
Publisher’s version / Version de l'éditeur:

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez

la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous
n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the
first page of the publication for their contact information.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

Ed-MEDIA2005: World Conference on Education Hypermedia and
Telecommunication [Proceedings], 2005

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

NRC Publications Archive Record / Notice des Archives des publications du CNRC :
https://nrc-publications.canada.ca/eng/view/object/?id=515efd30-8532-4328-8048-5e9dfe625640

https://publications-cnrc.canada.ca/fra/voir/objet/?id=515efd30-8532-4328-8048-5e9dfe625640

NRC Publications Archive
Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version.
/ La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version
acceptée du manuscrit ou la version de l’éditeur.

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Design Instrumental Web Services for Online Experiment Systems
Yan, Y.; Liang, Y.; Du, X.; Saliah-Hassane, H.; Ghorbani, A.

National Research

Council Canada

Institute for

Information Technology

Conseil national

de recherches Canada

Institut de technologie

de l'information

Design Instrumental Web Services for

Online Experiment Systems *

Yan, Y., Liang, Y., Du, X., Saliah-Hassane, H., Ghorbani, A.
June 2005

* published at Ed-MEDIA2005: World Conference on Education

Hypermedia and Telecommunication. Montreal, Québec, Canada.

June 27-July 2, 2005. NRC 48221.

Copyright 2005 by

National Research Council of Canada

Permission is granted to quote short excerpts and to reproduce figures and tables

from this report, provided that the source of such material is fully acknowledged.

Design Instrumental Web Services for Online Experiment Systems

Yuhong Yan

NRC-IIT, Fredericton, NB, Canada

Yuhong.yan@nrc.gc.ca

Xinge Du

Faculty of Computer Science, UNB, Canada

Xinge.Du@unb.ca

Hamadou Saliah-Hassane

Télé-université, Montreal, Canada

saliah@teluq.uquebec.ca

Yong Liang

Faculty of Computer Science, UNB, Canada

Yong.liang@unb.ca

Ali Ghorbani

Faculty of Computer Science, UNB, Canada

ghorbani@unb.ca

Abstract: Web services add a language-independent layer for distributed applications. It is well

motivated to use Web Services for e-science and e-learning applications, where resources-sharing

is a demand. Online experimentation is one of the e-learning applications. Web Services have

intrinsic weaknesses on latency and scalability due to more transport layers used. This paper

presents our experiences in using Web services for prototyping a service-oriented architecture for

Online Experiment Systems (OES). We present the methodology to wrap the functions of

experimental devices into web services and the advance features the instrument web services

should have. We benchmark the performance of this system when using SOAP as a wire format

for Web Services. Our results show the degradation of the performance due to a large amount data

to transfer. We present the solutions to optimize the performance.

1. Introduction

Web services are the latest technology for distributed applications. The services are provided by software

components over the Internet. The services are invoked by sending eXtensible Markup Language (XML) based

Simple Object Access Protocol message (SOAP) to the remote components. Web services rely on internet protocols,

such as Hypertext Transfer Protocol (HTTP), Blocks Extensible Exchange Protocol (BEEP) and XML technology to

ensure the interoperability of the components on different platforms and/or implemented in different programming

languages. W3C accepts the following standards: SOAP is a message-based communication for component

interaction (W3C, 2004a); Web Service Description Language (WSDL), component interface definition (W3C,

2004b), and; Universal Description, Discovery Integration (UDDI.org, 2004), service discovery and integration

(UDDI.org, 2004).

In the scope of e-learning, the online experiment system is to provide services for the students to conduct

experiments via the Internet. Typically the students can operate remote instruments via GUI of the online

experiment system. Online experiment system is a typical distributed application. Web services are replacing the

classic client/server architecture to be the architecture of online experiment systems. The heterogeneous resources,

such as instruments, testing devices, or one entire experiment, which are scattered over the Internet, can be wrapped

as individual web services. Through interfaces in UDDI, these services can be discovered and integrated. At the

runtime, the WSDL determines how the arguments are transferred to invoke the services. The online experiment

system is able to conduct the operations to discover and integrate these services automatically. This is seamless to

the users so that they would not notice that the instruments and devices are from different physical locations. The

Internet is a bus connecting all these services. Service providers can charge for services provided based on user

requests.

Although Web Services have strong advantages on interoperability, Web Services have intrinsic weaknesses on

latency and scalability due to more transport layers used. For online experimentation, this would cause problems. In

this paper, we present our experiences in using web services for prototyping a service-oriented architecture for

Online Experiment Systems (OES). We present the methodology to wrap the functions of experimental devices into

web services. We propose some advance features the instrument web services should have. We then benchmark the

performance of this kind of system which using SOAP as a wire format for Web Services. Our results show the

degradation of the performance due to a large amount data to transfer using SOAP. We present a set of solutions to

optimize the performance.

This paper is organized as following: section 2 presents the general framework; section 3 designs the web services

for instrument services; section 4 benchmarks web services for this application; section 5 presents the optimization

methods to improve the performance; and section 6 is the conclusion.

2. The Web Service-based Framework for Online Experiment System

An Online Experiment System (OES) uses the scattered computational resources and instrument services on the

networks for experiments. The online laboratory system we present here is a web enabled distributed system. It has

two fold meanings: the user accesses the online experiment system via the web interface; the heterogeneous

resources and devices interoperate with each other via Web services standards. The goals of this framework are: 1)

sharing the experimental resources among different labs via the Internet; 2) increasing the ability of computation and

sharing data among different labs, and; 3) enabling users to access online labs any time and from anywhere either

for self-learning or collaborative laboratory work sessions.

UDDI ServerUDDI Server

Online Lab

System

Web

Server

Service with WSDL ports

12

3

SOAP
Messages

Figure 1: Using web services as the framework for an

online experiment system

The above figure (Fig. 1) shows how the system using web services works. Its front-end is web-based, i.e. a web

server is used to render the GUI interface (see the next section). Its back-end has the functions to manage the users’

information and the operations of the experiments. Most importantly, the backend can use scattered resources on the

Internet for one experiment. For example, it can use instruments and devices from different online laboratories for

one experiment, and it can use heterogeneous computational resources to process the data generated from the

experiment. The user uses web browser to connect to the OES. The OES uses remote services based on Web

Services technology. The online experiment and the remote services use WSDL to describe the operational

interfaces.

Web Services serve as the transport layer of the system. SOAP messages are sent to invoke a service. These

protocols are widely accepted by different operating systems and implemented by different programming languages.

Therefore, the interoperability is ensured. To make the system work, a service provider first registers its services in a

registry server (step 1 in Fig. 1). Web services use UDDI server, while Grid Services use Index Server. We expect

the two standards will be merged. Otherwise, our system will accept both standards. A service requester searches the

registry server and gets all the potential resources. It selects the proper services based on its own criteria (step 2).

The service requestor sends SOAP messages directly to the service provider to invoke the remote service (step 3).

Grid Container

Service broker

Web service

engine

GSH/GSR

I
N

T

E

R

N

E

T

Sun Solaris

Clusters

HPC

Instruments

Interconnects
PXI, VXI, RS232,

TCP/IP

RTLab

Qnx real time

System

Clients

HTTPS

Hosting environnement

LAN

Planer/

Scheduler

W
E

B

S
E

R

V

E

R

Business Layer

App Server

Web Service

WSDL

Middleware

Jini service

Computing resources

Network connections

Data

Devices

Devices

Devices

I

N

T

E

R

N

E

T

BPEL EngineLearning Scenarios

Srvs lookup

Service

Objects

LDAP

Registration mgr

Figure 2: Architecture of the online experiment system

In Figure 2, the block below the “hosting environment” is the online laboratory system. It uses a web server for the

front-end representation. The back-end has three layers. The top layer is the logic layer, where the learning scenarios

are defined and the processes are managed. The learning scenarios are defined in four aspects (Paguette, 1999):

learning objects, a pedagogical model, a media model and distribution. Among those, the pedagogical model defines

the process of a course. The process is translated directly into Business Process Execution Language (BPEL)

(Andrews, et al., 2004). The BEPL engine is a tool to monitor and control the process automatically. The BEPL

engine is able to automatically invoke remote web services. The activities in a learning scenario may need remote

web services. The Service Broker determines if the services come from local services (e.g. the blocks under the

“LAN”), or remote external services (e.g. the blocks of “jini services”, “web services”). Service Broker knows the

different protocols the remote services use. For Grid services, it sends the requests to the GSH/GSR (Grid Service

Handler/Grid Service References) in the Grid Container. GSH/GSR is a mechanism in Grid Service to get the

reference of the remote objects and forward the requests to the remote objects. GSH/GSR is able to invoke the

services either in middleware, (e.g. jini), or in web services. Service Broker can also invoke web services without

the GSH/GSR interface by sending the request to the service objects in the application server (the bottom layer).

Service Broker regularly calls the Service Lookup (“srv lookup” in Figure 2) and updates the local LDAP with the

results. Registration Manager (“Registration Mrg” in Figure 2) helps to convert information from a service registry

into LDAP. The bottom layer is the Application Server layer. The Application Server provides flexible mechanisms

to manage the Service Objects and interface to the Web Service Engine. Service Objects are some software

components that process the data from remote web services. See the next section for one example of service

implementation. The Web Service Engine sends the SOAP message to invoke the remote web services. This

framework works with the computing resources using Grid protocols, software components using middleware, and

web services components. Thus we think it covers all the resources needed for online experiments. As Grid Services

will merge with Web Services in the future, we believe that the two lower layers in Figure 2 will, at some point, be

united into one layer.

3. Design an instrument web service

An instrument service is a basic service for OES. Most of the efforts in this paper are to present the methodology to

wrap the instrument service into a web service, and to discuss the performance of using Web Services for this

application.

3. 1 Design the WSDL Interface for the Instrument Service

The WSDL file describes the operations on the instrument and the arguments to invoke the operations. The

commands to the instrument are encoded as SOAP messages. The results from the instruments are encoded as well

as SOAP messages. The WSDL file can be generated from implementation code using some automatic tools. Since

we do not limit our methodology to a specific programming language, we do not talk about APIs. Instead, we talk

about the interfaces defined in WSDL.

In order to invoke an instrument service, we need to know at least four kinds of information: 1) the input parameters

to operate the instrument; 2) the output results from the instrument; 3) the information about the availability of the

instrument; and 4) the xml file to describe the instrument panel. We also define two optional interfaces: 5) the

metadata complaint to LOM standard; and 6) the quality of service (QoS). Though the operational interfaces are not

necessary information to operate the instrument, they provide important information for service discovery and

integration.

3.1.1 Input/output Interfaces

Input/output interfaces are determined by the API to operate the instrument. There is automatic tool to map the

input/output arguments into WSDL descriptions. Here we demonstrate how it works using a type of oscilloscope

from National Instrument as an example.

An oscilloscope is used to monitor a waveform from an arbitrary waveform generator. The set of control parameters

are “amplitude”, “cycles”, “phase” and “sampling rate”. The output is a double array which represents the

waveform. The snippet of the WSDL to describe the input/output interfaces is in Table 1. The operation

getWaveform is an in-out type service, which means it receives the input arguments embedded in SOAP message

and immediately returns the results in response SOAP message. The request SOAP message is defined in the

message named getWaveformRequest. It takes in three double typed parameters which are correspondent to

“amplitude”, “cycles”, and “phase” respectively. The fourth parameter is int typed which is correspondent to

“sampling rate”. The response SOAP message is defined in the message named getWaveformResponse. It defines a

two dimension array of doubles.

< ?xm l version= "1.0" encoding= "UTF-8"?>

< wsdl: definit ions ……>

……

 < ! - -define the response m essage - ->

 < wsdl: m essage nam e= "getWaveform Response">

 < wsdl: part nam e= "getWaveform Return" type= " im pl: ArrayOf_tns2_double" / >

 < / wsdl: m essage>

 < ! - -define the request m essage - ->

 < wsdl: m essage nam e= "getWaveform Request">

 < wsdl: par t nam e= "am p" type= "xsd: double" / >

 < wsdl: par t nam e= "num c" type= "xsd: double" / >

 < wsdl: par t nam e= "phase" type= "xsd: double" / >

 < wsdl: par t nam e= "sam pr" type= "xsd: int " / >

 < / wsdl: m essage>

 < ! - -define the operat ion - ->

 < wsdl: operat ion nam e= "getW aveform ">

 < wsdl: input nam e= "getW aveform Request ">

 < / wsdl: input>

 < wsdl: output nam e= "getW aveform Response ">

 < / wsdl: output>

< / wsdl: operat ion>
……

</wsdl:definitions>

Table 1: the snippet of WSDL to operate an oscilloscope

3.1.2 Interfaces of Other Information

The other information about an instrument, such as the availability, LOM information, and QoS can be defined in

XML files. In the WSDL, we define the operations to download the xml files. These operations are out typed

operations (i.e. only have response SOAP message). Table 2 displays these operations in WSDL.

Next, we show what information is defined in the xml file. IEEE LOM standard is to describe a learning object

(IEEE, 1999). But when using it to describe an instrument, the vocabulary is not the same. Some information

especially for instruments, such as availability, is not in LOM standard. So we use the extended LOM standard for

experimentation context developed in (Bagnasco, Chirico, and Scapolla, 2002). The availability is important for

booking the instrument. We have a separated operation just to get this information. The user can list all the available

timeslot during a time interval for a week or so, or query if the instrument is available for a specific minimal time

unit.

< ! - -define the operat ion - ->

< wsdl: operat ion nam e= "getMetaData ">

 < wsdl: output nam e= "getMetaDataResponse">

 < / wsdl: output>

< ! - -define the operat ion - ->

< wsdl: operat ion nam e= "getAvailabilityI nfo">

 < wsdl: output nam e= "getAvailabilityResponse ">

 < / wsdl: output>

< ! - -define the operat ion - ->

< wsdl: operat ion nam e= "getQoSI nfo">

 < wsdl: output nam e= "getQoSResponse ">

 < / wsdl: output>

< / wsdl: operat ion>

Table 2: the operations to get metadata information in WSDL

QoS information is accumulated from history, and can become an important selling and differentiating point of web

services with similar functionality. We record the successful rate to connect to the instrument, the response time to

the instrument, and customers rating to use its service. QoS information is used when selecting available instruments

for an experiment. The higher QoS of the instrument service, the more likely the OES selects this instrument or

recommends it to the user to use.

The information about the panel of the instrument is also defined in xml. Because it involves interpret and renders

the information in GUI, we need more work on it. The next section will deal with the GUI only.

3.2 Design the Web GUI for the Instrument

An instrument has its individualized panel. In the Learning Object Repository Network (LORNET) project, we

studied how to display the panel as a java distributed application (Fattouh and Saliah, 2004). DMM is a XML

schema to define the syntax of an instrument panel. An XML file compliant to the DMM is a description of the

panel. In (Fattouh and Saliah, 2004), the XML file is parsed by JAXB, and its components are mapped to java AWT

components. The system is implemented using Jini technology. The XML is downloaded from the Jini registration

server and displayed on client side as a Java application. The user can operate the remote object from the GUI

interface. In (Saliah, et al., 2005), we present a similar method to (Fattouh and Saliah, 2004). Instead of using AWT

classes, we map the panel objects to JSP objects at the server side. The client just needs to require a normal web

page, instead of using any jini code. Therefore, we have a thin client. If we need to show arbitrary shapes, such as

waveform, it is a little bit more complex. We can have two options. If we want to achieve zero installation at the

client side, i.e. no code to be installed, we can generate the jpg image for the waveform. It is a matured technology.

Or if we allow the client side to use applets (for java) or activeX control (for windows platform), we have a thicker

client. It needs very simple coding.

3.3 The Advanced Requirements for Instrument Services

Unlike most existing web services whose main propose is to provide information, the instrument web services

involve remotely operating real devices in real time. Improper design of the web services can cause the damage of

the instrument, false measurement and control, which fails the online experiment. Therefore we present the special

requirements for the instrument web services. By using proper software technologies, these requirements can be

satisfied.

3.3.1 Stateful Service

A stateful service keeps client specific state between method invocations. There are two scenarios which need a

stateful service: 1) when it needs to record the operations from one user and control how the user can use the

service; 2) when there is a series of actions that data needs to be recorded and transferred between the actions. Since

we prefer to use open source software, our choices are between java serlvet and Enterprise Java Bean (EJB). EJB is

more scalable and has more inherited functions, such as transactions and persistence, than java servlet, while servlet

is lighter and faster. So except some necessary situation, our first choice is serlvet.

3.3.2 Server Side Reliability Mechanisms

The latency of the network can cause the difficulties in real-time control and measurement. The lost of the network

connections can cause the lost of control of the remote instruments. Sometimes it can even cause physical damages.

In the context of e-learning, we do not deal with critical tasks, such as controlling nuclear power plant. Normally the

experiment scenarios can tolerate the delay of Internet traffic. Moreover, normally an instrument has protection

mechanisms to prevent it to be damaged by mal-operations. But in order to improve the effectiveness of the online

experiments, some extra mechanisms are designed to detect the mal-operations and the lost of connections. These

mechanisms can be tuned according to the requirements of a specific experiment. With these mechanisms, the

instrument service is more robust and safe to use.

 Time out mechanism. When the user does not give further order, the service cuts the connection.

 Attach time stamp when transferring signal. The time stamp marks the time point of event. The measurement

can happen after the event. The time stamp tells the true time of an event.

 Trend predication for some critical variables. The predication can be used to shut down the device when the

variables go out of norm values; or it can be used to adjust the control strategies.

 Proactively response to exceptions. These exceptions can be both hardware or software exceptions.

We need to look into the specific experiments to design these mechanisms.

3.3.3 Reliable Communication

HTTP is the commonly used transport protocol for Web Services. It is a stateless data-forwarding mechanism which

brings two problems to online experiments: no guarantee of packets being delivered to the destination; no guarantee

of the order of the arriving packets. If using SOAP message to transfer data to a data processing service, reliable

communication is required (Foster, Kesselman, Nick, and Tuecke, 2004). For real-time control, it is often better to

deal with some loss, errors or congestion than to try to adjust for them (Salzmann, and Gillet, 2002). In (Salzmann,

and Gillet, 2002), the latest data of the sensors are transported instead of re-send the old data. When reliable

communication is required in some scenarios, we can use reliable communication protocols such as HTTPR and

BEEP instead of HTTP. Another solution is to use asynchronous message services. Message queuing products like

Java Messaging Service (JMS) or IBM MQSeries can be used to improve reliability, but at the cost of response time.

4. The performance Issues for Web Services for Online Experiment

The trade-off of the high interoperability of Web Services is the lower performance. Web Services have intrinsic

weaknesses on performance due to two main reasons: more transport layers than middleware; the overhead of using

SOAP. Other research explains SOAP efficiency. In this paper, we evaluate SOAP in the context of instrument web

services. We benchmark the SOAP efficiency in this context and propose the solutions to improve the performance.

In our system architecture, there are four tiers: the client, the online lab server, the remote web server for the

instrument web service, and the remote instrument. The path of transport is as following: client online lab server

 web service server instrument. On each step, there are some operations, such as buffering, encoding and

decoding. Among those, Web Services are only used between the online lab server and the remote web server for the

instrument service. Therefore the following analysis concentrates only in this segment.

4.1 The Efficiency of SOAP Message

The SOAP messages are used to transport data. SOAP messages have the XML format. The data are tagged

according to its semantic meaning. Here we analyze the efficiency of SOAP payload. We use the oscilloscope as an

example. Given different sample rates, the waveform is represented in different amount of data. In Table 3 is the

efficiency of the SOAP payload.

Sampling rate (#/cycle) 10 100 500 1000 5000

Pure data (bytes) 191 1,964 9,824 19,632 98,182

Response message (bytes) 3,071 25,085 123,745 247,054 1,241,604

Ratio: data/message 6.22% 7.83% 7.94% 7.95% 7.91%

Table 3: The efficiency of SOAP payload

We can see that the increasing of the SOAP response message is linear to the increasing of the sampling data (which

is linear to the sampling rate). In other word, when the sampling rate increases to k times, the size of the response

message increases to k times. The ratio of the data in the SOAP message is pretty low, which is only about 7.9%.

See 4.3.1 to know how to improve SOAP efficiency.

4.2 Latency

This benchmark test aims at determining the roundtrip time for a request. The time involves marshalling the SOAP

message and binding it to the HTTP protocol at the request side and vice versa on the service side. This test is taken

place when the instrument web service and the OES are the same host, i.e. the delay by Internet is not considered.

Table 4 shows the latency of request and response SOAP messages. For the request SOAP message, the payload is

the same, so the latency for request messages can be taken as the same, within the measurement error. The latency of

the response message is increasing when the data amount is increasing. The increasing ratio is close to 1.0.

Sampling rate (#/cycle) 10 100 500 1000 5000

Request latency (ms) 230 ms 221 ms 200 ms 201 ms 201 ms

Response latency (ms) 81 ms 230 ms 471 ms 861 ms 3294 ms

Total latency (ms) 291 ms 451 ms 671 ms 1062 ms 3495 ms

Table 4: The latency of SOAP message

4.3 Optimize the SOAP Efficiency

Currently, people spend a lot of effort to improve the performance of SOAP services. In this section, we present

some of the solutions that are workable for our application. We did not finish testing these methods when we wrote

this paper. So the effectiveness of the proposed methods is not included in this paper.

4.3.1 Using Binary Encoding to Improve the Transport Efficiency

Using binary code violates the initial motivation to use textual XML representations for SOAP message. But it is

one of the possible ways to improve the SOAP message efficiency. ASN.1 (Abstract Syntax Notation One) (Sandoz,

et al, 2003)(Dubuisson, 2004) is a well-established standard that transports the mutually agreed data schema first

and then transports the binary data. Fast Web Services is the term that specifies ASN.1 SOAP messages exchanges

(encoded using the ASN.1 Packed Encoding Rules, PER) which provide a higher transaction processing rate) than

use of the character encoding of XML data.

4.3.2 Persistent Connection

This function of HTTP protocol can be turned on so that the connection between client and server can be kept alive.

This saves the time to establish connection every time. For HTTP 1.0, the persistent connection works only if there

is no proxy between the client and server. For HTTP1.1, the persistent connection can be used with more than one

proxy between a client and a server.

4.3.3 Disable the Nagle Algorithm

One more issue is the Nagle Algorithm's effect. Nagle Algorithm makes TCP wait for the sender process to fill up

an IP packet before sending the data (Litou, 2002). It prevents network congestion. This is the major delay factor

when sending a SOAP message (Elfwing, Paulsson, and Lundberg, 2002). It's possible to disable Nagle on both

server and client side to get considerable improvement for the response time. But it would generate traffic

congestion since repeated small packets will be sent out. However, it's recommended to disable Nagle Algorithms in

our case.

4.3.4 Better Pipelined Connection

HTTP 1.0 is not well functioning with TCP protocol. For example, the TCP handshake causes delays, and the Nagle

algorithm in combination with the TCP delayed ACK (the acknowledge response in TCP) causes unnecessary delays

(Litou, 2002). HTTP1.1 attempts to solve these problems. The result shows that HTTP1.1 can reduce the RTT

(Round Trip Time) to half of HTTP1.0 implementation (Nielsen, et al, 1997).

5. Conclusions

Web services can be used as the middleware to architect the online experiment systems. The trade-off of its high

interoperability is its low performance. But SOAP services can be optimized to meet the requirements of this

application. Web services will be used in this context, as well as other e-science applications.

References

Andrews, T., F. Curbera, et al., (2004), Specification: Business Process Execution Language for Web Services Version 1.1,

http://www-128.ibm.com/developerworks/library/ws-bpel/

Bagnasco, A., M. Chirico, A. M. Scapolla, (2002) XML Technologies to Design Didactical Distributed Measurement

Laboratories, IEEE IMTC2002, Anchorage, Alaska, USA.

Dubuisson, O., (2004), ASN.1: A Powerful Schema Notation for XML and Fast Web Services,

http://asn1.elibel.tm.fr/en/xml/ASN1-XML-FastWebServices.htm

Elfwing, R., U. Paulsson, and L. Lundberg, (2002), Performance of SOAP in Web Service Environment Compared to CORBA,

Proceedings of the Ninth Asia-Pacific Software Engineering Conference (APSE’02), 2002, IEEE.

Fattouh, B. and H. H. Saliah, (2004), Model for a Distributed Telelaboratory Interface Generator, Proceedings of Int. Conf. On

Engineering Education and Research, Czech Republic, June 27-30, 2004.

Foster, I., C. Kesselman, J. M. Nick, S. Tuecke, (2004), The Physiology of the Grid: An Open Grid Services Architecture for

Distributed Systems Integration, http://www.globus.org/research/papers/ogsa.pdf.

IEEE Learning Technology Standards Committee, (1999), IEEE 1484 Learning Objects Metadata (IEEE LOM),

http://www.ischool.washington.edu/sasutton/IEEE1484.html.

Litou, M., (2002), Migrating to Web Services – Latency and Scalability, Proceedings of Fourth Int. Workshop on Web Site

Evolution (WSE’02), 2002, IEEE.

Nielsen, H., J, Gettys, A. Baird-Smith, E. Prud'hommeaux, H. Lie, and C. Lilley, (1997), Network Performance Effects of

HTTP/1.1, CSS1, and PNG, http://www.w3.org/Protocols/HTTP/Performance/Pipeline.html, June 1997.

Paquette, G., (1999), Meta-knowledge Representation for Learning Scenarios Engineering, Proceedings of AIEd'99, Le Mans,

France, July, 1999.

Saliah-Hassane, H., D. Benslimane, I. De La Teja, B. Fattouh, L. Do, P. Gilbert, M. Saad, L. Villardier, Y. Yan, A General

Framework for Web Services and Grid-Based Technologies for Online Laboratories, iNEER Conference for Engineering

Education and Research, March, 2005, Tainan, Taiwan. (Invited Paper)

Salzmann, C., and D. Gillet, (2002), Real-time Interaction over the Internet, Proceedings of IFAC2002.

Sandoz, P., S., Pericas-Geertsen, K. Kawaguchi, M. Hadley, and E. Pelegri-Llopart, (2003), Fast Web Services,

http://java.sun.com/developer/technicalArticles/WebServices/fastWS/.

UDDU.org, (2004), UDDI homepage, http://uddi.org/pubs/uddi_v3.htm

W3C, (2004a), SOAP Specification, http://www.w3.org/TR/soap12-part1/

W3C, (2004b), WSDL Specification, http://www.w3.org/TR/wsdl

