
Publisher’s version  /   Version de l'éditeur: 

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la 

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez 
pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at 

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the 
first page of the publication for their contact information. 

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

Proceedings of the 1st ACM International Workshop on PerformanceEvaluation of 
Wireless Ad Hoc, Sensor, and Ubiquitous Networks (PE-WASUN 2004), 2004

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE. 

https://nrc-publications.canada.ca/eng/copyright

NRC Publications Archive Record / Notice des Archives des publications du CNRC :
https://nrc-publications.canada.ca/eng/view/object/?id=4ddd9139-ce49-484a-8f58-1afbeadfe4a2

https://publications-cnrc.canada.ca/fra/voir/objet/?id=4ddd9139-ce49-484a-8f58-1afbeadfe4a2

NRC Publications Archive
Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. / 
La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version 
acceptée du manuscrit ou la version de l’éditeur.

Access and use of this website and the material on it  are subject to the Terms and Conditions set forth at

State Based Key Hop Protocol: A Lightweight Security Protocol for 

Wireless Networks
Mitchell, S.; Srinivasan, K.



National Research
Council Canada

Institute for
Information Technology

Conseil national
de recherches Canada

Institut de technologie
de l'information  

 
 
 
 

 
 

State Based Key Hop Protocol: A Lightweight  
Security Protocol for Wireless Networks * 
 
Mitchell, S., and Srinivasan, K. 
October 2004 
 
 
 
 
 
 
 
 
 
* published in the Proceedings of the 1st ACM International Workshop on Performance 
Evaluation of Wireless Ad Hoc, Sensor, and Ubiquitous Networks (PE-WASUN 2004). 
Venice, Italy, pp. 112-118. October 4, 2004. NRC 47461.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Copyright 2004 by 
National Research Council of Canada 

 
Permission is granted to quote short excerpts and to reproduce figures and tables from this report, 
provided that the source of such material is fully acknowledged. 

 

 



State Based Key Hop Protocol: A Lightweight Security 
Protocol  

For Wireless Networks 
Stephen Michell and Kannan Srinivasan 

National Research Council 
Sydney, Nova Scotia, Canada 

Email: {stephen.michell, kannan.srinivasan}@nrc-cnrc.gc.ca 
 

ABSTRACT 
Sate Based Key Hop (SBKH) protocol provides a strong, 
lightweight encryption scheme for battery operated devices, such 
as the sensors in a wireless sensor network, as well as small office 
home office (SOHO) users. Although SBKH can be applied to 
many underlying protocols, in this paper, we focus on integrating 
SBKH with 802.11. Hence we compare SBKH with other 802.11 
security protocols and show that SBKH eliminates all the issues 
with wired equivalent privacy (WEP) protocol, using the existing 
hardware and software as much as possible at a power and 
processing cost that is much lower than WiFi Protected Access 
(WPA) 1.0 or 2.0, and is cheaper than WEP. 

Categories and Subject Descriptors 
C.2.1[Network Architecture and Design] Wireless 
Communications 
C.2.0[Computer Communication Networks] Security. 

General Terms 
Security, Performance. 

Keywords 
Computer Network Security, Wireless Security, State Based 
Encryption, Low Power Security, Wireless Sensor Network 
Security.  

1. INTRODUCTION 
In this paper, we present State Based Key Hop (SBKH) protocol, 
a lightweight security protocol suitable for wireless sensor and 
other low power devices. SBKH is also easy to maintain and so is 
suitable for small office home office (SOHO) users. 
Although SBKH can be applied to other wireless protocols, we 
focus our discussions in this paper on integration of SBKH with 
IEEE 802.11 as it is the widely used wireless standard. Hence our 
comparison of SBKH is carried out against 802.11 security 
protocols namely: WEP and WPA. First we present a brief review 
of WEP and WPA followed by protocol overview of SBKH. 

1.1 Background 
1.1.1 Wired Equivalent Privacy (WEP) 
[IEEE802.11 1999] defined an encryption scheme called wired 
equivalent privacy (WEP), to provide security to the 802.11 users. 

WEP is a symmetric encryption scheme in which a WEP key is 
known or shared between two communicating nodes. WEP uses 
RC4 algorithm to do per packet encryption. RC4 algorithm is a 
stream cipher scheme [FM 2001, Mantin 2001] in which the data 
is encrypted by XORing data with the cipher stream generated by 
RC4 from an RC4 seed. WEP concatenates the WEP key (40 or 
104 bits) and the initialization vector (IV) (24 bits), as the RC4 
seed. For every new RC4 seed, RC4 reinitializes its states using 
key-scheduling algorithm (RC4-KSA). After RC4-KSA, RC4 
generates the cipher stream using pseudo random generation 
algorithm (RC4-PRGA). Since the IV is sent in every packet, 
WEP carries out RC4-KSA and RC4-PRGA for every packet. 
WEP is identified as being weak in a number of areas which make 
its continued use as a security mechanism for wireless untenable. 
These are discussed in more length in [SIR 2000, SM1 2004] and 
summarized here.  [Walker 2002] identify weak key issues and 
shows that the forgery attacks, replay attacks and bit flipping 
attacks let active attackers spoof networks, make invalid packets 
seem valid and can derive the shared key from such attacks. 
 
1.1.2 Wi-fi Protected Access (WPA) 
IEEE 802.11i [Draft802.11 2003]'s first proposal for 802.11 
legacy devices (WPA 1.0) encapsulates WEP functionalities by 
temporal key integrity protocol (TKIP).  It also has an algorithm 
(Michael) to provide message integrity to protect data from any 
modifications. TKIP and Michael algorithms add significant 
processing on every packet. They also add additional overhead of 
12 octets in every packet (without fragmentation) which can 
contribute to additional power consumption during transmission 
and reception.  
IEEE 802.11i's second part (WPA 2.0) uses Advanced Encryption 
Standard (AES) and requires change in hardware. WPA 2.0 
carries out AES twice under two different modes for every packet 
to encrypt the packet and to provide message integrity. WPA 2.0 
also adds an overhead of 8 octets to every packet. Thus WPA 2.0 
can also be very expensive. 
Hence there is a need for a simple, robust, lightweight security 
protocol that carries out power-efficient encryption and 
decryption. SBKH is one such protocol. 
[SM1 2004] introduced SBKH but restricted discussion to the 
basic protocol. [SM2 2004] evaluated SBKH against other 
encryption schemes to measure processing cost and complexity. 
This paper extends those to show how SBKH authenticates and 
resynchronizes. 

2. PROTOCOL OVERVIEW 
SBKH is a state-based encryption protocol in which two 
communicating nodes share a common knowledge of the RC4 
state. Whereas WEP and WPA 1.0 reinitialize RC4 state for every 
packet and generate cipher stream from the initialized RC4 state, 
SBKH does not reinitialize RC4 states, rather it maintains the 
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same RC4 seed for a duration known to a pair of communicating 
nodes. This will require the initialization of the RC4 state 
(running RC4-KSA) to be done only when the base key changes. 
After this, communicating nodes keep using the same cipher 
stream, following the stream together, byte-by-byte to encrypt and 
decrypt packets exchanged between them. This is referred to as 
the nodes being State Synchronized. 
To avoid weak key issue with RC4, SBKH does not begin 
decryptions at the start of an encryption stream, rather SBKH 
communicating nodes run down the cipher stream by a known, 
shared offset after every RC4-KSA, i.e. whenever a base key is 
changed and before communication begins. Only after running 
down the stream can a node encrypt or decrypt packets 
successfully. A second offset is used to determine where the 
resynchronization mechanism is initiated to recover from any loss 
of synchronization due to active attacks and possible 
implementation errors.  
SBKH has been designed to operate with existing hardware and 
with existing 802.11 protocols as much as possible with minimal 
changes to the firmware. This is important to the users of millions 
of 802.11 cards shipped, where a change in the hardware will not 
solve the security issues with these existing 802.11 cards. 

3. PROTOCOL DETAILS 
3.1 Notation and Shared Parameters 
In SBKH, RC4-KSA is executed only once for any key for any 
pair of communicating nodes. We define the term communicating 
nodes to indicate two nodes which are exchanging data and 
management packets, i.e. a node and an access point in a managed 
network, and two nodes in an ad-hoc network that are directly 
exchanging packets. We also define the notion of Uplink (U) and 
Downlink (D). In a managed network, D is the direction from the 
Access Point, and U is the reverse. In an IBSS, U is the direction 
from node A which requested authentication with node B. U and 
D are appended as subscripts to other parameters to reflect the 
direction to which the parameter applies. 
Since SBKH is state-based, communicating nodes require the 
following shared parameters to successfully maintain state: Base 
Key Pair, Key Duration, RC4 states, Offsets, an explicit SBKH 
sequence counter (SSC) and a Nonce. Note that nodes never 
exchange information to indicate these parameters, to indicate 
when key change occurs or to identify the next key pair selected. 
Such information was distributed before authentication by some 
means outside the scope of the SBKH protocol. 
 
Base Key Pair 
A Base Key Pair consists of two full 64 bit or 128 bit keys 
(BaseKeyU and BaseKeyD) which are used as RC4 seeds for the 
communication between two nodes. These keys may be selected 
from a Base Key List, which may be common to all nodes within 
the same BSS or common only to a communicating node pair. 
The key may also be a per session key that is agreed between the 
two communicating nodes. The generation and distribution of the 
Base Key Pair and the Base Key List is out of scope of this paper, 
although we assume a strong key generation and distribution 
algorithm and note that the way that keys are selected or 
generated must preserve uniqueness of each base key across the 
BSS/IBSS. 
 
Key Duration 
Key Duration indicates when a base key pair is changed. SBKH 
uses the beacon time stamp and Key Duration to have common 
knowledge of key change between a pair of communicating 

nodes. Change of base key pair may be just as easy as selecting 
the next key pair from the Base Key List, as long the key 
uniqueness condition is preserved.  
 
Offsets 
Offsets are used to indicate how far down the cipher stream after 
running RC4-KSA a node starts encrypting and decrypting 
messages for a given Base Key Pair. This is referred to as running 
down the cipher stream. Running down the cipher stream for 
Offset number of octets happens only when a key rollover takes 
place. The purpose is to discard Offset number of encryption 
octets from the start of a stream, strengthening RC4. There are 
two types of Offsets: Initial Offset (I-offset) and Sync Offset (S-
offset). S-offset is used during resynchronization mechanism to 
encrypt and decrypt resynchronization frames. I-offset indicates 
the position where encryption and decryption of all other frames 
exchanged between A and B begin. Both I-offset and S-offset are 
non-zero values, which are distinct from each other. It is strongly 
recommended that S-offset < I-offset, to avoid encryption key 
reuse during resynchronization. Recommended values for the 
offsets are in the range of 300 to a few thousand, since the 
purpose is to avoid the RC4 weak key syndrome [FMS 2001] that 
occurs for some keys on the initial cipher stream octets.  
 
RC4 States 
RC4 state is a state array with 256 state elements and two indices. 
Each state element and each index is of 8 bits in length, making 
the overall RC4 state to be of 258 octets in length. For a 
successful communication between two nodes A and B, the RC4 
state corresponding to A and B must be the same for a message to 
be encrypted and decrypted successfully, i.e. A and B are 
encryption state synchronized.  A and B stay state synchronized 
by always encrypting and decrypting exactly same number of 
bytes (since each message successfully decrypted was also 
successfully encrypted). Since A and B operate asynchronously, 
SBKH maintains two sets of RC4 states, one for each 
communication direction: uplink and downlink. SBKH defines 
five pairs of RC4 states: Initial RC4 States (IRC4U, IRC4D), 
Previous RC4 States (PRC4U, PRC4D), Current RC4 States 
(CRC4U, CRC4D), Next RC4 States (NRC4U, NRC4D) and Sync 
RC4 States (SRC4U, SRC4D). The notation may be extended, so 
that CRC4U,j,B corresponds to the state in the receiver for CRC4U 
for packet j as maintained by node B and SSCU = j mod(224-1).  
• IRC4 are (collectively) the RC4 states after performing RC4-

KSA and RC4-PRGA for I-Offset number of bytes for every 
Base Key. A node may start encrypting data packets with a 
new Base Key only after calculating the RC4 states IRC4U 
and IRC4D corresponding to  BaseKeyU and BaseKeyD 
respectively.PRC4 are the RC4 states corresponding to 
previously successfully transmitted or received and 
acknowledged SBKH encrypted packet. PRC4U and 
PRC4DCRC4 are the RC4 states with which encryption and 
decryption of the subsequent packet takes place for a given 
Base Key. CRC4U and CRC4D are updated independently. 

• NRC4 are the RC4 states corresponding to I-Offset for the 
next Base Key Pair. NRC4U and NRC4D are updated 
independently. 

• SRC4U and SRC4D are the RC4 states corresponding to S-
offset for a given Base Key Pair and are used in the 
resynchronization protocol. These can be calculated the same 
way IRC4 states are calculated. 

PRC4 and CRC4 states are continuously maintained for a pair of 
nodes: IRC4; NRC4 and SRC4 states are logical states and may be 



generated as needed or maintained continuously, an option of 
interest to resource-limited devices. 
 
SBKH Sequence Counter (SSC) 
SBKH uses the 24-bit IV field with MAC frames of 802.11 as 
SBKH sequence counters (SSC) that are maintained for each 
direction (SSCU and SSCD) for a pair of directly communicating 
nodes. SSC is different from 802.11 MAC’s sequence number, 
which is maintained for the whole network and not for a pair of 
nodes. The ability to maintain a pair-wise sequence counter helps 
decision making while trying to decrypt an incoming SBKH-
encrypted packets. 
 
Nonce 
Each pair of communicating nodes maintain a shared nonce to 
permit verification of authentication, deauthentication, association 
and disassociation messages. This nonce is created during 
authentication and changed during resynchronization. The nonce 
is 128 bits (16 bytes) in length.  
 
 
 
 
 
 
 
 

3.2 Basic Protocol Operation 
Communication begins after authentication (see 4.4) for a pair of 
communicating nodes with SSCU and SSCD initialized to zero,  
     PRC4U = CRC4U = IRC4U   and  
     PRC4D = CRC4D = IRC4D.  
Note that there is no connection between IRC4U and IRC4D since 
they reside on different cipher streams. 
In Fig. 2, two nodes A and B are exchanging packets encrypted 
based on a Base Key shared between A and B. A sends packet j in 
its uplink encrypted at CRC4U,j,A to B. After receiving packet j, B 
compares SSCU,j with its SSCU,j-1 which according to B was the 
last successfully acknowledged packet's SSCU. If SSCU,j-SSCU,j-

1=1, then B decrypts packet j at CRC4U,j,B. After successful 
decryption (CRC4U,j,B = CRC4U,j,A) B acknowledges the packet to 
A and also updates its SSCU to SSCU,j. B then updates its 
PRC4U,j+1,B = CRC4U,j,B and its  CRC4U  = CRC4U,j+1,B , the state 
where decryption of  the packet corresponding to SSCU,j+1 will 
begin. After the receipt of B's acknowledgment, A updates its 
PRC4U,j+1,A = CRC4U,j,A and its CRC4U =  CRC4U,j+1,A, the state 
where encryption of the packet with SSCU = j+1 will begin . A 
also updates SSCU = SSCU,j+1 which will be used in packet with 
SSCU = j+1. The same discussion applies for packets sent by B to 
A on its downlink. 
 
Retransmissions and Packet Drops 
For retries, there is no update of PRC4, CRC4 and SSC at A or B. 
If a packet or fragment times out and is dropped, the subsequent 
packet or fragment has the same SSC as the dropped packet or 
fragment and the transmitter does not update PRC4 and CRC4. 
Hence, encryption of the subsequent packet begins from the same 
place as that of the dropped packet.  
If the transmission wasn't a retry and if the previously 
acknowledged SSC (SSCU,j) and the received SSC from A 

(SSCU,k) differ by more than 1 (i.e. k>j+1), then B may drop the 
packet without acknowledgment or may initiate resynchronization 
(see section 4.4). If the transmission of packet j is a retry (retry 
field in MAC frame set to 1), and if B previously acknowledged 
packet j and updated CRC4U to CRC4U,j+1,B, and PRC4U to 
PRC4U,j+1,B (= CRC4U,j,B), then B decrypts the packet from 
PRC4U,j+1,B or could optimize by sending an acknowledgment 
without re-decrypting. 
If the transmission was not a retry and if the previously 
acknowledged SSC (SSCU) and the transmitted SSC (SSCU,j) are 
the same, then B identifies that acknowledgment of the previously 
transmitted packet was not received by A and the packet was 
dropped after retries. B decrypts the new packet using RC4 state 
PRC4U,j+1,B since A encrypted the packet at CRC4U,j,A = 
PRC4U,j+1,B. After decrypting the packet and acknowledging it, B 
updates CRC4U to CRC4U,j+1,B, the state immediately following 
the last byte decrypted and leaves PRC4U,j+1,B unchanged. 

3.3 Key Hopping 
Two nodes communicating with each other remain State 
Synchronized as mentioned in section [4.2] if the Base Key pair 
has not changed. If the Key Duration parameter indicates time to 
change the Base Key pair, the transmitter starts decrypting 
packets and fragments using the new Base Key following the key 
change.  
For the following discussion refer to Fig. 2 and assume that A 
identified a need for key change before encrypting packet j. This 
discussion only considers A and B updating BaseKeyU,; the same 
protocol is used to update BaseKeyD for B sending to A on 
Downlink, with B and A interchanged. 
 
A calculates IRC4U based on the new BaseKeyU, and updates 
PRC4U,j,A and CRC4U,j,A to IRC4U after receipt of the 
acknowledgment of packet j-1. A then continues encryption of 
packet j based on the new BaseKeyU. When B identifies time to 
change Base Key, it calculates NRC4D and NRC4U, based on the 
new BaseKeyU, but does not immediately update PRC4U,j,B and 
CRC4U,j,B. B keeps decrypting subsequent packets using the 
cipher stream based on the OldBaseKeyU until the decryption fails 
once, and then tries the decryption with NRC4U  (note that for 
some circumstances B can optimize and try NRC4U first or 
decrypt both in parallel). The decryption succeeds, and B updates 
its PRC4U as PRC4U,j+1,B = NRC4U and its CRC4U,j+1,B as the state 
where the decryption of the subsequent packet (j+1) will begin 
based on the new Base Key. B then clears NRC4U. Following this, 
encryption and decryption of subsequent packets exchanged 
follow the discussion in section [4.2] until the next key change. 

3.4 Initial Synchronization and 
Resynchronization 
Initial state synchronization set up, termination and 
resynchronization take place through the use of authentication, 
deauthentication, association, disassociation and reassociation 
messages. Each of these management packets contains an 
encrypted payload portion for verification. 
Each pair of communicating nodes establish and maintain a 
shared nonce to permit verification of authentication, 
deauthentication, association and disassociation messages. This 
nonce is created at Authentication and changed at 
Resynchronization.  
Initial state synchronization is established during authentication 
process using authentication messages with reason field within 
authentication messages set to INIT.  

MAC 
header 

SBKH 
Field(4) 

PDU ICV(4) 

Figure 1: SBKH Data Packet 
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Authentication 
Since authentication messages are directed management 
messages, acknowledgment is assumed unless otherwise stated. 
Also, some contain nonces encrypted at CRC4 and SSC to help 
synchronize SSC.  
When node A wishes to communicate with node B, where B is the 
access point in a managed network or another node in an ad hoc 
network, A finds BaseKeyU and BaseKeyD and I-offset either 
from the key list or by some means not specified here, generates 
the state IRC4U and IRC4D and generates and sends to B the 
following: 
 
Auth(SBKH,Reason=INIT,1,(nonce,ICV)@IRC4

U
) 

 
where "@IRC4U" means encrypted using the state designated by 
IRC4 on BaseKeyU,, nonce is any nonce generated by node A. 

On receipt of the message, B uses a similar process to select the 
same key pair, decrypts nonce and ICV at IRC4U and validates 
nonce using ICV. If Auth part 1 fails to decrypt or validate, B 
ignores the message and sends no response; otherwise, B 
generates a new nonce, encrypts nonce, new_nonce and ICV at 
IRC4D and sends 
 
Auth(SBKH,Reason=INIT,2,(nonce,new_nonce, 
ICV)@IRC4

D
). 

 
A decrypts (nonce, new_nonce ICV)@IRC4D, re-encrypts 
(new_nonce, ICV)@IRC4U+20 and sends  
 
Auth(SBKH,INIT,3,(new_nonce,ICV)@IRC4

U+20
) 

 
B decrypts and CRC's this message, and either acknowledges it or 
sen

ds no response (because deauthentication relies upon a common 
shared nonce, which A and B failed to establish).  
Using this 3-way authentication, B guarantees that A has a new 
nonce and can successfully communicate from IRC4U and IRC4D. 
B prevents replay attacks by selecting the new nonce, while A 
avoids replay attacks by the generation and inclusion of a unique 
initial nonce which B must return. 

 
Deauthentication 
B may send deauthenticate messages to A if B has authentication 
for node A and needs to terminate direct communication with A. 
These messages could be used to release resources associated 
with the communication between B and A. B terminates 
communication with A by sending 

Node A

Node B

CipherStreamDCRC4U,j,A 
PRC4U,j+1,A 

size(packet(j))=M 
SSCU=jmod(224-1) 

size(packet(k))=N 
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... 

Figure 2: SBKH State Synchronization 
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Deauth(SBKH,Reason,1,SSC

U
,(nonce,ICV)@CRC4

U
)) 

A decrypts the packet and responds by sending 
 
Deauth(SBKH,Reason,2,SSC

D
,(nonce,ICV)@CRC4

D
)) 

 
Neither B nor A release resources until the deauthenticate 
messages are exchanged. Deauthentication can also occur 
implicitly when B has been silent for an implementation 
dependent amount of time (possibly infinite) and B did not notify 
A that it would be asleep, or when a resynchronization is 
attempted and fails after an implementation dependent number of 
attempts. 
 
Association 
Association happens as defined in [IEEE802.11 1999], except that 
associate, disassociate, and reassociate packets contain SSCU/D 
and an encrypted field (nonce, ICV)@CRC4(U or D) as the final 
field. Associate, disassociate and reassociate messages that fail 
decryption are ignored, protecting the network against attacks 
using rogue associate or disassociate messages. 
 
Resynchronization 
Situations may occur in SBKH where the encryption state may be 
lost between two nodes in one communication direction (Uplink 
or Downlink). This may occur if an active attack has fooled the 
transmitter in that direction with fake acknowledgments, if a node 
fails to update its state in nonvolatile storage before power-down, 
or if implementation errors permit state to be lost between a pair 
of nodes. The resynchronization portion of the protocol corrects 
such synchronization errors.  
Resynchronization is implemented by a 4-way handshake using a 
four-part authentication message set with reason field within 
authentication message set to SYNC. Either party in the 
communicating pair can initiate a resynchronization if it discovers 
a loss of synchronization in the direction where it is the receiver. 
A resynchronization is capable of resynchronizing a single 
direction or both directions as needed, as explained below. Figure 
3 shows two communicating nodes, A and B, resynchronizing, 
where A->B is uplink. B is expecting to receive PDUi, shown as 
action 2  in figure 3 but instead receives PDUj, j>i and B cannot 
successfully decrypt this message. B declares CRC4U,j,B invalid 
and sends message at 3 at the dedicated resynchronization offset 
SRC4D, 
 
Auth(SBKH,Reason=SYNC,1,(nonce,ICV)@SRC4

D
). 

 
A decrypts the Auth message at SRC4D and uses nonce and ICV 
to validate the authenticate message (invalid messages are 
ignored). A then selects a new encryption state CRC4U, which is 
either CRC4U,j,A or a state which can be reached from CRC4U,j,A 
by executing RC4-PRGA for an implementation-dependent 
number of octets and sends the message at  4, 
 
Auth(SBKH,Reason=SYNC,2,SSC

U
,(nonce,ICV)@CRC

4
U
) 

 
B acknowledges this message, though it may not yet decrypt the 
payload. This is acceptable because there are two more message 
parts to complete and confirm the resynchronization. B begins 
running forward on CipherStreamU (action 5), decrypting 
successive bytes of the payload until a successful decryption of 
(nonce, ICV) occurs or an implementation dependent limit has 

been reached. If the limit is reached without a successful 
decryption, B retries the resynchronization and may eventually 
declare itself implicitly deauthenticated. Upon successful 
decryption and verification of (nonce, ICV), B updates CRC4U,j,B, 
selects a new nonce and sends the message at 6 
 
Auth(SBKH,SYNC,3,SSC

D
,(nonce,new_nonce,ICV)@

CRC4
D,k,B

 ). 
 
A decrypts nonce, new_nonce and verifies using ICV, generates a 
new ICV based only on new_nonce, encrypts (new_nonce,ICV) at 
CRC4U,j+1,A and sends the message at 7, 
 
Auth(SBKH,SYNC,4,SSC

U
,(new_nonce,ICV) 

@CRC4
U,j+1,A

 ). 
 
B receives and decrypts this message. Both nodes update nonce to 
new nonce and start communicating, shown as message 8.   
Note that the process of decrypting forward (running down the 
cipher stream) is a secure process. The likelihood that two distinct 
places of length 20 octets in the encryption stream have the same 
encryption sequence is approximately 10-48. Also, since 
synchronization failures always result in the transmitter being 
ahead of the receiver, B runs forward to resynchronize. If B does 
not need to move CRC4U, B can detect active attacks such as false 
data messages and take countermeasures. 

 
Two-way Resynchronization: 
If A had also lost synchronization on CRC4D and discovers this as 
the resynchronization of CRC4U is in progress, the protocol 
executes as described above except that, upon receipt of 
Authenticate part 3, A cannot immediately decrypt the message. 
A sends ACK anyway and begins running down the encryption 
stream from CRC4D, decrypting successive bytes of (nonce, 
new_nonce, ICV) payload until successful decryption occurs.  
Once A successfully decrypts nonce, new_nonce and ICV, A 
updates CRC4D to that new position and sends  

 
Auth(SBKH,SYNC,4,SSC

U
,(new_nonce,ICV)@CRC4

U
) 

 
A protocol failure causes B to become implicitly deauthenticated 
and B must attempt to reauthenticate with A in the BSS or IBSS. 
 
Support for Broadcasting and Multicasting 
The lack of acknowledgment for broadcast and multicast 
messages makes maintenance of state synchronization between 
nodes hard. Our future papers will investigate this issue in detail. 

4. ANALYSIS OF SBKH PROTOCOL 
We evaluate SBKH according to the following criteria, which are 
problematic in other protocols such as WEP or WPA: use of RC4, 
denial of service attacks, replay/modified packet attacks, key 
change knowledge, verification, implementation complexity, and 
power/processing costs or time costs. 

4.1 Use of RC4 
SBKH uses RC4 in a way which makes effective use of RC4's 
strengths and avoids most of its weaknesses. Instead of the 
problematic stateless approach, a single RC4 encryption stream is 
followed for multiple packets for each communication direction 
of each pair of communicating nodes, starting at IRC4U and 
IRC4D, and without exchanging key-specific or state-specific 
knowledge. SBKH communicating nodes maintain state and 



follow specific protocols to ensure the states remain 
synchronized.  
Pair wise independence of communication encryption creates a 
strong encryption protocol, even if the listener is an insider, while 
maintaining synchronization between communicating pairs. We 
have shown through model checking of the protocol that senders 
and receivers stay synchronized, except for situations involving 
hard shutdown where state may become lost or an active 
interloper forcing loss of synchronizations. For such situations the 
resynchronization protocol lets communication nodes re-establish 
direct communication. 

4.2 Denial of Service (DoS) Attacks 
SBKH is much less susceptible to denial service attacks than are 
either WEP or WPA, since more of the security protocol is private 
to the parties, as follows:  
Fake (dis)associations: Disassociations and associations must 
contain nonce encrypted at CRC4U/D using the same strong 
scheme as data messages; hence any such in-the-clear messages 
or improperly encrypted messages will be ignored or recorded as 
an active attack. 
Fake authentications: Authentications contain a nonce encrypted 
at IRC4 or SRC4 to avoid spoofing of such messages in SBKH. 

4.2.1 DoS Attack through Resynchronization 
SBKH has introduced a new portion of the protocol called 
resynchronization, which might be triggered due to 
acknowledgement spoofing. One might think that by triggering 
the resynchronization quite often between a communicating pair 
there is a potential DoS attack within SBKH. It should be noted 
that this spoofing will successfully trigger resynchronization only 
if the receiver node did not receive the original packet or if the 
receiver received the original packet with channel errors.  
To desynchronize two communicating nodes, an intruder must 
force the receiver to fail reception of the message, and then must 
generate false ACK packets for the transmitter using the receiver's 
MAC address and the correct SSC, all without detection by the 
receiving node or the transmitting node. It is not enough to do 
only ACK spoofing: either the intruder will only be replacing the 
receiver's ACK with his own and doing no damage, or the 
receiver will detect the attack and can notify the transmitter to 
take countermeasures.  
Therefore, we believe that such an active attack is unlikely, and 
that resynchronization protocol usage will be rare. Further 
investigation such as countermeasures in the case of such DoS 
attacks will be presented in future articles. 

4.3 Replay and Modified Packet Attacks 
 Replay attacks of encrypted packets assume that the decryption 
stream is still valid. Under SBKH, the encryption point within the 
cipher stream changes as soon as a packet is acknowledged, and 
any replayed packets will fail encryption validity checks (ICV) 
and will be noted as an active attack, making replay attacks 
useless. Similarly, modified packet attacks will fail and be 
ignored or logged as active attacks. Note that these attacks were 
successful and unidentifiable in WEP. 

4.4 No Key-change Knowledge in SBKH 
With SBKH, almost all knowledge of key indices, initializations 
and authorizations, and key changes are implicit in the protocol 
and cannot be determined by an analysis of in-the-clear messages. 
Specifically,  

(i) The first few bytes are discarded and encryption begins at 
some later position in each encryption stream 

(ii) Encryption and Decryption for different packets are at 
different points within a cipher stream 

(iii) Key-hopping depends only upon a private Key Duration 
parameter known only to the communicating pair 

(iv) Data, either from higher protocols or that form part of 
SBKH, is never presented in the clear and also encrypted, 
leaving less clues for eavesdroppers. 

By using this approach, it is computationally hard for an 
interloper to find the decryption location, even if they had the 
same BaseKey. 

4.5 Verification of SBKH 
Since SBKH is a pair-wise state-based protocol, the 
communicating node pair must maintain an exact copy of the RC4 
state so that the next set of encryption octets can be matched. If a 
node gets out of synchronization by even a single octet, then 
encryption synchronization is lost and recovery requires the 
resynchronization protocol. 
The challenge, therefore, is to verify that SBKH nodes keep the 
same place in the encryption chain even when corrupted packets, 
timeouts, retransmits, and key rolling occur. 
To verify the correct operation of SBKH, we subjected significant 
portions of the protocol to formal verification using the Promela 
formal specification language and the SPIN model checker [SPIN 
2003]. This approach performs static analysis of all of the 
interleavings of the two nodes encrypting messages via a state-
based encryption and exchanging those messages via a medium. 
We modeled message corruption due to channel errors and 
retransmission as well as behavior at key rolling and confirmed 
that the protocol is robust over these domains. Through this 
analysis we confirmed that encryption states must be maintained 
by each node in each direction and that a pairwise message 
counter (SSC) improves efficiency and eliminates retransmissions 
due to wrong state selection for decryption. We also determined 
through this process that an active attacker could send false 
acknowledgments for corrupted packets to one node and force it 
to lose encryption synchronization. We therefore developed a 
resynchronization protocol, discussed in subsection [3.3]. We 
have not yet formally verified the resynchronization. 

4.6 Implementation Complexity  
SBKH is both simpler and more complex than existing protocols, 
such as WEP or WPA. It is simpler in that the key initialization 
step is not required on the creation or reception of each packet. 
This translates directly to some simplification and likely power 
saving (for battery-operated systems) for systems that use SBKH, 
as well as improved performance over other protocols.  It is more 
complex in that more state is required to be maintained for 
decryption, specifically each non-access point node must maintain 
4 encryption RC4 states for each node with which it is 
communicating, consisting of 258 bytes plus possible ancillary 
information. This additional storage should amount to a very few 
extra kilobytes for every other actively communicating node. We 
do acknowledge the need for encrypted management message 
such as a Deauthentication message to indicate release of 
resources tied to a node that is leaving the network. 
Considering likely hardware support for RC4, we believe that it 
should be easy to selectively generate RC4 state from a Base Key 
or use a pre-generated RC4 state. Hence, SBKH should be 
compatible with existing hardware. 



All things considered, we believe that SBKH is competitive with 
existing and proposed encryption technologies. 

4.7 Implementation Experience 
We have implemented the encryption scheme using standard RC4 
libraries on worstation-class processors, and have modeled the 
encryption, transmission, reception, decryption, and key-hopping 
parts of the protocol using a model checker. Some issues that we 
uncovered led us to propose a formal association / disassociation 
and a resynchronization phase.  The issues uncovered were not 
with the basic protocol, but with a consideration of 
implementation errors or some possible active attacks. 

4.8 Power/processing Costs or Time Costs 
SBKH is less expensive in terms of power and CPU resources of 
the transmitter/receiver than is WEP, and is significantly cheaper 
than WPA. Our comparisons [SM2 2004] of WEP-based RC4 
encryptions, WPA-like encryptions and SBKH on standard 
desktop and workstation computers predicts a 45% efficiency 
compared to WEP, 57% efficiency compared to WPA 1.0 and 
60% efficiency compared to WPA 2.0 at packet size of about 200 
bytes. Since the average packet size for most networks is less than 
200 bytes [PK 2003], SBKH should show significant reductions 
for most 802.11 networks, but especially for small-packet 
networks where the data exchanged is in the tens of bytes as in 
wireless sensor networks. 
The basic protocol as described herein, we believe is robust, 
internally consistent, and efficient. 

5. CONCLUSION 
SBKH implements encryption in a novel state based way so as to 
provide cheap and robust security without additional overheads of 
encryption. SBKH saves significant processing power especially 
for packet sizes smaller than 200 bytes as would be seen in 
wireless networks by avoiding state initialization on every packet. 
Hence we recommend SBKH for battery-operated devices such as 
wireless sensor nodes where processing power savings directly 
translates to longer battery life which implies longevity of the 
nodes.  SBKH also provides ease of maintenance: a simple 
implementation may choose to maintain the same key forever 
(Key Duration = ∞). Due to its ease of maintenance, we also 
recommend SBKH for SOHO users. 

6. Future Work 
There are a few areas associated with SBKH which need further 
investigation: 

(i) The formal model using the model checker has 
served us well, but is near its limits in 
computability. An alternative approach is to use a 
theorem proving approach to validate the protocol. 

(ii) Implement SBKH on real hardware. 
(iii) A strong key generation and distribution 

recommendation would be very useful. 

(iv) Further investigation of countermeasures to protect 
against active attacks is also necessary. 
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