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Abstract 

 

Combining ontologies with rules has become a central topic in the 

Semantic Web. Bridging the discrepancy between these two knowledge 

representations, this paper introduces DatalogDL as a family of hybrid 

languages, where Datalog rules are parameterized by various DL 

(description logic) languages ranging from ALC  to SHIQ . Making 

DatalogDL a decidable system with complexity of EXPTIME, we propose 

independent properties in the DL body as the restriction to hybrid rules, 

and weaken the safeness condition to balance the trade-off between 

expressivity and reasoning power. Building on existing well-developed 

techniques, we present a principled approach to enrich (RuleML) rules 

with information from (OWL) ontologies, and develop a prototype system 

integrating a rule engine (OO jDREW) with a DL reasoner (RACER). 



1. Introduction 

Alternative architectures for the Semantic Web were proposed by several 
groups at the W3C Workshop on Rule Languages for Interoperability, and 
follow-up discussions helped to establish the Rule Interchange Format 
Working Group [20]. Whether, in the Semantic Web's layered structure, 
there should be only one homogeneous hierarchy for ontologies and rules 
[13], or these should stand heterogeneously (hybridly) side by side under a 
logic framework [10], the combination of ontologies and rules, within a 
practical and feasible framework, is an interesting topic deserving more 
investigation. 

Description logics (DLs) have been recognized as the logical foundation 
of ontologies in the Semantic Web, and the Web Ontology Language, 
namely OWL [18], has two species: OWL-Lite and OWL-DL, closely 
related to the DL languages (D)SHIQ  and (D)SHOIN , respectively. 

On the other hand, Datalog is a wide-spread rule-based language, even 
popular in the industry. That is, both of these two knowledge 
representations have reached a certain level of maturity, which make them 
suitable candidates for combination. 

Among the integration frameworks for combining rules and DLs (see 
Table 1), one is the homogeneous approach (like DLP [8], SWRL [11], 
and KAON2 [17]), while the other is the hybrid approach (like AL-log [6], 
CARIN [14], dl-programs [7], and r-hybrid KBs [19]). However, there 
exists the usual trade-off between the expressivity of languages and the 
complexity of their reasoning services. 

Table 1. Comparison of Approaches  

  Safeness Condition
Strong       Weak

Information Flow 
Uni-directional Bi-directional

Strategy 

Homogeneous
Approach 

DLP 
SWRL 
KAON2 

X 
X 

X 

X 
X 
X 

Reduction 
– 
Reduction 

Hybrid 
Approach 

AL-log 
CARIN 
dl-programs 
r-hybrid KBs 
DatalogDL 

X 
X 

X 
X 

X 

X 
X 

X 
X 

X 

SLD-resolution 
Entailment 
Fixpoint iteration 
– 
SLD-resolution 

 
AL-log, the earlier and simpler case, integrates standard Datalog rule 

inference procedures with intermediate ALC  DL satisfiability checking. 
It adopts backward chaining (based on SLD-resolution), first collecting the 
disjunction of the obtained DL-queries, and then using classical DL 
tableaux algorithms to check the consistency of those DL atoms. As a 
result, AL-log is a complete and sound system, whose complexity is 



EXPTIME stemming from those of ALC  and Datalog. But, the binary 
predicates (i.e., properties) are not considered in AL-log, and it requires 
that each variable appearing in the DL component also appears in the 
Datalog component (we call this a strong safeness condition, and a formal 
definition is presented below), s.t. only unary predicates without variables 
(i.e., ground classes) will be submitted to the DL tableaux reasoner. 

More generally, CARIN is a family of languages, each of which 
combines (a sublanguage of) ALCNR  DL and Datalog rules. Unlike 
AL-log, CARIN first computes the entailments of the DL component 
based on DL tableaux algorithms, and one step of the standard forward 
chaining is then done for each augmented rule component, using the added 
DL assertions as new facts. Besides, CARIN allows ground or open DL-
queries with unary and binary predicates, and the variables appearing in 
the head of a rule are required also to appear in the body but not necessary 
of being in the DL body (we call this a weak safeness condition, and a 
formal definition is presented below) -- this is a general safeness condition 
for rule-based languages, weaker than that of AL-log. As to non-recursive 
CARIN- ALCNR , a sound and complete inference procedure has been 

established, while reasoning in recursive CARIN- ALCNR  is un-
decidable, and there are two ways of restricting expressivity to regain 
soundness and completeness: one is to remove some DL constructors and 
allow an acyclic terminology only, and the other is to make the safeness 
condition strong. 

It should be pointed out that bi-directional information flows are not 
permitted in the above two systems, and the predicate symbols in the head 
of hybrid rules are disjoint from those in the DL component. Two other 
well-known hybrid systems, dl-programs and r-hybrid KBs, are less 
restricted, and the stable model semantics performs well for both systems; 
also, they each provide a decidable strategy. In these systems, negation as 
failure is investigated as an important feature, which is beyond this scope 
of the current paper. 

Being homogeneous approaches, DLP and SWRL share all of the 
predicate symbols between the rule component and the DL component. 
However, DLP has more expressivity restrictions, while SWRL is 
undecidable. KAON2 seems a novelty as to reasoning support for both 
OWL-DL and rules, reducing the DL knowledge bases to disjunctive 
programs. But such reduction pushes the task of DL reasoning completely 
into rule engines, not gaining the benefits from the existing tableaux DL 
reasoners. Also, a strong safeness condition, similar to the one in AL-log 
and r-hybrid KBs, is required by KAON2, where this restriction covers 
some of the common usages of DL expressivity. 



In this paper, our objective is to generalize the framework of AL-log, 
combining (any sublanguage of) a decidable DL system with Datalog, and 
provide less restricted hybrid rules with DL-query to both classes and 
properties. Although CARIN is similar in this respect, it requires some 
built-in coding into a DL reasoner, to obtain a complete entailment for 
hybrid rules; otherwise, anonymous individuals (e.g., introduced by 
existence restrictions) and uncertain assertions (e.g., derived from 
disjunction descriptions) in the DL component will just be kept inside of 
the primitive DL reasoner, with no access to rule engines. Aiming at 
developing a feasible strategy for the reasonable Semantic Web 
community by employing existing techniques as much as possible, we 
attempt to balance the trade-off of the expressivity and the reasoning 
power, and consider SHIQ  as our bottom line, whose practical and 

efficient tools are available (such as RACER [9]). Here, we adopt the weak 
safeness condition, and the problems introduced by the pure-DL variables 
in DL-queries, beyond the strong safeness condition, will be handled 
cautiously, provided that those expressive statements would be kicked out 
by the bottom line of SHIQ  DL. By defining independent properties, we 

clarify our current reasoning services: hybrid rules with DL-query to 
classes and independent properties in weak safeness condition are fully 
supported. 

As a result, this paper presents DatalogDL as a family of hybrid 
representation languages, where Datalog rules are parameterized by a 
specific DL language L, namely DatalogL, where L ranges from ALC  to 

SHIQ . On the theoretical side, we show a sound and complete algorithm 

for reasoning in DatalogDL, with the complexity of EXPTIME in any case of 
its parameterized DL language L. On the practical side, while keeping a 
DL reasoner unchanged, a typical rule engine (e.g., OO jDREW [4]) will 
be extended to incorporate hybrid rules, where the collection of DL-
queries, after a so-called constrained SLD-resolution for hybrid rules, will 
be submitted to an external DL reasoner (e.g., RACER). 

Next, DatalogDL will be introduced in section 2 with its syntax and 
semantics, while its reasoning will be described in section 3 together with 
proofs of soundness and completeness. Section 4 is meant to clarify 
technical problems of decidability underlying in hybrid rules, and finally 
conclusions are drawn in section 5. 



2. The DatalogDL Languages 

The matured languages, Datalog and DL, will be combined in a hybrid 
approach: DatalogDL is a family of languages, each of which parameterizes 
Datalog with some variety of DL-query. 

Consider the main layers of the DL family bottom-up [3], ALC  is a 

basic and simple language, permitting class descriptions via C D , 

C D , C¬ , .R C∀ , and .R D∃  where C, D are classes and R is a 

property. Augmented by transitive properties, ALC  becomes +R
ALC  in 

the following denoted by S . SI  is an extension to S  with inverse 
properties, followed by SHI  with property hierarchies. It becomes 

SHIF  if extended by functional restrictions, SHIN  if extended by 

cardinality restrictions, and SHIQ  if extended by qualified number 

restrictions. Support for datatype predicates (e.g. string, integer) leads to 
the concrete domain of D , and using nominals O  allows to construct 
classes from singleton sets. 

Assuming the usual definitions of DLs and rules are familiar to readers, 
we introduce the syntax and semantics for DatalogDL with no need for 
preliminaries. However, we adopt the so-called unique named assumption 
(UNA), a convention of Datalog not normally used by DLs. 

2.1 Syntax 

In order to preserve decidability, we fix the rule language to Datalog, so 
that terms must be variables or constants. Undecidable extensions to Horn 
logic, where terms can also be function applications, have been considered 
as well, but are beyond the scope of this paper. 

Given a specific decidable DL language L (here, it ranges from ALC  

to SHIQ ), we denote by DatalogL a subset of the function-free first-

order Horn logic language over an alphabet of predicates T PA A A= ∪ , 
with T PA A∩ = ∅ , and an alphabet of constants C. Note that, the 

predicates in PA  can be of arbitrary arity, while those of TA  should be 
either unary (also called class in DL) or binary (also called property in 
DL). 

Definition 1. A DatalogL knowledge base K is a pair (Σ,Π), where: Σ is a L-

based description logic knowledge base with predicates in TA ; Π is a Datalog 
program with DL-query to Σ, s.t. each hybrid rule r in Π is 

1 1 1 1( ) : ( ), , ( ) & ( ), , ( )m m n nh X b Y b Y q Z q Z−  



where X, Y1, ..., Ym are n-ary sequences of terms while Z1, ..., Zn are unary/binary 
sequences of terms, h(X) and bi(Yi) (1≤i≤m) are Datalog atoms with predicates 

in PA  while each qj(Zj) (1≤j≤n) is a DL-query  with a predicate in TA .  
Two safeness conditions are introduced for hybrid rules: 

Weak safeness: a variable occurring in X must occur in one of the Yi|Zj's. 
Strong safeness: a variable occurring in r must occur in one of the Yi's. 

For simplicity, in the rest of the paper “rule” means “hybrid rule”, while 
“Datalog rule” refers to a hybrid rule after deletion of the DL body. 
Besides, making rules strongly safe has been introduced in [17], that is: (1) 
For each rule r whose variable w does not occur in any of the Yi's, we add 
an atom O(w) to the Datalog body of r, where O  is a special predicate 
symbol, O PA∈ ; (2) For each constant c occurring in K = (Σ,Π), we add a 
fact O(c) to Π. 

As mentioned in section 1, we prefer to the weak safeness condition 
rather than the strong one. Below, pure-DL variables are defined. 

Definition 2. A pure-DL variable in a rule r is a variable that only occurs in one 
of the Zj's. 

Pure-DL variables lead to the violation of the strong safeness condition 
in cases where the weak safeness condition is obeyed. Note that, without 
the presence of pure-DL variables (i.e., under the strong safeness 
condition), our system appears to be Datalog extended with ground DL-
queries, which is a simple and straightforward extension to AL-log. 

According to the classical SLD-resolution with rules, non-pure-DL 
variables in (the DL body of) r will be bound to ground values, still leaving 
pure-DL variables free in the DL body. This situation is similar to 
conjunctive query answering in DL containing both constants and 
variables [12]. Instantiation (“Is an individual an instance of a class?”) can 
be reduced to KB unsatisfiability by transforming the query into a negated 
assertion. However, queries involving properties and variables are non-
trivial given that the negation of properties is not supported by most DLs. 
Hence, a candidate technique is folding (called rolling-up in [12]), whose 
objective is to eliminate properties from queries. 

Following this route, we encounter another problem: the simple 
procedure of folding cannot be applied to parts of the query that contain 
cycles, or where more than one arc enters a node that corresponds to a 
variable (e.g. P(u, x)∧Q(v, x)). Tree-shaped DL queries appear to be a 
solution to this problem by exploiting the tree model property of the DL 
[12]; however, the undecidability of an unrestricted combination of DLs 
with rules is exactly due to the fact that adding rules to DLs causes the loss 
of any form of tree model property [17]. Hence, strong safeness is imposed 
by DL-safe rules [17] and other approaches [6][7][19], while we define 
independent properties, which address the trade-off as mentioned above. 



Definition 3. A property P is said to be independent in a rule r, if no P 
occurrence shares any pure-DL variable with other property occurrences 
(including other P occurrences). 

Now, suppose r is a hybrid rule violating the strong safeness condition, γ 
being its head, α being its Datalog body, and β being its DL body. 
Specifically, it has the form γ:-α&β, where β contains a pure-DL variable 
x having a class description C (C can be the DL top class). We classify the 
possibilities for β into four cases: 

1. If x does not participate (as the first or second argument) in any property, 
then the DL-query of C(x) is reduced to checking whether C is nonempty. 

2. If there exists exactly one property occurrence of P relating x with a term u, 
then the DL-query of P(u, x)∧C(x) or P(x, u)∧C(x) becomes its folding 

result ∃P.C(u) or ∃P-.C(u), respectively. 
3. If there exists exactly two property occurrences of P and Q relating x with 

terms u and v, respectively, where P and Q, u and v can be identical, then the 
DL-queries become the results of following foldings (chaining can start with 
either u or v): 
(a) P(u, x)∧Q(v, x)∧C(x) becomes  

.( .{ } )( )P Q v C u
−∃ ∃  or .( .{ } )( )Q P u C v

−∃ ∃  

(b) P(u, x)∧Q(x, v)∧C(x) becomes  

.( .{ } )( )P Q v C u∃ ∃  or .( .{ } )( )Q P u C v
− −∃ ∃  

(c) P(x, u)∧Q(v, x)∧C(x) becomes  

.( .{ } )( )P Q v C u
− −∃ ∃  or .( .{ } )( )Q P u C v∃ ∃  

(d) P(x, u)∧Q(x, v)∧C(x) becomes  

.( .{ } )( )P Q v C u
−∃ ∃  or .( .{ } )( )Q P u C v

−∃ ∃  

4. If there exists three or more property occurrences, nested foldings might be 
employed by iterating case 3 chainings. 

Case 3 requires support by using nominals O  (i.e., classes with a 
singleton extension), as known from the DL literature, whose interaction 
with cardinality restrictions N and inverse properties I makes the 
complexity jump from EXPTIME (for SHIN ) to NEXPTIME (for 

SHOIN ). Although the operator {u} could be ‘simulated’ by its 
representative concept Cu [12], we still focus on cases 1 and 2 in this 
paper, not introducing different fresh concept names for different 
individuals. Another consideration is following the requirement of 
independent properties in a hybrid rule r, which is fulfilled by cases 1 and 
2, excluding cases 3 and 4 where the pure-DL variable x is a variable 
shared among properties in r. 

Proposition 1. For hybrid rules with independent properties according to 
case 2, the folding results are equivalent to the original DL-queries. 



Proof. For a set of closed formulas S and a closed formula F of a first 
order language, F is a logical consequence of S iff S∪{¬F} is 
unsatisfiable. Applied to logic programming, consider a Datalog program 
Π with a goal G of the form G1∧ ...∧Gn with variables y1,...,ym. 

Showing that the set of clauses Π∪{G} is unsatisfiable is exactly the same 
as showing that ∃y1 ... ∃ym (G1∧...∧Gn) is a logical consequence of Π. 
Note that DL languages are variable-free, where any free variables are 
hidden within ∀, ∃, etc., such as u∈∃P.C meaning u∈{x | ∃y. P(x, y) ∧ 

C(y)}. So, the folding results, e.g., ∃P.C(u), are equivalent to the original 
DL-queries, e.g.,  P(u, x) ∧C(x) with an independent property of P. 

2.2 Semantics 

The semantics of DatalogDL derives in a natural way from the semantics of 
its component languages, based on the first-order semantics. As follows, 
we define an interpretation and a model of our language DatalogL, 
including the satisfying conditions for ground Datalog atoms, ground DL-
queries, and hybrid rules. We direct readers to the description logic 
handbook [3] and the foundations of logic programming [16] for those 
related definitions. 

Definition 4. An interpretation I = (△, •I) of a language DatalogL consists of 

the following: (1) A nonempty domain △; (2) For each constant a in C, the 

assignment of an element in △, i.e.,aI ∈ △; (3) For each n-ary predicate p in the 

alphabet of predicates T PA A A= ∪ , the assignment of a relation of arity n over 
the domain △, i.e., a relation on △n. 

Definition 5. Let I be an interpretation for a language DatalogL, and for a given 
hybrid rule r, 
A variable assignment Vr w.r.t I is an assignment to each variable in r of an 
element in the domain of I. 
A term assignment Tr w.r.t I is defined: (1) Each variable is given its assignment 
according to Vr; (2) Each constant is given its assignment according to I. 

Definition 6. Let I be an interpretation for a language DatalogL. (1) A ground 

Datalog atom α = p(C), p∈ PA , is satisfied by I if CI ∈ pI, written as I |= α. (2) A 

ground DL-query β = q(C), q ∈ TA , is satisfied by I if CI ∈ qI, written as I |= β. 

(3) A hybrid rule r that 1 1 1 1( ) : ( ), , ( ) & ( ), , ( )m m n nh X b Y b Y q Z q Z−  is 

satisfied by I if, whenever Tr is a term assignment w.r.t I, such that Tr (Yi) ∈ bi
I 

and Tr (Zj) ∈ qj
I (1≤i≤m, 1≤j≤n) for every atom in the body of r, then Tr (X) ∈ 

hI for the head of r, written as I |= r. 
Definition 7. Let I be an interpretation for a language DatalogL. I is a model of 

the DatalogL knowledge base (Σ,Π), consisting of a Datalog program Π with DL-
queries to Σ, if I satisfies each hybrid rule in Π and I is a model of Σ according to 
the description logic L. 



3. Reasoning in DatalogDL 

Deviating from AL-log, the algorithm in CARIN is meant to test DL 
entailment but not satisfiability, resulting in forward chaining being 
employed as the strategy for the rule component. On the other hand, not 
concerned with the internals of DL's tableaux calculus, our DatalogDL 
family is in the tradition of AL-log, making use of the constrained SLD-
resolution, so that backward chaining plays the role of our principal 
reasoning strategy. 

3.1 Algorithm 

Below is the definition of an algorithm, in pseudo-code, for reasoning in 
DatalogL, where L is a DL language ranging from ALC  to SHIQ , 

restricted to independent properties in the DL body of hybrid rules under 
the weak safeness condition. 

Input: DatalogL KB K=(Σ,Π) and a query q. 
Output: TRUE if q is satisfied by K, FALSE otherwise. 
BEGIN: 

1. Apply SLD-resolution for q with Datalog rules. Use the resulting 
substitution to ground the hybrid rules (no assignment can be made to pure-
DL variables). If there is no such grounded version, then return FALSE. 
Otherwise, collect the disjunction of the obtained DL-queries, after folding 
in step-2 for each rule r having pure-DL variables left. 

2. For each pure-DL variable x in the rule r, where C is the class description of 
x, and P is an independent property relating x with a term u, output the 
folding results of ∃P.C(u) from P(u, x) ∧C(x), and of ∃P-.C(u) from P(x, u) 

∧C(x). 

3. Apply the DL tableaux algorithm to (the step-2 folding results of) the DL-

queries from step-1. We build a disjunctive DL class 1 mD D  such 
that its class descriptions Di are collected from the involved hybrid rules ri, 
where 1≤i≤m. For an individual a, the separate DL-queries Di(a) will be 

replaced by a single new one, 1 ( )mD D a . If the DL-query 

1 ( )mD D a  in addition to at least one of the remaining disjuncts are 

satisfiable in every model, then return TRUE, else return FALSE. 
END. 

The hybrid rules from the DatalogL KB K input obey the restriction of 
only having independent properties, as imposed by our definition of K, s.t. 
step-2 produces ground rules under the weak safeness condition. For rules 
fulfilling the strong safeness condition, step-2 will be skipped due to the 
non-appearance of pure-DL variables. That is, our algorithm introduces a 



method to re-establish strong safeness by eliminating all pure-DL 
variables, while a collection of ground DL-queries will be submitted to a 
DL reasoner for satisfiability checking. 

Instead of processing the rule bodies separately, step-3 evaluates them 
as a single disjunction. As a simple example consider a DL TBox with one 
axiom A B  as well as two hybrid rules that C(x) :- & A(x). and 

C(x) :- & B(x). In addition, there is an individual a in the DL top class . 
Given a query C(a), neither A(a) nor B(a) holds, while step-3 allows to 
finalize this query via ( )A B a  to which the DL reasoner replies ‘True’. 

3.2 Query Answering 

In general, a substitution  θ is a finite set of the form {X1/t1, ..., Xn/tn}, 
where Xi is a variable, ti is a term, and Xi  ≠ Xj for i ≠ j. A ground 
substitution is a substitution where ti is a constant for every i ∈ {1, ..., n}. 
Below is the technical details for query answering, using the notions 
inherited from AL-log but with extensions to DL properties. 

Definition 8 [Constrained SLD-resolution]. Let L be a specific DL language, 
K=(Σ,Π) be a DatalogL  knowledge base, q = α1,…,αs & β1,…, βt be a query to K 
where αi is a Datalog atom and βj is a DL atom, and r be a hybrid rule of the form 
α’ :- α’1,…,α’m & β’1,…, β’n . Suppose θ is the most general substitution such that 
α’θ = αkθ, where αk is one of {α1,…,αs}. The resolvent of q and r with 
substitution θ is the query q’=μ&ν, where μ=(α1,…,αk-1, α’1,…,α’m, αk+1,…,αs)θ 
and ν=(β1,…, βt, β’1,…, β’n)θ with simplification: if there are two constraints of 

the form t:C, t:D, they are replaced by the equivalent constraint t: C D . 
Definition 9 [Constrained SLD-derivation]. A constrained SLD-derivation for a 

query q0 in K is a derivation constituted by: 
1. A sequence of queries q0, q1, ..., qn  
2. A sequence of hybrid rules r1, ..., rn  
3. A sequence of substitutions θ1, ..., θn  

such that for each i ∈ {0, 1, ..., n-1}, qi+1 is the resolvent of qi and ri+1 with 
substitution θi+1. We call n the length of the derivation. 

A derivation may terminate with the last query of the form qDL = ∅ & 
β1,…,βl, which is called constrained empty clause. For strong safeness 
conditions, the constrained empty clause should have not any variable, 
while for weak safeness conditions, pure-DL variables appear as being 
existentially quantified in some of “β1,…,βl”. In this sense, we currently 
only consider independent properties in hybrid rules, with folding results 
fully supported by existing DL reasoners. 

Proposition 2. Let q0, q1, ..., qn be a constrained SLD-derivation for q0 in K. If I 
is a model of K such that I |= qi+1, then I |= qi, for i= 0, ..., n-1. 



Proof. It follows from the soundness of SLD-resolution as well as the fact that 
the simplification of constraints preserves validity. In particular, Proposition 1 
states the folding results are equivalent to the original DL-queries, also applying to 
the last query qn, i.e., the constrained empty clause qDL with pure-DL variables. 
Together with DL classical tableaux algorithms, it holds that 

K |- ∅ & C(x) iff CI is nonempty, where I is the model of K 
K |- ∅ & P(u, x) ∧ C(x) iff K |= ∃P.C(u) 

K |- ∅ & P(x, u) ∧ C(x) iff K |= ∃P-.C(u) 
Definition 10 [Constrained SLD-refutation]. A constrained SLD-refutation for a 

query q in K is a finite set of constrained SLD-derivations d1,...,dm for q in K such 
that, denoting as q0

i,...,qni
i the sequence of queries of the ith derivation di, the 

following conditions hold: 
1. For each i, qni

i is one of the form “∅ & β1
i,…,βli

i”, i.e., the last query of each 
derivation is a constrained empty clause. 

2. For each qni
i with pure-DL variables, obtain the folding results of qni

i. 
3. For each model I of K, there exists at least one i∈{1,...,m} s.t. I |= qni

i; we 
write this condition K |= disj(qn1

1, ..., qnm
m). 

We write K |- q, if there is a constrained SLD-refutation for q in K. 
Lemma 1. Let q be a ground query to a DatalogL knowledge base K = (Σ,Π).  

K |- q if and only if K |= q. 
Proof. With restriction to independent properties in hybrid rules, we present our 

proof based on the correctness and completeness of SLD-resolution and DL 
tableaux algorithms, similar as AL-log does. 

=>: Suppose K |- q, i.e., the ground query q has a constrained SLD-refutation. 
Then, for each derivation, if I is a model of K that satisfies the constrained empty 
clause qDL then it satisfies q (by repeated application of Proposition 2 with qDL as 
qn and q as q0); moreover, each model I of K satisfies at least one of the 
constrained empty clauses. Then each model of K satisfies q, that is K |= q. 

<=: Suppose K |- q fails, we have no constrained SLD-refutation for q in K, 
resulting from three possibilities according to Definition 10. 

1. If there is no constrained empty clause, then from the completeness of SLD-
resolution, we have the failure of K |= q. 

2. If there is no folding results of the constrained empty clause, then this query 
q is beyond our consideration, having a natural conflict with K |= q. 

3. If there is a model I of K, then for any derivation of q whose last query is a 
constrained empty clause (written as qni

i = ∅ & β1
i,…,βni

i), it makes I |= qni
i 

a failure. That is, there is a model I of Σ such that I |= β1
i,…,βni

i  fails. 
Characterized by I, we can construct another model J, and it can be shown -- 
by induction on the construction of J -- that J |= q fails, and K |= q fails. 

Referring to AL-log, DatalogL also provides a decidable procedure. Note 
that satisfiability of an ALC  class (without any TBox) is PSPACE-
complete; while the same problem is EXPTIME -complete, if a TBox with 
general inclusion axioms is present [3]. For the rule component, Datalog is 
data complete for P while program complete for EXPTIME [5]. As a result, 



the computational complexity of DatalogL is EXPTIME, where L ranges from 
ALC  to SHIQ . 

Theorem 1. Query answering in DatalogL is a decidable problem in EXPTIME. 

4. Re-obtaining Decidability 

As pointed in CARIN, the problem of determining whether K |= q is 
undecidable, where K is a DatalogL knowledge base with recursive 
Datalog rules, and its L-based DL component allows arbitrary inclusion 
statements while L itself includes only the constructor ∃P.C. In short, the 
recursive Datalog rules extended with cyclic TBox including only one DL 
constructor of ∃P.C will destroy decidability, while ∃P.C is the most basic 
DL constructor, introduced first by the simpler ALC  DL. This theorem 
has been proved in [14], by reducing the halting problem of a Turing 
machine to the entailment problem of K. Below, we rewrite them: 

- DL ABox: integer(1) 
- DL TBox: integer  ∃succ.integer 

- rule-primitive: lessThan(x, y) :- & succ(x, y). 
- rule-recursive: lessThan(x, y) :- lessThan(z, y) & succ(x, z). 
Below, we identify two ways of restricting the expressivity in the 

knowledge base as to re-obtain a decision procedure, where the first one is 
in the view of DL and the second is of rules: 

(1) To remove some DL constructors: Not obtaining the benefits from 
the current mature DL techniques as much as possible, we backtrack to the 
systems of nearly 10 years ago -- actually, CARIN has a (maximal) 
decidable sublanguage, namely CARIN-MARC, which includes the 
constructors , , ( ), .nR R C≥ ∃   and negation on primitive classes, with 

the terminology consisting of acyclic class definitions (i.e., no inclusions 
or property definitions). DLP has another solution: it requires that the 
existential DL constructor of ∃P.C can only occur on the left hand side of 
an inclusion axiom, that is, it allows the form of being .P C D∃  but 

disallows that of .D P C∃ . 

(2) To enforce stronger safeness conditions: Generally speaking, rules 
are required to be safe, i.e., a variable that appears in the head must also 
appear in the body -- we call it as the weak safeness condition in this 
paper, and the above undecidable encoding is a case of weakness. As 
mentioned in Table 1, CARIN, DLP and SWRL obey this weak safeness, 
but either CARIN or DLP has its respective restrictions under other 
considerations as to obtain decidability, while SWRL admits itself 
undecidable. For the other systems, strong safeness conditions have to be 



emphasized, such as r-hybrid KBs and KAON2 (demanding that “x” must 
occur in “lessThan(z, y)” given our above KB example); moreover, AL-
log only permits DL-query to classes without admission to DL properties. 
Regarding our proposal of DatalogDL, weak safeness conditions are fine, 
but the above rules will obtain such DL queries as “succ(x, z), succ(z, y)” 
provided by “lessThan(x, y)” with length of two steps. Here, no 
independent properties are guaranteed, due to sharing the pure-DL variable 
of “z”, s.t. a folding result like ∃succ.∃succ.{y}(x) will be submitted to a 
DL reasoner. Considering that it lacks full provision to the nominals O  in 
existing DL systems, and our framework conforms to the available 
techniques, we exclude the above hybrid rules with requirement of 
independent properties. Thus, we also define some expressivity restrictions 
to avoid undecidability, driven by considerations to existing DL reasoners 
rather than strong safeness conditions. Actually, for simplicity, we deal 
little with the recursive rules in our prototype system [1], but having been 
scoped in our ongoing work, this aspect will be paid more attention. 

5. Conclusion 

AL-log has combined Datalog with ALC , regarded as DatalogALC in our 
proposal. To provide an efficient tool in practice and a sound and complete 
system in theory, our DatalogDL concerns any sublanguage L of SHIQ  

as its parameter, namely DatalogL, and the practical SLD-resolution and 
DL tableaux algorithms act well in an integrated framework, beyond what 
AL-log has done. Like CARIN, both class and property predicates are 
allowed in DL-queries, with weak safeness conditions instead of strong 
ones. And the unique requirement is the admission of independent 
properties in hybrid rules, which conforms to support for reasoning in 
existing DL reasoners. Besides, different from CARIN, which prefers to 
forward chaining for modeling an entailment completion, our prototype 
system [1] performs query answering in backward chaining with 
improvements to a rule engine (e.g., OO jDREW), making the hybrid rules 
processable, while keeping the DL reasoner (e.g., RACER) unchanged to 
act as an external service. And we assume such adaptation is more 
straightforward to users that the non-trivial DL algorithms would be 
regarded as a black box. 

It should be pointed out how our folding technique is related to ‘rolling-
up’ in [12]. There, (conjunctive) queries to the ABox of a DL knowledge 
base, perhaps containing variables in DL classes or DL properties, can be 
rewritten s.t. query answering is reduced to the problem of knowledge base 
satisfiability. Here, this kind of technique is used to bridge the gap 



between query answering in hybrid rules and testing satisfiability in the 
DL component. Furthermore, the usage of our “independent properties” to 
some extent corresponds to a particular case of tree-shaped (or acyclic) DL 
queries as described in [12].  

We are currently investigating DL query languages in support of hybrid 
rules on the practical level. The expressivity and reasoning power of 
DatalogDL were explored with a suite of previous examples from AL-log, 
CARIN, DL-safe rules, and our use case RuleML FOAF [15]. This suite 
covers much of the expressiveness currently discussed for hybrid rules, 
e.g. in the W3C RIF WG [20]. The entire suite is implemented in our 
hybrid rule engine [1] coupling OO jDREW with RACER. 

For the serialization of hybrid rules, the RuleML <Implies> element 
with its <head> role for h(X) and its <body> role for the bi(Yi) can be 
extended with a <neck> role for the qj(Zj). The neck of a rule may also be 
generally used to query other (non-DL) external decidable provers. 

In this paper, we enriched rules with information from ontologies, but 
not vice versa. Sharing common predicates in both components is 
attractive, while the problems it causes, such as decidability, are open 
challenges for the Semantic Web. Also, Datalog¬∨ was investigated in dl-
programs and r-hybrid systems as a more expressive rule component; such 
rules with disjunction and negation are also considered in our future work. 
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