
Publisher’s version / Version de l'éditeur:

Information Retrieval, 7, 2003

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez

pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the

first page of the publication for their contact information.

NRC Publications Archive

Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. /

La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version

acceptée du manuscrit ou la version de l’éditeur.

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Scale and Translation Invariant Collaborative Filtering Systems
Lemire, Daniel

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

NRC Publications Record / Notice d'Archives des publications de CNRC:
https://nrc-publications.canada.ca/eng/view/object/?id=44f47daf-5742-4943-8124-bdf5b61eb82f

https://publications-cnrc.canada.ca/fra/voir/objet/?id=44f47daf-5742-4943-8124-bdf5b61eb82f

National Research

Council Canada

Institute for

Information Technology

Conseil national

de recherches Canada

Institut de technologie

de l'information

Scale and Translation Invariant Collaborative

Filtering Systems *

Lemire, D.
2003

* published In Press. NRC 46508.

Copyright 2003 by

National Research Council of Canada

Permission is granted to quote short excerpts and to reproduce figures and tables from this report,

provided that the source of such material is fully acknowledged.

SCALE AND TRANSLATION INVARIANT COLLABORATIVE FILTERING SYSTEMS

DANIEL LEMIRE

ABSTRACT. Collaborative filtering systems are prediction algorithms over sparse data sets of user preferences. We modify

a wide range of state-of-the-art collaborative filtering systems to make them scale and translation invariant and generally

improve their accuracy without increasing their computational cost. Using the EachMovie and the Jester data sets, we

show that learning-free constant time scale and translation invariant schemes outperforms other learning-free constant time

schemes by at least 3% and perform as well as expensive memory-based schemes (within 4%). Over the Jester data set, we

show that a scale and translation invariant Eigentaste algorithm outperforms Eigentaste 2.0 by 20%. These results suggest

that scale and translation invariance is a desirable property.

1. INTRODUCTION

To be competitive, businesses need to help clients find quickly and accurately interesting products. Designing

software for this task becomes important as on-line shopping often does away with salespersons and offers a limited

view of the products to the prospective clients. Fortunately, businesses are often gathering large amounts of data about

their clients which makes automated recommendation systems possible. In a wider context, one of the most valuable

characteristic of the modern web is the ability to search through large amounts of dynamic data and any process that

can support these searches is valuable to the users.

Collaborative filtering systems are recommender systems where the recommendations are based on a database of

user ratings as opposed to content-based recommender systems which are based on the characteristics of the objects

to recommend. The basic principle behind collaborative filtering is that clients must first share some information

about themselves by rating some of the products or features they know, so that, in turn, they can get accurate recom-

mendations. Content-based recommender systems tend to work well with objects where the content can be processed

with some convenience such as text [1, 13]. With other types of objects such as movies or books, it is not always

easy to access the content on-line, and even if possible, automated content processing is likely to be inaccurate. Also,

content-based filtering is sometimes difficult as the user may simply not have enough information about the product or

service required. Someone surfing on a e-commerce web site might not always have a specific request and the burden

is on the web site to provide an interesting recommendation. In such cases and if we can get some ratings from the

users either explicitly or implicitly, we may prefer collaborative filtering systems. In other cases where content-based

filtering is efficient, collaborative filtering may serve to help sort results.

However, one of the challenges we face is that most users rate only few objects and thus, we have to deal with

sparse data [6]. In many information retrieval tasks, the software is faced with large sets of accurate data and specific

queries that must be matched. On the other hand, collaborative filtering has to deal with a severe lack of information

and the information available is both imprecise and inaccurate. Thus, collaborative filtering is a prediction rather than

a search problem.

From an algorithmic point of view, it is convenient to classify collaborative filtering algorithms in three classes

depending on their query and update costs: learning-free, memory-based and model-based. Obviously, there might

be many types of operations that could be described as an update or a query, but we focus our attention on adding

a user and its ratings to a database (update) or asking for a prediction of all ratings for a given user (query). We

say that an operation whose complexity is independent of the number of users offers constant-time performance

(with respect to the number of users). Essentially, the cheapest schemes are described as learning-free and have both

constant-time updates and queries while schemes involving a comparison with users in the database are classified as

memory-based and offer constant-time updates but linear-time queries, and finally the schemes requiring more than

linear time learning or more sophisticated updates are said to be model-based (see Tab. 1). There are schemes that

would not fit in any one of these three classes of algorithms and others that would fit in more than one class.

Key words and phrases. Recommender System, Incomplete Vectors, Regression, e-Commerce.

To appear in Journal of Information Retrieval. This document may differ from the article published by Kluwer, please refer to it when available.

NRC 46508.

1

update query learning

learning-free O(1) O(1) O(m)
memory-based O(1) O(m) No

model-based Variable O(1) Variable

TABLE 1. Typical complexities with respect to the number of users m of some classes of collabo-

rative filtering algorithms.

Typically, learning-free schemes are derived from vectors {vk} that are computed in linear time irrespective of the

current user and the prediction is written as

Prediction(u) =
N

∑
k=0

βk(u)v(k)

where the result of the predictor is itself a vector where each component is the rating corresponding to an item. For

example, the simplest learning-free scheme is obtained when N = 0, v(0) = 1 where 1 = (1, . . . ,1) and Prediction(u) =

u where u is the average over the known ratings. Another such scheme is obtained when N = 0, v
(0)
k is the average

rating received by item number k, and Prediction(u) = v(0).

Memory-based collaborative filtering systems usually compute weighted averages over ratings already in the data-

base where the weights are given by a correlation measure [3, 12] or any similar measure [17] including probabilistic

ones [10]. Generally, we can write a memory-based prediction as

Prediction(u) = F(u)+∑
w

ω(w,u)w

where F(u) is a learning-free prediction and where the sum is over all users in the database with ω(w,u) some

measure of similarity between w and u. Because not all users have rated all items, the sum can be different for each

item and we will make this point precise later. As there is little precomputation, updates to the database are fast, but

queries tend to be slow as we need to match the current user against the entire database each time. Memory-based

systems can outperform a wide range of model-based systems [3, 10] and accordingly, they are often used as reference

collaborative filtering systems for benchmarking purposes. The main drawback of memory-based scheme is their lack

of scalability. Some authors have proposed selecting the most representative or useful users from the database [18, 19]

making memory-based systems more balanced in terms of update and query performance while preserving and even

increasing slightly the accuracy. However, unlike learning-free and model-based schemes, memory-based systems

require access to a database at all time and thus there are privacy issues [4] and a memory-based system cannot run

conveniently on devices with very limited storage.

If all possible preference sets were equally likely, no prediction would be possible and since predictions have been

shown to be reliable [3], it must be that there are many hidden constraints and few remaining degrees of freedom

which suggests making predictions based on a model. Model-based collaborative filtering systems extract from the

database some key parameters and do not use the database directly to answer queries. Examples include Principal

Components Analysis (PCA) [7], Factor Analysis [4], Singular Value Decomposition [5, 15], Bayesian Networks [3],

Item-Based models [16, 14] and Neural Networks [2]. Model-based systems tend to answer queries fast, most often

in constant time with respect to the number of users, but also run potentially expensive learning routines and are often

static in nature: updating the database can be expensive as it may require up to a completely new learning phase.

Another possible drawback is that most model-based systems assume a large database is available whereas we would

like collaborative filtering to work in a wide range of contexts.

One can test the accuracy of an algorithm by applying it on data where some of the ratings have been hidden.

While results vary depending on the data set and the experimental protocol, most published collaborative filtering

algorithms have similar prediction accuracies. For example, with the EachMovie data set, the accuracy improvement

in going from a naive prediction based on per-item average (learning-free) to a sophisticated Factor Analysis approach

is of no more than 17% [4]. Similarly, extensive work has been done to improve the Pearson correlation approach

[3, 8] and yet, accuracy improvements do not exceed 20%. The differences between inexpensive schemes and more

sophisticated ones are even smaller when one upgrades simple averaging scheme to the Bias From Mean algorithm

introduced by Herlocker et al. [8]. In the results presented in this paper, the difference between the best and the

worse scheme is of the order of 33% irrespective of the data set. In this context, systematic improvements by small

percentages are significant.

One of the limitation researchers face is that there is no established set of desirable properties that are known to

be needed in the design of a new collaborative filtering algorithm. Pennock et al. [11] outline properties or axioms

for collaborative filtering algorithms but without measuring the practical usefulness of each axiom. They present four

collaborative filtering properties : universal domain and minimal functionality, unanimity, independence of irrelevant

alternatives, and scale invariance. Whereas scale invariance is a simple and compelling axiom, few scale invariant

algorithms have been proposed. This paper investigates further scale invariance and aims to show that it is a useful

axiom for collaborative filtering. To achieve this goal, we will consider several state-of-the-art collaborative filtering

algorithms and propose novel variants that are scale invariant. Then, we show that the new algorithms perform better

or as well as the old ones.

1.1. Structure and Main Results. The paper is organized as follows. We first introduce the collaborative filtering

problem, then present some of the most competitive schemes, introduce two types of scale and translation invariant

collaborative filtering systems, and finally, we conclude with some experimental results on two significantly different

data sets.

The main results of the paper are evidence that scale and translation invariance is an important property that can be

used to improve existing schemes and a set of novel highly scalable algorithms with good performance. We show that

by normalizing users with respect to the mean, the amplitude, and, possibly, the number of their ratings, we improve

accuracy. We stress that the normalization is per user as opposed to per item . One novel collaborative filtering

systems (ST IN2) performs well on both data sets, is simple to implement, and offers constant time performance for

updates and queries.

1.2. Notation and Terminology. Vectors and arrays are written in bold (v) as opposed to scalar values (i). Compo-

nents of a vector v are noted vi. Incomplete vectors, that is vectors where some ratings are unknown, are written using

the letters u,v, and w without bold face. Given a set S, we note card(S) the cardinality of such as set. The Greek al-

phabet is used throughout for convenience without any special meaning. We note averages using the notation a. Sums

can be taken over indexes as in ∑n
i=0 xi = x0 + . . .+xn or over sets S = {a,b,c} as in ∑x∈S f (x) = f (a)+ f (b)+ f (c).

The variables m and n have special meaning consistent with other authors [3] and refer respectively to the number of

users under consideration and to the number of items to be rated.

A norm ‖ · ‖ is typically defined as a non-negative real-valued function satisfying ‖αv‖ = |α|‖v‖ whenever α is a

real number, ‖x + y‖ ≤ ‖x‖+‖y‖, and ‖x‖ = 0 ⇔ x = 0. In some sense, the norm of an object measures its size. We

will abuse the terminology by dropping the condition that ‖x+ y‖ ≤ ‖x‖+‖y‖ whenever x+ y is not defined.

Two norms ‖ ·‖Norm1 and ‖ ·‖Norm2 are equivalent if there exists positive numbers A,B ∈ R such that A‖x‖Norm2 ≤
‖x‖Norm1 ≤ B‖x‖Norm2 for all x. For finite dimensional vector spaces such as R

k, all norms are equivalent.

For the purpose of this paper, we define Lebesgue norms for p = 1,2, . . . as

‖x‖lp = p

√

N

∑
i=1

|xi|
N

p

where the sum is over all indexes of x. We define the norm so that ‖(1, . . . ,1)‖lp = 1 with the drawback that ‖x‖l2

is not given by
√

〈x,x〉 but with the benefit that some of our notation is simpler. As examples, ‖(1,2,0)‖l1 =

1, ‖(1,2,0)‖l2 =
√

5
3
≈ 1.29, and ‖(1,2,0)‖l10

≈ 1.98. For large p, Lebesgue norms become close to ‖x‖l∞ =

maxi∈{1,...,N}{|xi|} where the maximum is taken over all indexes. So that, intuitively, for small p’s (p = 1) all compo-

nents contribute to the norm value whereas for larger p’s only the larger components contribute up to the point where

only the very largest component matters. We have

‖x‖l∞
p
√

N
≤ ‖x‖lp ≤ ‖x‖l∞ .

2. DEFINITIONS

Let ι be an ordered set of n items labeled from 1 to n which we write ι = {1, . . . ,n} for simplicity. Each user in

the system is allowed to give one and only one rating to each item, but will generally rate only a small subset of all

possible items. We refer to these ratings as an evaluation and there is a one-to-one map between users and evaluations.

Given an evaluation u, let S(u) be the set of items rated and let ui be the rating given to item i ∈ S(u) by this user. For

the purpose of this paper, we assume that ratings are real numbers even though ratings are often taken from a finite

set such as {good, average, bad}. In other words, an evaluation is a function u : ι ⊃ S(u) → R where the cardinality

of the domain S(u) is typically much smaller than card(ι). Alternatively, u can be thought of as a incomplete vector

in R
n, that is, a vector where some components are unknown. In practice, a set of evaluations χ is given for training

and we note the cardinality of the set χ by m = card(χ). On the other hand, the set of all possible evaluations is noted

Ξ ⊃ χ. Note there may be some constraints on Ξ: for example that some items are rated by all users or that all users

have rated at least a given number of items.

A complete evaluation is an evaluation u with ratings over all items (S(u) = ι). Given a new evaluation w with,

again, arbitrary numerous ratings over up to n items, we seek to find a complete evaluation w such that w and w

are close and such that w agrees as much as possible with χ. We say that w is a prediction and we write w = P(w)
where P is a function (called a predictor) from the space of all evaluations to the space of complete evaluations. Thus,

a prediction is a map from incomplete vectors to complete vectors. Note that this definition is not general since it

excludes top-N algorithms [9].

Definition 2.1. A function P : Ξ → R
n is called a predictor.

Predictors are often built dynamically using a set of evaluations or training set and we refer to this process as a

collaborative filtering system.

Definition 2.2. A collaborative filtering system (CFS) is a function from sets of evaluations χ to predictors.

Given two numbers α,β∈R and an evaluation u, we define a new evaluation w = αu+β by the ratings wi = αui +β
for all items i ∈ S(v) and S(r) = S(v). We note u|σ for σ ⊂ ι the evaluation u limited to ratings over the set of items

σ: u|σ satisfies S(u|σ) = σ∩S(u) and u|σ,i = ui for all i ∈ σ∩S(u). Given a constant β ∈ R and a set of ratings σ ⊂ ι ,
we define the constant evaluation w = β|σ by wi = β for all i in σ and S(w) = σ. We note u the average rating of

evaluation u. Similarly, u|σ for sigma ⊂ ι is the average rating of u over items in sigma∩ S(u). We define the inner

product of u ∈ Ξ and x ∈ R
n by 〈u,x〉 = ∑i∈S(u) xiui and the inner product of u,w ∈ Ξ by 〈u,w〉 = ∑i∈S(u)∩S(w) wiui,

and note ‖x‖2
l2(σ) = 1

card(σ) ∑i∈σ x2
i , ‖u‖2

l2
= 1

card(S(u)) ∑i∈S(u) u2
i , 〈x(1),x(2)〉σ = ∑i∈σ x(1)

ix
(2)

i.

Ratings are inaccurate if only because there are malicious users. We say that a CFS is stable if a single user in

a large user set doesn’t make a difference. This is often the case if we take averages over the entire database for

example. However, it is necessary to make some assumptions about the evaluation set χ for stability to be possible.

For example, we must assume that, for every item, there is a large set of evaluations with corresponding ratings.

Otherwise, if a given item is rated by only a few users, and these users have given inaccurate ratings, then the

predictions regarding this item may be inaccurate. Among the CFS schemes that are not stable are the N closest

neighbor schemes unless N is large because these systems assume that the N closest neighbors have given accurate

ratings. All schemes considered in this paper are stable under reasonable assumptions .

Because the mapping from user ratings to R is arbitrary, a CFS must be independent of such a mapping or normal-

ization . For example, we can map ratings such as {good, average, bad} to numerical values {−10,0,10} or {1,2,3}
and clearly, both choices are equally sensible. For α > 0,β ∈ R, let mα,β(u) = αu+β , we say that a CFS is normal-

ization invariant if the predictor Pα,β obtained with the evaluation set mα,β(χ) relates to the predictor P obtained with

the set χ by Pα,β(mα,β(u)) = mα,β(P(u)) = αP(u)+β for all α > 0,β ∈ R and all u ∈ Ξ. All CFS considered in this

paper are normalization invariant.

Scale and Translation Invariance (STI) states that each user may have its own scale when rating items and is a

stronger condition than normalization invariance. If

P(mα,β(u)) = mα,β(P(u))

for all α ≥ 0,β ∈ R that is P commutes with mα,β, then the predictor is said to be STI. Similarly, if replacing any

evaluation u ∈ χ by mα,β(u) for α > 0,β∈ R doesn’t change the predictor P and that such a P is ST I for all χ, we say

that the CFS is STI. This property is based on the assumption that each user has its own static frame of reference that

needs to be compensated for: some users might tend to be naturally generous, others might be more critical, whereas

others might rate most items as roughly similar while others tend to use more often extreme ratings. Note that we do

not allow α to be negative: a user who likes item A and dislikes item B is not equivalent to a user who dislikes item

A and likes item B. A predictor is scale invariant if P(αu) = αP(u) for all 0 < α ∈ R and all u ∈ Ξ and it is translation

invariant if P(u+β) = P(u)+β for all α,β ∈ R and all u ∈ Ξ. Notice that a STI CFS is automatically normalization

invariant because the predictor is invariant under a transformation mα,β of the evaluation set χ so that Pα,β = P and P

commutes with mα,β because it is STI.

All schemes considered in this paper are translation invariant except for Per Item Average and Eigentaste 2.0.

In the case of memory-based CFS, it is documented [3] that non translation invariant (cosine-based) are inferior

to translation invariant ones (Pearson-based). On the other hand, there is no comparable studies regarding scale

invariance. Assuming that the scale of the ratings is not useful information, we argue that it is actually better to

normalize the ratings. Indeed, otherwise a user with more extreme ratings will count more than a user with more

modest ratings. For example on range from 1 to 10, if user A gives movie 1 a 10 and movie 2 a 1 whereas user B

gives movie 1 a 4 and movie 2 a 6, we have two users in disagreement and without scale invariance, user B’s opinion

is going to be overwritten by user A.

2.1. Measuring the Accuracy. Many authors use the Mean Absolute Error [3, 8] of the prediction error where only

a subset of items σ ⊂ S(u) is assumed to be known and the rest is hidden

MAE(u,σ) =
∑i∈S(u)−σ

∣

∣P(u|σ)i −ui

∣

∣

card(S(u)−σ)

and one important MAE error measure is obtained by subtracting a single element i from S(u) and setting σ =
S(u)−{i}, that is S(u)−σ = {i},

ALLBUT 1(P,u, i) =
∣

∣P(u|S(u)−{i})i −ui

∣

∣ .

Canny [4] pointed out that such an AllBut1 error measure is the most realistic error measure given a large enough

database. Another argument for using the AllBut1 measure is that there are many different error measures for vector

elements, when S(u)−σ is not a singleton, whereas it is unique up to a factor when the error over one element is

concerned (AllBut1). In the remainder of this paper, we will use the AllBut1 Mean Absolute Error (AllBut1 MAE)

[3] to measure the prediction error of a predictor P over a test evaluation set χ′ ⊂ Ξ

(1)
1

card(χ′) ∑
u∈χ′

1

card(S(u)) ∑
i∈S(u)

AllBut1(P,u, i).

With some schemes such as Eigentaste 2.0 or STI Eigentaste the sum over S(u) above must exclude items that are

part of the standard set of items because the predictor assumes that some fixed items have been rated. Note that some

authors prefer the NMAE which is defined as the MAE divided by the range of observed rating values [7].

3. COMPETITIVE COLLABORATIVE FILTERING SYSTEMS

We begin by describing the most commonly used learning-free schemes. The simplest CFS is given by Paverage(u)=
ū which says that a user is likely to rate new items as the average of its known ratings and it is STI. While nearly as

accurate as other schemes using AllBut1 MAE as measure, it proves of little use in practice and is only used as for

benchmarking. Indeed, it doesn’t provide any order on the items since it predicts they are all rated equal.

The next scheme is the Per Item Average or POP [7] given by Pper item(u)i = 1
card(Si(χ)) ∑w∈Si(χ) wi where Si(χ) =

{w ∈ χ : i ∈ S(w)} and it can be described as predicting that any given user will like any given item as much as the

average rating for that item. Most applications where users are invited to rate items use Per Item Average implicitly

by averaging the ratings. We argue that it is probably the best one can do, if nothing is known about the current user.

Happily, the literature and our experimental results show that it is possible to leverage the knowledge we have of the

current user to improve predictions.

Finally, there is one more commonly used learning-free scheme [8] called Bias From Mean which tends to outper-

form the previous two in our experiment,

(2) Pbias(u)i = ū+
1

card(Si(χ)) ∑
w∈Si(χ)

wi −w.

It combines both the average and the Per Item Average approaches in a single scheme. It does better than the

Per Item Average because it uses some information about the current user (mean rating).

Assuming that the card(Si(χ)) are stored for i ∈ ι , all of three of these schemes can be updated in constant time

with respect to the number of users whenever a value is changed or a user is added. Queries are in constant time.

The Bias From Mean scheme is normalization invariant as a corollary of the following proposition by setting

ω≡ 1.

Proposition 3.1. Weighted sum CFS of the form

P(u)i = ū+
1

card(Si(χ))

∑w∈Si(χ) ω(u,w)(wi − w̄)

∑w∈Si(χ) |ω(u,w)|

item 1 item 2 item 3 item 4

u1 unrated 5 unrated 3

u2 2 unrated 4 unrated

u3 unrated 3 unrated 1

u4 1 unrated 5 unrated

u5 4 5 4 3

u6 1 3 5 unrated

TABLE 2. Example of an evaluation set where ratings are from 1 (very poor) to 5 (very good).

for all i ∈ ι , are normalization invariant if and only if ω is normalization invariant:

ω(mα,β(u),mα,β(w)) = ω(u,w).

In the proposition above, whenever ω(u,w) which might measure the similarity between u and w, depends on u,

CFS is memory-based. A commonly used normalization invariant choice is ω= ωPearson where

ωPearson(u,w) =
〈u−u,w− w̄〉

√

〈u|S(w) −u,u|S(w) −u〉〈w|S(u) − w̄,w|S(u) − w̄〉
,

is the Pearson correlation [12] between u and w over S(u)∩S(w). There exists variants of this scheme [8, 3] using

case amplification where

ω(u,w) = ωPearson(u,w) |ωPearson(u,w)|ρ−1

with ρ ≥ 1. Intuitively, case amplification tends to favor close neighbor as small values raised to a power become

negligible, and it improves accuracy for some values of ρ such as ρ ≈ 2.5 [3].

Per Item Average, Bias From Mean and all the memory-based schemes we discussed are not STI. We will propose

STI variants and show that they tend to perform better.

4. SCALE AND TRANSLATION INVARIANT CFS

We say that u and v are equivalent, u ∼ v, if there exists α > 0,β∈ R such that αui +β = vi for all i ∈ S(u)∩S(v),
ui = ū when i ∈ S(u)−S(v), and vi = v̄ when i ∈ S(v)−S(u). In other words, u and v contain the same information as

they are identical up to a change of scale over S(u)∩S(v) and contain no information elsewhere (ui = ū and vi = v̄).

In Tab. 2, for example, evaluations 1 and 3 are equivalent by translation (off by 2), whereas evaluations 2 and 4 are

equivalent by scale in the sense that 2(u(2) −u(2)) = u(4) −u(4).

We can show that the condition αui +β = vi can be replaced by the simpler condition that vi − v̄ = α(ui − ū).

Proposition 4.1. u ∼ v if and only if there exists 0 < α ∈ R such that vi − v̄ = α(ui − ū) for all i ∈ S(u)∩S(v), ui = ū

when i ∈ S(u)−S(v), and vi = v̄ when i ∈ S(v)−S(u).

To see why this is true, assume u∼ v then αui +β= vi when i∈ S(u)∩S(v), and so v̄ = αū+β and vi− v̄ = α(ui− ū).
The reciprocal is true, if ui = ū when i ∈ S(u)−S(v), and vi = v̄ when i ∈ S(v)−S(u) and vi − v̄ = α(ui − ū) for some

α > 0 ∈ R for all i ∈ S(u)∩S(v), then u ∼ v by choosing β = −αū+ v̄.

Because we can show that the condition that u and v differ only in scale (αui + β = vi) can be expressed by

vi − v̄ = α(ui − ū), the next step is to subtract from ratings their means and divide by their norm. This normalization

is justified because STI schemes should not depend on either the average or the norm of ratings: by normalizing

evaluations we ensure that resulting schemes are STI. Whereas the mean of an evaluation is well defined, the norm

of a set of ratings can be defined in many ways especially because the number of ratings may differ from a user to

another. Given a norm ‖·‖, we can define a map m‖·‖(u) from all incomplete vectors (Ξ) to R
n by

(3) m‖·‖(u)i =

{

ui−ū

‖(uk−ū)k∈S(u)‖ i ∈ S(u)

0 i /∈ S(u)

where by convention, 0/0 = 0 and ‖·‖ is any norm. Empirically, we found that lp norms were a good choice and

we write mp = m‖·‖lp
. Because the lp norm, defined the way we did, is normalized against the number of ratings, it

doesn’t tend to grow as users rate more items which intuitively means that we don’t penalize users who rate a large

number of items. We also consider µp = m‖·‖lp
×card(S(·)) where the lp norm is multiplied by the number of known

ratings. The maps µp will penalize users who rated a large number of items and scale down their ratings accordingly.

Many other norms are possible, but we only choose these two as representatives.

item 1 item 2 item 3 item 4

m2(u
(1)) 0 1 0 −1

m2(u
(2)) −1 0 1 0

m2(u
(3)) 0 1 0 −1

m2(u
(4)) −1 0 1 0

m2(u
(5)) 0

√
2 0 −

√
2

m2(u
(6)) −

√

3/2 0
√

3/2 0

TABLE 3. Evaluations from Tab. 2 transformed using map m2. We see evaluations 1 and 3 as well

as evaluations 2 and 4 are equivalents.

Given two users in disagreement but with different amplitude, u(1) =(−1,1,unrated) and u(2) =(10,−10,unrated),
a STI scheme would first normalize them so that

mp(u
(1)) = µp(u

(1)) = −mp(u
(2)) = −µp(u

(2)).

And therefore, they would cancel each other. On the other hand, for two users with different rating sets, such as

u(1)′ = (−1,1,−1,1) and u(2)′ = (−1,1,unrated,unrated), we can either say that the evaluations have the same norm

(mp) or else that evaluation u(1)′ has greater norm from the fact that it rated twice the number of items (µp). As we

shall see, it is possible to avoid these difficulties by using a standard set of items rated by all users, but in general, we

must cope with many perfectly valid normalizations and choose based on empirical results.

Observe that for any α > 0,β ∈ R, m‖·‖(αu + β) = m‖·‖(u) so that m‖·‖ is defined over equivalence classes. The

next lemma makes this precise whereas Tab. 3 gives an example.

Lemma 4.2. u ∼ v if and only if m‖·‖(u) = m‖·‖(v).

Classes of equivalence can be made into an Hilbert space H(m‖·‖), and in this sense, our approach to CFS design

is geometrical. For example, w + v is defined by the equivalence class of all u’s such that mp(u) = mp(w)+ mp(v).
Similarly, the inner product between w and r is defined by 〈w,v〉p = 〈mp(w),mp(v)〉 and the norm of u is ‖mp(u)‖

l2
.

We will define our novel STI schemes using m2 and µ2.

5. LEARNING-FREE SCALE AND TRANSLATION INVARIANT CFS

We consider learning-free predictors of the form P(u) = ∑k
i=0 ωi(u)v(i) where v(0), . . . ,v(k) ∈ R

n and ωi : Ξ → R

for i ∈ {0, . . . ,k} are corresponding functions mapping evaluations to coefficients. If P is STI then we must have

P(u+β) = P(u)+β and so, we choose v0 = 1. We found empirically that it was efficient to use regression and thus,

to set the coefficients ωi(u) such as to minimize

∆2(P,u) =
∥

∥P(u)|S(u) −u
∥

∥

l2(S(u))
.

In other words, we choose the coefficients in such a way as to make P(u) as close as possible to u. This choice also

makes P STI. The simplest such scheme is defined by k = 0 and it amounts to P(u) = u.

The next step is to introduce a STI variant of both the Per Item Average and Bias From Mean schemes. Thus, we

define the first-order STI non personalized scheme (ST IN1(m‖·‖)) with

v
(1)
i =

1

card(Si(χ)) ∑
u∈Si(χ)

m‖·‖(u)i

where v
(1)
i is the ith component of v(1) and card(Si(χ)) is a short-hand for the number of evaluations u such that

i ∈ S(u). Intuitively v(1) is the average of the evaluations u ∈ χ over the space m‖·‖(χ). Minimizing the residual

energy

∥

∥

∥
u−PST IN1(m‖·‖)(u)

∥

∥

∥

2

l2(S(u))
and defining v

(1)
u = v(1) −v

(1)
|S(u), we have

PST IN1(m‖·‖)(u) = u+

〈

u,v
(1)
u

〉

〈v(1)
u ,v

(1)
u 〉S(u)

v
(1)
u .

See Appendix for a practical example of how to compute efficiently ST IN1(m2).

We can extend this framework further using several vectors v(1),v(2), . . . ,v(k) ∈ R
N by defining

m
v(1),v(2),...,v(k)

‖·‖ (u)i =

ui−u′j
∥

∥

∥(uk−u′
k)k∈S(u)

∥

∥

∥

i ∈ S(u)

0 i /∈ S(u)

where u′ = Pro jv1,v2,...,vk
(u) is the vector of the form α

v(1)v
(1) + . . .+ α

v(k)v
(k) where α

v(1) , . . . ,αv(k) ∈ R are chosen

to minimize
∥

∥

∥
u− (α

v(1)v
(1) + . . .+α

v(k)v
(k))

∥

∥

∥

l2
.

Just like with m‖·‖, there are equivalence classes corresponding to m
v(1),...,v(k)

‖·‖ . Explicitly, we define a second-order

STI non personalized scheme (ST IN2(m‖·‖)) by using v(0),v(1) as previously defined, using the specified norm, and

v
(2)
i =

1

card(Si(χ)) ∑
u∈Si(χ)

mv(0),v(1)

∞ (u)i.

Again, v2 can be thought of an average over mv(0),v(1)

∞ (χ). Notice that we always use the l∞ norm when computing

v(2), irrespective of the choice that was make for v(1) as it was found to slightly improve results basis. Just like with

ST IN1(m‖·‖), we minimize the residual energy u−PST IN2(m‖·‖)(u) by choosing

PST IN2(u) = PST IN1(u)+

〈

u,v
(2)
u

〉

〈v(2)
u ,v

(2)
u 〉S(u)

v
(2)
u

where v
(2)
u = v(2) −Pro j

v(0),v(1)(u). Because v(1) and v(2) are computed once and updated only when there are new

ratings, PST IN2 is easy to implement.

Higher order ST INx schemes exists, but are likely to be of little practical use because the difference in practice

between ST IN1 and ST IN2 is already small (see Tab. 4). ST INx schemes can be updated in constant time with respect

to the number of users and they are always STI.

6. MEMORY-BASED SCALE AND TRANSLATION INVARIANT CFS

We define the STI equivalent of the Pearson correlation predictor called ST I Pearson(m2) by using the form

PST IPearson(m2)(u)i = u+
〈τ(u,χ),u〉

〈τ(u,χ),τ(u,χ)〉S(u)
τ(u,χ)

and τ(u,χ) is the weighted average over the space m2(χ)

τ(u,χ) =
∑w∈χ, i∈S(w) ω(u,w)m2(w)

∑w∈χ, i∈S(w) |ω(u,w)|
where by convention 0/0 = 0. In this last equation, we choose

ω(u,w) = 〈m2(u),m2(w)〉 |〈m2(u),m2(w)〉|ρ−1

and ρ≥ 1 is a case amplification power where ρ = 2.5 is typically chosen. Note that despite the name “ST I Pearson”,

ω(u,w) is not correlation-based, but uses a simple scalar product in the m2(Ξ) Hilbert space and as a side-effect,

it can be computed faster that the Pearson correlation assuming that the m2(w) for w ∈ χ are precomputed. As for

ST I Pearson(µ2), it is identical to ST I Pearson(m2) except that we replace every occurrence of m2 by µ2.

7. EIGENTASTE 2.0 AND STI EIGENTASTE

The Jester data set [7] was acquired on the web by asking users to first rate a common set of jokes and then

providing these users with recommendations. The Eigentaste 2.0 scheme is a collaborative filtering system which

was designed specifically for this data set. It uses a normal set γ of 10 jokes that all users have rated. The basic

idea is that we can greatly simplify the analysis if we have a normal set since the restriction of the evaluations to

this normal set becomes a vector space. Intuitively, one might expect that the existence of a normal set can be used

to outperform schemes that don’t make use of such a normal set. The Eigentaste 2.0 scheme applies a Principal

Component Analysis, also sometimes called a Karhunen-Loève transform, on this vector space.

The authors Eigentaste 2.0 normalize the ratings by subtracting the per item mean and dividing this bias from mean

by the standard deviation of these ratings. We implement Eigentaste 2.0 both with and without this normalization of

the items in the normal set and find that this per item normalization actually degrade the accuracy in our experi-

ment possibly because our tests involve smaller training sets. Consequently, we only present the simpler version of

Eigentaste 2.0 without normalization.

We first compute the 10×10 matrix

U =
1

card(χ) ∑
u∈χ

u|γu
T
|γ

where u|γ is treated as a vector of length 10 and uT
|γ is the transpose of this vector. We then find two dominant

eigenvectors υ(1) and υ(2) of U , that is two eigenvectors corresponding to the two highest eigenvalues. This allows us

to map any evaluation u ∈ χ to the (x,y) coordinates

(
〈

u|γ,υ(1)
〉

,
〈

u|γ,υ(2)
〉

).

We then use these two eigenvectors to partition the evaluation set χ in 4η2 clusters where η ∈N is a positive integer

(see Fig. 1). To do so, first find Mi = maxu∈χ

∣

∣

∣

〈

u|γ,υ(i)
〉∣

∣

∣
for i = 1,2 to define the range of values in the eigenplane.

This division of the plane into ever smaller rectangles is easy to visualize, but for implementation purposes, we need

a precise formula such as what we present next. Given u ∈ χ, let λi be the logarithm of
〈

u|γ,υ(i)
〉

defined as

λi(u) = max
{

k ∈ N :

∣

∣

∣

〈

u|γ,υ(i)
〉∣

∣

∣
/Mi ≤ 1/2k−1

}

and λi,η(u) = max{1,min{η,λi}} for i = 1,2. Define integer-valued functions I(u),J(u) satisfying −η ≥ I(u),J(u)≥
−η and I(u),J(u) 6= 0 with

I(u) = λ1,η(u)sign
(〈

u|γ,υ(1)
〉)

and

J(u) = λ2,η(u)sign
(〈

u|γ,υ(2)
〉)

where sign(x) = 1 when x ≥ 0 and sign(x) = −1 otherwise.

These functions I,J allow us to determine in which cluster of the eigenplane any given evaluation is. That is,

u,v ∈ χ are in the same cluster if and only if I(u) = I(v) and J(u) = J(v). Correspondingly, we can look at the set of

all evaluations in a given cluster χi, j = {u ∈ χ : I(u) = i,J(u) = j}.

Once we have determined in which cluster of evaluations u belongs, it is then reasonable to simply predict that u

will rate according to the per item average using its neighbors (evaluations in the same cluster). Thus, for each cluster

χi, j, we compute the averages Ai, j ∈ R
n just like we did with the Per Item Average scheme,

(Ai, j)k =
1

card(u ∈ χi, j,k ∈ S(u)) ∑
u∈χi, j ,k∈S(u)

uk.

The Eigentaste predictor is then defined by P(u) = AI(u),J(u).

Because the averages A and the eigenvalues υ(i) need only the be updated when new data is added, the queries

can be done in constant time with respect to the number of users. For high η, we have more clusters and thus, better

granularity, but each cluster contains less evaluations and thus, averages might be less reliable. We choose η = 4 as it

is the value reported in [7] and it is found empirically to be a good choice. Eigentaste 2.0 is not STI. It is interesting to

note that in the limit case where there is a single cluster of evaluations, this scheme amounts to the Per Item Average

CFS.

To produce a STI variant of the Eigentaste algorithm, we use exactly the same algorithm as Eigentaste 2.0 except

that we replace u throughout by
ui−ū|γ

‖u|γ−ū|γ‖l2

in the computation of the eigenvectors and clusters. Notice that unlike the

maps m‖·‖, this map doesn’t depend on the number of items u has rated since it relies exclusively on the items in the

standard set γ.

We note the set of evaluations in each cluster by χST I
i, j instead of χi, j and we have integer-valued functions IST I and

JST I corresponding to I and J. The per cluster averages are given by

(AST I
i, j)k =

1

card(u : u ∈ χST I
i, j ,k ∈ S(u))

∑
u∈χST I

i, j ,k∈S(u)

ui − ū|γ
‖u|γ− ū|γ‖l2

,

FIGURE 1. Eigentaste clusters (η = 4).

just like the corresponding Ai, j. The STI Eigentaste predictor is defined by regression as P(u) = ū+αAIST I(u),JST I(u)

where α is chosen to minimize
∥

∥

∥
u− ū−αAIST I(u),JST I(u)

∥

∥

∥

l2
.

One could view STI Eigentaste as Eigentaste 2.0 with regression and per user normalization. STI Eigentaste is STI.

While much more lightweight than memory-based schemes, Eigentaste schemes are not learning-free. The av-

erages Ai, j and AST I
i, j can be updated in constant time with respect to the number of users if we assume that the

eigenvectors are constant, however once we take into account that the eigenvectors will change albeit slowly as we

add more users, the update cost is linear in the number of users O(m). Computing the new eigenvectors themselves is

a constant time operation and it only need to be done when more users are added and not when users add ratings. We

argue that having slow updates is not as much a problem as having slow queries since updates can be implemented

off-line as a background task.

8. EXPERIMENTAL RESULTS

8.1. Data Sets. The EachMovie data set is a the result of a movie rating web site. The DEC Systems Research Center

ran this web site for 18 months and 72,916 users entered a total of 2,811,983 numerical ratings for 1,628 different

movies (films and videos). It has ratings from 0.0 to 1.0 in increments of 0.2.

The Jester data set is the outcome of a joke rating web site [7]. Users are rate a fixed number of jokes and they

are then presented with recommendations. According to the documentation, the Jester data set has continuous ratings

from -10.0 to 10.0 however we found that very few ratings (less than 1%) were beyond this range.

As a basis for comparison, we used Amazon SOAP open API to retrieve the information about Music CDs. On

June 20th 2003, metadata about all Music CDs from the web site Amazon.com were downloaded and only the 5,958

CDs with ratings were kept. The API provides the average rating for each item. We present the plots giving the

frequency of various ratings on three data sets: EachMovie, Jester, and Amazon (see Tab. 2). We notice that users

tend to give positive ratings more often than negative ratings and maybe it can be explained by saying that users tend

to rate what they like.

8.2. Methods. We used case amplification on both Pearson and ST I Pearson with a power of ρ=2.5 as this improves

results with both algorithms and is the power value chosen by other authors [3]. We only kept evaluations with at least

20 ratings as in [8]. For each algorithm, we computed the AllBut1 MAE (see equation 1) using enough evaluations to

have a total of 50,000 ratings as a training set (χ) and another set of evaluations with a total of at least 100,000 ratings

as the testing set (χ′), and we repeated the process 6 times over different pairs χ,χ′ for each data set keeping only

the average and the standard deviation [8]. Using larger training sets is difficult when benchmarking memory-based

schemes because of the computational burdens. Because all ratings in the testing set are hidden once, each of the 6

pairs χ,χ′ involves 100,000 predictions. The only exception to this rule is with Eigentaste and STI Eigentaste where

we never hide one of the 10 items in the standard set. The typical relative standard deviation (N = 6) for AllBut1 MAE

values in both data sets is 5%.

As an additional step, we attempt to improve predictions by replacing predicted ratings above or below the allowed

range of values ([0.0,1,0] for EachMovie and [−10.5,10.5] for Jester) by the nearest value inside the range: this step

proves futile as it doesn’t improve results in a noticeable way over such large sets. In practice, such a rounding step

might still be implemented for practical reasons.

100000

200000

300000

400000

500000

600000

700000

800000

0.0 0.2 0.4 0.6 0.8 1.0

N
um

be
r

of
 r

at
in

gs

0

10000

20000

30000

40000

50000

60000

70000

-1
2.

0
to

 -
11

.0

-1
1.

0
to

 -
10

.0

-1
0.

0
to

 -
9.

0

-9
.0

 to
 -

8.
0

-8
.0

 to
 -

7.
0

-7
.0

 to
 -

6.
0

-6
.0

 to
 -

5.
0

-5
.0

 to
 -

4.
0

-4
.0

 to
 -

3.
0

-3
.0

 to
 -

2.
0

-2
.0

 to
 -

1.
0

-1
.0

 to
 0

.0

0.
0

to
 1

.0

1.
0

to
 2

.0

2.
0

to
 3

.0

3.
0

to
 4

.0

4.
0

to
 5

.0

5.
0

to
 6

.0

6.
0

to
 7

.0

7.
0

to
 8

.0

8.
0

to
 9

.0

9.
0

to
 1

0.
0

10
.0

 to
 1

1.
0

11
.0

 to
 1

2.
0

N
um

be
r

of
 r

at
in

gs

0

500

1000

1500

2000

2500

3000

3500

[1.0,2.0) [2.0,3.0) [3.0,4.0) [4.0,5.0) 5.0

N
um

be
r

of
 r

at
in

gs

FIGURE 2. Frequency Bar Charts for the EachMovie, Jester, and Amazon Album Ratings.

8.3. Results. In EachMovie, we find 36,656 users with at least 20 ratings each for a total of 2,579,985 ratings at an

average of 70.3 ratings per evaluations. Movies are labeled using integers from 1 to 1,649. The density of ratings over

the chosen users is at about 4%. The typical AllBut1 MAE for EachMovie is 0.2. Because EachMovie has a rating

range of 1, normalized MAE (NMAE) are the same as the MAE values (AllBut1 NMAE=AllBut1 MAE).

In Jester, a total of 756 users with ratings outside the -10.5 to 10.5 range were removed. One value was a clear

outlier (87.09). There are 17,154 evaluations with at least 20 ratings for a total of 894,584 ratings with an average of

52.2 ratings per evaluation. There are 100 jokes labeled from 1 to 100. The density of ratings is therefore 52.2%. For

(EachMovie) AllBut1 MAE std. dev. query cost

Average (STIN0) 0.232 0.001 O(1)
Per Item Average 0.223 0.003 O(1)
Bias From Mean 0.203 0.001 O(1)

ST IN1(µ2) 0.203 0.005 O(1)
ST IN2(µ2) 0.198 0.004 O(1)
ST IN1(m2) 0.195 0.002 O(1)
ST IN2(m2) 0.194 0.002 O(1)

ST I Pearson(µ2) 0.194 0.01 O(m)
Pearson 0.187 0.01 O(m)

ST I Pearson(m2) 0.166 0.03 O(m)

(Jester) AllBut1 MAE std. dev. query cost

Per Item Average 4.06 0.03 O(1)
Eigentaste 2.0 3.96 0.04 O(1)

Average (STIN0) 3.71 0.05 O(1)
Bias From Mean 3.42 0.06 O(1)

ST IN2(µ2) 3.37 0.06 O(1)
ST IN1(µ2) 3.35 0.06 O(1)
ST IN1(m2) 3.35 0.06 O(1)
ST IN2(m2) 3.32 0.06 O(1)

STI Eigentaste 3.30 0.07 O(1)
Pearson 3.24 0.10 O(m)

ST I Pearson(µ2) 3.07 0.16 O(m)
ST I Pearson(m2) 3.05 0.18 O(m)

TABLE 4. AllBut1 Mean Absolute Error (MAE) of different normalization invariant CFS for the

EachMovie and Jester data sets. The complexity of the queries relative to the number of users m

is given. For EachMovie, ratings ranged from 0 to 1 in increments of 0.2 whereas for Jester, the

range of values is given to be -10.0 to 10.0. Average and standard deviations where computed over

6 trials of at least 100,000 predictions each with training sets including at least 50,000 ratings.

Eigentaste and STI Eigentaste, we used joke numbers 5,7,8,13,15,16,17,18,19,20 as a standard set rated by all users.

In our implementation of the Eigentaste algorithms, we compute the eigenvectors from the training set each time and

do not use the eigenvectors provided with the documentation of the data set. In this sense, we penalize Eigentaste as

the eigenvectors could be computed over an arbitrarily large number of users without running time penalty. However,

we also penalize STI Eigentaste, Bias From Mean, Per Item Average, and ST INx schemes as they all stand to benefit

from a large number of users. Nevertheless, our experiment show that Eigenstate 2.0 outperforms Per Item Average

as reported in [7]. For both Eigenstate and STI Eigenstate, we chose η = 4. If we divide the typical AllBut1 MAE of

3.75 by the range of values (20.0), we get a NMAE of 0.19 which implies an accuracy similar to that of EachMovie

data set. It was already reported [7] that these two data sets appear to lead to the same NMAE even though they are

very different.

Overall, our results (see Tab. 4 and Fig. 3) indicate that ST IN2(m2) outperforms Bias From Mean by at least 3%,

it outperforms Per Item Average by at least 15%, and is within 4% of the memory-based Pearson scheme while being

significantly faster. ST IN2(µ2) also performs well: only about 2% less accurate than ST IN2(m2). ST I Pearson(m2)
outperforms Pearson in this study by at least 6%. Because both schemes based on µ2 and m2 perform well, we have

evidence that STI is a desirable property. As additional evidence, note that STI Eigentaste doesn’t use either m2 or µ2

and it also outperforms significantly Eigentaste 2.0.

While ST IN1(µ2) performs as well as Bias From Mean for the EachMovie data set, it lags behind ST IN1(m2) by

4%. On the other hand, in both data sets, ST IN2(m2) performs within 2% of ST IN2(µ2). Because schemes based on

m2 tend to outperform schemes based on µ2, it appears that it is better not to penalize frequent raters, that is, not being

too democratic. Our tests reveal that if a standard item set rated by all users is available, Eigentaste schemes such as

STI Eigentaste are competitive.

There is only one instance in our experiment where a STI scheme did not systematically outperform or at least

match the performance of the corresponding non-STI scheme: ST I Pearson(µ2) lags behind Pearson on the Each-

Movie data set by about 4%. However notice that it outperforms Pearson by about 6% on the Jester data set so that

overall ST I Pearson(µ2) and Pearson have comparable accuracy.

The storage requirements for the ST INx schemes is O(xn + 1) where n is the number of items. For example, the

EachMovie data set has at most 1949 items and because we use 32 bits floating point numbers for ratings even though

they only have 6 possible values, ST IN2 has a storage requirement of 15 KB. Similarly, the storage requirement

for the Jester data set which has 100 items is under 1 KB. Therefore ST INx schemes can easily run on very small

devices. Comparatively, memory-based schemes such as Pearson and ST I Pearson require around 256 KB to store a

training set with at least 50,000 ratings, additional memory might be needed to buffer computations, and since a full

database of ratings is needed there are privacy issues. Note that 256 KB is not enough to store the whole EachMovie

database but just a sample training set as the whole database in a flat binary file occupies around 22 Megs. As far as

the computational cost of the ST INx predictors, we can compute regression coefficients in time O(card(S(u))) where

card(S(u)) is the number of items the active user has rated and typically card(S(u))≪ m so that the total computation

cost is close to (1 + x)n operations which is O(nx). As with the memory-based scheme it is possible to reduce the

computational burden by requesting predictions over only a subset of ι . Comparatively, memory-based schemes have

0.16

0.17

0.18

0.19

0.2

0.21

0.22

0.23

0.24

S
T

IN
1(

µ 2
)

S
T

IN
1(

m
2)

S
T

IN
2(

µ 2
)

S
T

IN
2(

m
2)

B
ia

s
F

ro
m

 M
ea

n

A
ve

ra
ge

P
er

 It
em

S
T

I P
ea

rs
on

(µ
2)

S
T

I P
ea

rs
on

(m
2)

P
ea

rs
on

3

3.2

3.4

3.6

3.8

4

4.2

E
ig

en
ta

st
e

2.
0

S
T

I E
ig

en
ta

st
e

S
T

IN
1(

µ 2
)

S
T

IN
1(

m
2)

S
T

IN
2(

µ 2
)

S
T

IN
2(

m
2)

B
ia

s
F

ro
m

 M
ea

n

A
ve

ra
ge

P
er

 It
em

S
T

I P
ea

rs
on

(µ
2)

S
T

I P
ea

rs
on

(m
2)

P
ea

rs
on

FIGURE 3. AllBut1 Mean Absolute Error (MAE) on the EachMovie (top) and Jester (bottom) data

sets (see Tab. 4).

a computational cost O(mn) and so they are at least two orders of magnitude slower in practice (m = card(χ)≫ 1+x).

Eigentaste schemes have roughly the same storage and computational characteristics as ST INx.

9. APPENDIX: NUMERICAL EXAMPLE

We present an example based on Tab. 2 for the ST IN1(m2) scheme which is one of the most successful in our

experiment and also the easiest to implement efficiently. We use the same notation as in the table. The first step

to make predictions based on this data set is to compute the m2(χ) = {m2(u
(1)),m2(u

(2)), . . . ,m2(u
(6))} from χ =

{u(1),u(2), . . . ,u(6)} as it was done in Tab. 3. This can be done offline irrespective of the current user.

As an example, we show how to compute m2(u
(1)) and m2(u

(6)). Given u(1) = (unrated,5,unrated,3), we

have that u(1) = 5+3
2

= 4 hence the bias from mean is given by u(1) − u(1) = (unrated,1,unrated,−1). Finally,
∥

∥

∥
u(1) −u(1)

∥

∥

∥
=

√

12+(−1)2

2
= 1 and thus, m2(u

(1)) = (0,1,0,−1). For m2(u
(6)), the average is 3 so that the bias from

mean is (−2,0,2,unrated) and the l2 norm is
√

8/3 = 2
√

2/3 hence, m2(u
(6)) =

√

3/2(−1,0,1,0).

Computing µ2(u
(1)) and µ2(u

(6)) would be similar except that we must also divide by the number of ratings each

evaluation contains: 2 and 3 respectively. Hence, µ2(u
(1)) = (0,1/2,0,−1/2) and µ2(u

(6)) =
√

1/6(−1,0,1,0). Note

that µ2(u
(6)) is scaled down because it contains more ratings.

Recall that ST IN1(m2) predictions are built from two vectors: v(0) and v(1). We have v(0) = 1 and we must

compute v(1) using the formula:

v
(1)
i =

1

card(Si(χ)) ∑
u∈Si(χ)

m2(u)i.

The formula requires us to know the sets Si(χ) for all i ∈ ι . By inspection, we have S1(χ) = {u(2),u(4),u(5),u(6)},

S2(χ)= {u(1),u(3),u(5),u(6)}, S3(χ)= {u(2),u(4),u(5),u(6)}, S4(χ)= {u(1),u(3),u(5)}, and so card(S1)= 4, card(S2)=
4, card(S3) = 4, and card(S4) = 3. Hence, by using Tab. 3, we have

v(1) = (
−2−

√

3/2

4
,

2+
√

2

4
,

2+
√

3/2

4
,
−2−

√
2

3
,) ≈ (−0.81,0.85,0.81,−1.14)

How do we use this in practice? Let the evaluation of the current user be u = (2,1,unrated,unrated). In this

case S(u) = {1,2}. We first compute the average u = 2+1
2

= 3
2

so that u− u = (1
2
, −1

2
,unrated,unrated), and thus

P(u) ≈ 3
2
+α(−0.81,0.85,0.81,−1.14) and we must solve for α by regression so as to minimize the residual energy

of u−P(u). A convenient formula is

α =
〈v(1) −v

(1)
|S(u),u−u〉

〈v(1) −v
(1)
|S(u),v

(1) −v
(1)
|S(u)〉S(u)

.

We have that v
(1)
|S(u) ≈ (−0.81,0.85,unrated,unrated) and so v

(1)
|S(u) ≈ 0.04. Doing some arithmetic, we get 〈v(1)

|S(u) −

v
(1)
|S(u),v

(1)
|S(u) − v

(1)
|S(u)〉 ≈ 1.38 whereas 〈v(1)

|S(u) − v
(1)
|S(u),u− u〉 ≈ −0.83. Hence, α ≈ −0.83

1.38
≈ −0.60. So that, P(u) ≈

3
2
+0.60(−0.81,0.85,0.81,−1.14) ≈ (2,1,1,2.2).
Therefore the scheme ST IN1(m2) predicts that this new user is going to give ratings of 1 and 2.2 to items 3 and 4

respectively. Comparatively, the Per Item Average scheme would predict 9
2

and 7
3

respectively.

Acknowledgement. The author would like to thank Compaq Research and professor Ken Goldberg for convenient

access to the EachMovie and Jester databases respectively. He would also like to thank Sean McGrath for providing

the script which retrieved ratings from the web site Amazon. The author is supported by a Canadian NSERC/CRNSG

grant.

Source code and scripts necessary to reproduce the experimental results are freely available from the author.

REFERENCES

[1] Amrani, M. Y. E., S. Delisle, and I. Biskri (2001) , Coping with Information Retrieval Problems on the Web: Towards Personal Web Weaver

Agents . In: IC-AI’01. pp. 1225–1231.

[2] Billsus, D. and M. Pazzani (1998) , Learning collaborative information filterings . In: AAAI Workshop on Recommender Systems.

[3] Breese, J. S., D. Heckerman, and C. Kadie (1998) , Empirical Analysis of Predictive Algorithms for Collaborative Filtering . Technical report,

Microsoft Research.

[4] Canny, J. (2002) , Collaborative Filtering with Privacy via Factor Analysis . In: SIGIR 2002.

[5] Drineas, P., I. Kerenidis, and P. Raghavan (2002) , Competitive recommendation systems . In: Proc. of the thiry-fourth annual ACM sympo-

sium on Theory of computing. pp. 82–90.

[6] Ghahramani, Z. and M. Jordan (1994) , Learning from incomplete data . Technical Report 108, MIT Center for Biological and Computational

Learning.

[7] Goldberg, K., T. Roeder, D. Gupta, and C. Perkins (2001) , Eigentaste: A Constant Time Collaborative Filtering Algorithm . Information

Retrieval 4(2), 133–151.

[8] Herlocker, J., J. Konstan, A. Borchers, and J. Riedl (1999) , An Algorithmic Framework for Performing Collaborative Filtering . In: Proc. of

Research and Development in Information Retrieval.

[9] Karypis, G. (2000) , Evaluation of Item-Based Top-N Recommendation Algorithms . Technical Report 00-046, University of Minnesota,

Department of Computer Science.

[10] Pennock, D. M. and E. Horvitz (1999) , Collaborative Filtering by Personality Diagnosis: A Hybrid Memory- and Model-Based Approach .

In: IJCAI-99.

[11] Pennock, D. M., E. Horvitz, and C. L. Giles (2000) , Social Choice Theory and Recommender Systems: Analysis of the Axiomatic Founda-

tions of Collaborative Filtering . In: AAAI-2000. pp. 729–734.

[12] Resnick, P., N. Iacovou, M. Suchak, P. Bergstrom, and J. Riedl (1994) , Grouplens: An open architecture for collaborative filtering of netnews

. In: Proc. ACM Computer Supported Cooperative Work. pp. 175–186.

[13] Salton, G. and C. Buckley (1998) , Term-weighting approaches in automatic text retrieval . Information processing and management 24(5),

513–523.

[14] Sarwar, B. M., G. Karypis, J. A. Konstan, and J. Riedl (2001) , Item-based Collaborative Filtering Recommender Algorithms . In: WWW10.

[15] Sarwar, B. M., G. Karypis, J. A. Konstan, and J. T. Riedl (2000) , Application of Dimensionality Reduction in Recommender System - A

Case Study . In: WEBKDD ’00. pp. 82–90.

[16] Vucetic, S. and Z. Obradovic (2000) , A Regression-Based Approach for Scaling-Up Personalized Recommender Systems in E-Commerce .

In: WEBKDD ’00.

[17] Weiss, S. and N. Indurkhya (2001) , Lightweight Collaborative Filtering Method for Binary Encoded Data . In: PKDD ’01.

[18] Yu, K., X. Xu, J. Tao, M. Ester, and H.-P. Kriegel (2002) , Instance Selection Techniques for Memory-Based Collaborative Filtering . In:

SDM ’02.

[19] Yu, K., X. Xu, J. Tao, M. E. Kri, and H.-P. Kriegel (2003) , Feature Weighting and Instance Selection for Collaborative Filtering: An

Information-Theoretic Approach . Knowledge and Information Systems 5(2).

