
rewritten s.t. query answering is reduced to the problem of knowledge base
satisfiability. Here, this kind of technique is used to bridge the gap

between query answering in hybrid rules and testing satisfiability in the
DL component. Furthermore, the usage of our “independent properties” to
some extent corresponds to a particular case of tree-shaped (or acyclic) DL
queries as described in [12].

We are currently investigating DL query languages in support of hybrid
rules on the practical level. The expressivity and reasoning power of
DatalogDL were explored with a suite of previous examples from AL-log,
CARIN, DL-safe rules, and our use case RuleML FOAF [15]. This suite
covers much of the expressiveness currently discussed for hybrid rules,
e.g. in the W3C RIF WG [20]. The entire suite is implemented in our
hybrid rule engine [1] coupling OO jDREW with RACER.

For the serialization of hybrid rules, the RuleML <Implies> element
with its <head> role for h(X) and its <body> role for the bi(Yi) can be
extended with a <neck> role for the qj(Zj). The neck of a rule may also be
generally used to query other (non-DL) external decidable provers.

In this paper, we enriched rules with information from ontologies, but
not vice versa. Sharing common predicates in both components is
attractive, while the problems it causes, such as decidability, are open
challenges for the Semantic Web. Also, Datalog¬∨ was investigated in dl-
programs and r-hybrid systems as a more expressive rule component; such
rules with disjunction and negation are also considered in our future work.

Acknowledgements

We would like to thank the anonymous CSWWS2006 reviewers for their
helpful suggestions.

References

1. Jing Mei (2005) Hybrid Rules in OO jDREW.
http://www.jdrew.org/oojdrew/exa /hybridrules.html.

2. Grigoris Antoniou, Carlos Viegas Damasio, Benjamin N. Grosof, Ian
Horrocks, Michael Kifer, Jan Maluszynski, and Peter F. Patel-Schneider
(2005) Combining Rules and Ontologies - A survey.
http://rewerse.net/deliverables /m12/i3-d3.pdf.

3. Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi, and
Peter F. Patel-Schneider (2003) The Description Logic Handbook: Theory,

Implementation and Applications. Cambridge University Press.
4. Marcel Ball, Harold Boley, David Hirtle, Jing Mei, and Bruce Spencer (2005)

The OO jDREW Reference Implementation of RuleML. In: International

Conference on Rules and Rule Markup Languages for the Semantic Web, pp
218--223.

5. Evgeny Dantsin, Thomas Eiter, Georg Gottlob, and Andrei Voronkov (2001)
Complexity and Expressive Power of Logic Programming. ACM Computing
Surveys, pp 374--425.

6. Francesco M. Donini, Maurizio Lenzerini, Daniele Nardi, and Andrea Schaerf
(1998) AL-log: Integrating Datalog and Description Logics. Journal of
Intelligent Information Systems, pp 227-252.

7. Thomas Eiter, Thomas Lukasiewicz, Roman Schindlauer, and Hans Tompits
(2004) Combining Answer Set Programming with Description Logics for the

Semantic Web. In: The Ninth International Conference on the Principles of
Knowledge Representation and Reasoning, pp 141-151.

8. Benjamin N. Grosof, Ian Horrocks, Raphael Volz, and Stefan Decker (2003)
Description Logic Programs: Combining Logic Programs with Description

Logic. In: The Twelfth International World Wide Web Conference, pp 48--57.
9. Volker Haarslev and Ralf Mller (2001) RACER System Description. In:

International Joint Conference on Automated Reasoning, pp 701--706.
10. Ian Horrocks, Bijan Parsia, Peter F. Patel-Schneider, and James A. Hendler

(2005) Semantic Web Architecture: Stack or Two Towers? In: Workshop on
Principles and Practice of Semantic Web Reasoning, pp 37-41.

11. Ian Horrocks, Peter F. Patel-Schneider, Harold Boley, Said Tabet, Benjamin
N. Grosof, and Mike Dean (2004) Semantic Web Rule Language.
http://www.w3.org/Submission/2004/SUBM-SWRL-20040521/.

12. Ian Horrocks and Sergio Tessaris (2002) Querying the Semantic Web: a

Formal Approach. In: Workshop on Principles and Practice of Semantic Web
Reasoning, pp 177--191.

13. Michael Kifer, Jos de Bruijn, Harold Boley, and Dieter Fensel (2005) A

Realistic Architecture for the Semantic Web. In: International Conference on
Rules and Rule Markup Languages for the Semantic Web, pp 17-29.

14. Alon Y. Levy and Marie-Christine Rousset (1996) CARIN: A Representation

Language Combining Horn Rules and Description Logics. In: The Twelfth
European Conference on Artificial Intelligence, pp 323-327.

15. Jie Li, Harold Boley, Virendrakumar C. Bhavsar, and Jing Mei (2006) Expert

Finding for eCollaboration Using FOAF with RuleML Rules. In: The
Montreal Conference on eTechnologies, May 2006. To Appear.

16. John W. Lloyd (1987) Foundations of Logic Programming (second, extended

edition). Springer series in symbolic computation.
17. Boris Motik, Ulrike Sattler, and Rudi Studer (2005) Query Answering for

OWL-DL with Rules. Journal of Web Semantics, pp 41-60.
18. Peter F. Patel-Schneider, Patrick Hayes, and Ian Horrocks (2004) OWL Web

Ontology Language Semantics and Abstract Syntax. http://www.w3.org/TR
/owl-absyn/.

19. Riccardo Rosati (2005) On the decidability and complexity of integrating

ontologies and rules. Journal of Web Semantics, pp 61-73.
20. W3C (2005) Rule Interchange Format Working Group. http://www.w3.org

/2005/rules/wg.html.

