
Publisher’s version / Version de l'éditeur:

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez
pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the
first page of the publication for their contact information.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

(RuleML-2008), 2007

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

NRC Publications Archive Record / Notice des Archives des publications du CNRC :
https://nrc-publications.canada.ca/eng/view/object/?id=44ae24e4-fef5-4707-878c-2183fdd51998

https://publications-cnrc.canada.ca/fra/voir/objet/?id=44ae24e4-fef5-4707-878c-2183fdd51998

NRC Publications Archive
Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. /
La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version
acceptée du manuscrit ou la version de l’éditeur.

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Rule responder: RuleML-Based agents for distributed collaboration on

the pragmatic web
Paschke, A.; Boley, Harold; Kozlenkov, A.; Craig, B.

National Research

Council Canada

Institute for

Information Technology

Conseil national

de recherches Canada

Institut de technologie

de l'information

Rule Responder: RuleML Based Agents for

Distributed Collaboration on the Pragmatic

Web *

Paschke, A., Boley, H., Kozlenkov, A., Craig, B.
October 2007

* published in the Conference Proceedings of the 2nd International
Conference on the Pragmatic Web (ICPW 2007). Tilburg, The
Netherlands. October 22-23, 2007. NRC 50338. ACM 978-1-59593-859-6.

Copyright 2007 by
National Research Council of Canada

Permission is granted to quote short excerpts and to reproduce figures and tables
from this report, provided that the source of such material is fully acknowledged.

Rule Responder: RuleML-Based Agents for Distributed
Collaboration on the Pragmatic Web

Adrian Paschke
RuleML Inc., Canada
adrian.paschke AT

gmx.de

Harold Boley
National Research Council,

Canada
Harold.Boley AT

nrc.gc.ca

Alexander Kozlenkov
Betfair Ltd., London

alex.kozlenkov AT
betfair.com

Benjamin Craig
Univ. of New Brunswick,

Canada
Ben.Craig AT unb.ca

ABSTRACT

The Rule Responder project (responder.ruleml.org) extends
the Semantic Web towards a Pragmatic Web infrastructure
for collaborative human-computer networks. These allow
semi-automated agents – with their individual (semantic and
pragmatic) contexts, decisions and actions – to form cor-
porate, not-for-profit, educational, or other virtual teams
or virtual organizations. The project develops an effective
methodology and an efficient infrastructure to interchange
and reuse knowledge (ontologies and rules). Such knowl-
edge plays an important role for (semi-automatically and
contextually) transforming data, deriving new conclusions
and decisions from existing knowledge, and acting accord-
ing to changed situations or occurred (complex) events. Ul-
timately, this might put AI theories on distributed multi-
agent systems into larger-scale practice and might form the
basis for highly flexible and adaptive Web-based service-
oriented/service-component architectures (SOAs/SCAs).

Categories and Subject Descriptors

I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence; I.2.4 [Artificial Intelligence]: Knowledge Rep-
resentation Formalisms and Methods

General Terms

multi agent systems, representation languages, coordination

Keywords

Pragmatic Agent Web, Rule Interchange Format, Reaction
RuleML, Complex Event Processing, Prova

1. INTRODUCTION

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
2nd International Conference on the Pragmatic Web Oct 22-23, 2007,
Tilburg, The Netherlands.
Copyright 2007 ACM 978-1-59593-859-6 ...$5.00.

The Semantic Web and Web Services have the poten-
tial to profoundly change the way people collaborate. The
Semantic Web builds upon XML as the common machine-
readable syntax to structure content and data, upon RDF
[11, 14] as a simple language to express property relation-
ships between arbitrary resources (e.g., objects or topics)
identified by URIs, and ontology languages such as RDFS
[4] or OWL [16] as a means to define rich vocabularies (on-
tologies) which are then used to precisely describe resources
and their semantics. The adoption of de facto standards
such as Dublin Core [7], vCard [5], Bibtex [24] and iCal [6]
for metadata descriptions of Web content and the emerg-
ing organization/person-centric vocabularies such as FOAF
[9] and SIOC [27] and micro-formats such as GRDDL [10]
are enabling a more machine-processable and relevant Web.
This also prepares an infrastructure to share the relevant
knowledge and its meaning between between distributed self-
autonomous agents and loosely coupled Web-based services
and tools

On top of the syntactic (XML) and semantic (RDF/RDFS,
OWL) layer, rules play an important role to automatically
and contextually transform data, derive new conclusions and
decisions from existing knowledge and behaviorally act ac-
cording to changed conditions or occurred events. Rules pro-
vide a powerful and declarative way to control and reuse the
manifold meaning representations published on the Seman-
tic Web. Services and intelligent agents can exploit rules to
represent their decisions on how to use knowledge for a par-
ticular purpose or goal, including active selection and nego-
tiation about relevant meanings, achievement of tasks, and
internal and external reactions on occurred events, changing
conditions or new contexts. This extends the Semantic Web
to a rule-based Semantic-Pragmatic Web1 which puts the
independent micro-ontologies and domain-specific data into
a pragmatic context such as communicative situations, or-
ganizational norms, purposes or individual goals and values.

In linguistics and semiotics, pragmatics is concerned with
the study of how context influences the meaning interpreta-
tion of sentences usually in the context of conversations. A
distinction is made in pragmatics between sentence mean-

1Following [26], we will briefly call this the Pragmatic Web,
since each of the syntactic-semantic-pragmatic layers is un-
derstood to include all the lower layers.

1

ing and speaker meaning, where the former is the literal
meaning of the sentence, while the latter is the piece of in-
formation (or proposition) that the speaker is trying to con-
vey. In other words, the Pragmatic Web does not intend to
subsume the Semantic Web, but it intends to utilize the Se-
mantic Web with intelligent agents and services that access
data and ontologies and make rule-based inferences and au-
tonomous decisions and reaction based on these representa-
tions. The focus is on the adequate modelling, negotiation
and controlling of the use of the myriad (meta)data and
meaning representations of the Semantic Web in a collab-
orating community of users where the individual meanings
as elements of the internal cognitive structures of the mem-
bers become attuned to each others’ view in a communica-
tive process. This allows dealing with issues like ambiguity
of information and semantic choices, relevance of informa-
tion, information overload, information hiding and strategic
information selection, as well as positive and negative con-
sequences of actions.

As a result, this Pragmatic Web becomes more usable
in, e.g., decision support systems (DSS), heterogenous in-
formation systems (HIS) and enterprise application systems
(EAS) for distributed human teams and semi-autonomous,
agents and IT (web) services: (1) It meaningfully annotates,
links, and shares distributed knowledge sources according
to common ontologies. (2) It employs rule-based logic for
reasoning about source content and metadata. (3) It adds
rule-based delegation and integration flow logic to distrib-
ute incoming requests towards appropriate virtual (team or
organization) members and to collect their responses. By
using the Semantic Web as an infrastructure for collabora-
tive networks and by extending it with a rule-based prag-
matic and behavioral layer, individuals agents and (Web)
services – with their individual contexts, decisions and ef-
forts – can form corporate, not-for-profit, educational, or
otherwise productive virtual teams or virtual organizations
that have, beside their individual context, a shared context
consisting of shared concepts, joint goals and common ne-
gotiation and coordination (communication) patterns. Ul-
timately, this might put the ideas of the AI community on
distributed self-autonomous multi agent systems (MAS) into
large scale practice and might form the basis for highly flex-
ible and adaptive Web-based service-oriented/service com-
ponent architectures (SOA/SCA) and event-driven architec-
tures (EDA).

In this paper we contribute with a declarative rule-based
service-oriented methodology and a scalable architecture to
operationalize such a distributed rule-based approach where
event-based communication and rule-based use of meaning
plays a central role in connecting the various resources and
Web-based services/agents in virtual organizations and teams
[20]. The addressed application domain of virtual organi-
zations and rule-based services is of high industrial rele-
vance. We follow a constructivistic design science research
methodology [12] and implement an improved rule-based
agent technology based on a distributed rule management
service and a modern enterprise service middleware pro-
viding enhanced usability, scalability and performance, as
well as less costly maintenance in engineering and deploying
agent/service-oriented architectures. Our Rule Responder
system [20] allows to externalize and publish rules on the
Web, and to manage them in various modules deployed as
online services/agents which are then weaved into the main

applications at runtime. In particular, the contributions are
as follows:

• Extends the Semantic Web with a pragmatic rule-based
layer (Pragmatic Web), which defines the rules for us-
ing information resources and ontologies to support
human agents in their decisions and react partially
self-autonomously by means of automated agents or
services

• Blends and tightly combines the ideas of multi-agent
systems, distributed rule management systems, and
service oriented and event driven architectures

• Addresses real-world software engineering needs for a
highly distributed, open, interoperable, efficient and
scalable Semantic Web service and agent infrastructure

• Demonstrates the interoperation of various distributed
platform-specific rule execution environments based on
Reaction RuleML as a platform-independent rule in-
terchange format interchanged over an enterprise ser-
vice bus as transport middleware

• Applies rule-based technologies to the management of
virtual organizations and collaborative teams

• Applies negotiation and distributed coordination mech-
anisms of rule-based complex event processing and rule-
based workflow like reaction rule patterns

• Demonstrates the integration and interoperation of rule
standards (RuleML), Object-Oriented programming (Java)
and Semantic Web (RDF, RDFS, OWL) and metadata
standards (e.g. iCal, vCard, FOAF)

The rest of the paper is organized as follows: In section
2 we propose an extension of the current Semantic Web to-
wards a Pragmatic Agent Web where agents and services
practically make use of the data, vocabularies and resources
of the Syntactic and Semantic Web. In section 3 we evolve
and implement the core concepts and technologies used to
make this design artifact of rule-based autonomous agents
and rule inference services a reality in industrial real-world
settings. In section 4 we demonstrate the applicability of the
proposed approach by means of a real-world use case, namely
the RuleML-200x symposium organization as a virtual or-
ganization. Finally, in section 5 we conclude this paper with
a summary of the approach towards a pragmatic agent web
and a discussion of the applied research methodology.

2. A RULE-BASED PRAGMATIC AGENT WEB

MODEL FOR VIRTUAL ORGANIZATIONS
A virtual organization consists of a community of inde-

pendent and often distributed (sub-) organizations, teams
or individual agents that are members of the virtual or-
ganization. Typical examples are virtual enterprises, vir-
tual (business) cooperations, working groups, project teams
or resource sharing collaborations as in e.g. grid comput-
ing or service-oriented computing (SOC) where the vision is
to build large scale resource / service supply chains (a.k.a.
business services networks) which enable enterprises to de-
fine and execute Web services based transactions and busi-
ness processes across multiple business entities and domain
boundaries using standardized (Web) protocols.

2

A virtual organization is typically represented by an orga-
nizational agent and a set of associated individual or more
specific organizational member agents. The organizational
agent might act as a single agent towards other internal and
external individual or organizational agents. In other words,
a virtual organization’s agent can be the single (or main)
point of entry for communication with the ”outer”world (ex-
ternal agents). Typically, the organizational agent consists
of the following:

1. Common syntactic information resources about the vir-
tual organization such as public Web pages showing
general contact information, goals and service offer-
ings, but also internal resources such databases or OO
representations (e.g. EJBs) to manage customer data,
shared project and task data (e.g. calendars) and data
about the community members.

2. A semantic layer which describes the common context
of the virtual organization such as the shared com-
mon concepts and ontologies that evolved during the
interaction with the community members and other
external agents.

3. A pragmatic and behavioural/decision layer which con-
sists of the organizational norms and values (e.g. deon-
tic norms, needs, avoidance), the joint goals/ interests/
purposes (beliefs/ wants/ desires), the strategies and
decision logic (deductive logic and abductive plans),
the behavioural reaction logic, and the used negotia-
tion and coordination interchange patterns with the
community members but also with external agents.

Similar to an organizational agent, each individual agent
is described by its syntactic resources of personal informa-
tion about the agent, the semantic descriptions that anno-
tate the information resources with metadata and describe
the meaning with precise ontologies and a pragmatic be-
havioural decision layer which defines the rules for using
the information resources and ontologies to support human
agents in their decisions or react autonomously as automated
agents/services. In fact, since each individual agent might
be a member of various virtual organizations in which it
plays a different role, an individual agent itself might be
seen as a ”small virtual organization” with shared goals but
also with possibly contradicting goals in each of its roles.
For instance, a person might be a member of a commercial
enterprise and of a research working group with different
possibly orthogonal or contradicting goals and norms such
as social welfare vs. individual ambitions. If the level of
autonomy of decisions is low an agent reduces to a Web ser-
vice and the virtual organization is implemented by a flexible
composition of several services to so called service compo-
nent architecture (SCAs) which enable distributed applica-
tion development and integration over the Web. Figure 1
illustrates this general picture.

In this architecture of a Pragmatic Agent Web (PAW)
model the syntactic level controls the appearance and access
of syntactic information resources such as HTML Web pages.
The formal nature of representation languages such as XML,
RDF and OWL on the semantic level make these Web-
based information more readable and processable not only
to humans, but also to computers, e.g., to collect machine-
readable data from diverse sources, process it and infer new

knowledge. Finally, the pragmatic level defines the rules how
information is used and describes the actions in terms of its
pragmatic aspects, i.e. why, when and for what purpose
or with what goals they are done. These rules e.g. trans-
form existing information into relevant information of prac-
tical consequences, trigger automated reactions according to
occurred complex events/situations, and derive answers to
queries from the existing syntactic and semantic information
resources.

In this paper we focus on the pragmatic and behavioural
layer which makes use of the meaningful domain data and
metadata knowledge from the syntactic and semantic layer
and transforms the existing information into relevant infor-
mation which is accessible by Web-based service interfaces.
Declarative rules play an important role to represent the
conditional decision and behavioural logic of the agents as
well as the strategic and pragmatic contexts in which collab-
oration takes place such as communicative and coordination
situations, beliefs, wants, needs and avoidances, individual
values, organizational norms etc. This also includes (semi-
)automated negotiation and discussion about the meaning of
ontological concepts, since agents might use their own micro-
ontologies and must agree on relevant shared concepts to en-
able an efficient communication and knowledge interchange
between the nodes. Modularization and information hiding
is another important concept for a virtual collaboration of
independent agents, since each agents might have its own
goals, strategies and rich tacit meaning of ontological con-
cepts that should not or cannot be made explicit. That is, a
certain level of ambiguity and hidden information should be
allowed, as long as they do not endanger the higher goals and
the communication of the virtual organization. Communica-
tion within the collaborative community and with external
agents based on an adequate ”webized” interchange format
for rule sets, queries and derived answers but also for com-
municative, pragmatic and ontological semantic contexts is
needed.

Our agent and service-oriented approach which evolves
from former multi agent technologies and novel enterprise
service architectures enables to naturally capture more com-
plex constraints on what Web-based services are willing to
offer and how they can be combined and collaborate in
virtual organizations respectively enterprise business net-
works. Agents are self-autonomous, distributed, loosely-
coupled, long-lived, persistent computational entities that
can perceive, reason, act and communicate [13]. Depending
on their behavioural and decision constraints/logic which is
typically rule-based and their ongoing interactions they act
with varying levels of autonomy. Because of their auton-
omy and heterogeneity agents are not specific to a partic-
ular underlying knowledge representation or programming
paradigm and there are various possibilities to implement
the rule-based logic, e.g., if-then constructs in procedural
programming languages such as Java or C/C++ (with con-
trol flow), decision tables/trees, truth-functional constructs
based on material implication, implications with constraints
(e.g., OCL), triggers and effectors (e.g., SQL trigger), non-
logical approaches such as semantic networks, frames or log-
ical knowledge representation (KR) approaches based on
subsets of first order predicate logic such as logic program-
ming (LP) techniques. In this paper we employ a declarative
logic-based approach which has several advantages: reason-
ing with rules is based on a semantics of formal logic, usually

3

Figure 1: A Pragmatic Agent Web for Virtual Organizations

a variation of first order predicate logic which also under-
pins Semantic Web ontology languages, and it is relatively
easy for the end user to write rules. The basic idea is that
users/agents employ rules to express what they want, the
responsibility to interpret this and to decide on how to do it
is delegated to an interpreter (e.g., an inference/rule engine
or a just in time rule compiler). Traditionally, rule-based
systems have been supported by two types of inferencing
algorithms: forward-chaining as e.g. in production rule sys-
tems and backward-chaining as in logic programming sys-
tems such as Prolog derivatives. We are not specific which
particular rule language and rule engine (execution environ-
ment) is used on the platform dependent layer since this
technical layer is wrapped by our rule management middle-
ware which provides general message-oriented communica-
tion interfaces using arbitrary transport protocols such as
HTTP, JMS, SOAP, ... and translation services into a stan-
dardized platform-independent rule interchange format in
order to enable interaction with other agents and services
which implement different rule execution environments.

We build the rule-based pragmatic agent layer upon ex-
isting technologies and common language formats of the Se-
mantic Web such as HTML/XML Web pages, RDF/RDFS
and OWL variants of de facto standards such as Dublin
Core, vCard, iCal or BibTeX/BibTeXML and other emerg-
ing vocabularies such as FOAF or SIOC, which are used to
describe personal and institutional metadata and informa-
tion, project and event data as well as ontological conceptu-
alizations of the individual and common domains/vocabularies.
We assume that there is already a critical mass of such data
sources on the semantic and syntactic layer, e.g. RDF Bib-
text libraries of publications, RDF vCard or FOAF profiles

for each member and role, online event calendars using vCal
or gData feeds. Furthermore, we integrate data and func-
tionality from legacy applications such as rel. databases,
enterprise applications or Web services into the rule-based
decision and execution logic. Depending on the particular
rule execution environment the integration can happen dy-
namically at runtime or by pre-transformation and replica-
tion of the external data into an internal executable format
(e.g. a set of logical facts replicated in the internal knowl-
edge base).

This general approach towards a rule-based PAW model
includes a great variety of technical design science and Soft-
ware Engineering decisions, such as how to access the vari-
ous external data sources and ontologies (e.g. homogenous
translation and integration vs. heterogeneous integration),
how to manage and maintain the rule modules on the various
levels (e.g. distributed scoped knowledge based vs. central-
ized knowledge base in central organizational agent node),
how to integrate and interoperate with various execution
environments (e.g. various rule engines with various logical
expressiveness classes), how to communicate and negotiate
semantics and pragmatic meaning, how to deal with com-
plex events and situations, what is a scalable approach to
operationalize and communicate between the agent nodes
(e.g. enterprise service bus vs. ad-hoc communication e.g.
via SOAP or JMS messages). Figure 2 exemplifies these
technical design and implementation questions of a PAW
model. In the next section we will detail the main technical
components of this architecture.

4

Figure 2: Rule-based Pragmatic Agent Web Architecture

3. DISTRIBUTED RULE RESPONDER AGENT

SERVICES
In this section we will introduce the main components

of the distributed Rule Responder architecture for a Prag-
matic Agent Web [20]. The three core parts are (1) a com-
mon platform-independent rule interchange format to inter-
change rules and events between arbitrary agent services,
(2) a highly scalable and efficient agent/service-broker and
communication middleware, and (3) platform-specific rule
engines and execution environments.

3.1 RuleML as Platform-Independent Rule In-
terchange Format

The Rule Markup Language (RuleML).
[2] is a modular, interchangeable rule specification stan-

dard to express both forward (bottom-up) and backward
(top-down) rules for deduction, reaction, rewriting, and fur-
ther inferential-transformational tasks. It is defined by the
Rule Markup Initiative [3], an open network of individu-
als and groups from both industry and academia that was
formed to develop a canonical Web language for rules us-
ing XML markup and transformations from and to other
rule standards/systems. The language family of RuleML
covers the entire rule spectrum, from derivation rules to re-
action rules including rule-based complex event processing
(CEP) and messaging (Reaction RuleML [23]), as well as
verification and transformation rules. In the following we
will briefly summarize the key components of RuleML lan-
guage (Horn logic layer of RuleML) and then introduce the

Reaction RuleML language [23, 22] which extends RuleML
with additional language constructs for representing reac-
tion rules and complex event / action messages, e.g. for
complex event processing. The building blocks of RuleML
are: [2]

• Predicates (atoms) are n-ary relations defined as an
< Atom > element in RuleML. The main terms within
an atom are variables < V ar > to be instantiated by
ground values when the rules are applied, individual
constants < Ind >, data values < Data > and com-
plex expressions < Expr >.

• Derivation Rules (< Implies >) consist of a body part
(< body >) with one or more conditions (atoms) con-
nected via < And > or < Or > and possibly negated
by < Neg > which represents classical negation or
< Naf > which represents negation as failure and a
conclusion (< head >) which is derived from existing
other rules or facts applied in a forward or backward
manner.

• Facts are deemed to be always true and are stated as
atoms: < Atom >

• Queries < Queries > can either be proven backward as
top-down goals or forward via bottom-up processing.
Several goals might be connected within a query and
negated.

Besides facts, derivation rules and queries, RuleML defines
further rule types such as integrity constraints and transfor-
mation rules [2].

5

Reaction RuleML.
[23, 22] is a general, practical, compact and user-friendly

XML-serialized sublanguage of RuleML for the family of re-
action rules. It incorporates various kinds of production,
action, reaction, and KR temporal/event/action logic rules
as well as (complex) event/action messages into the native
RuleML syntax using a system of step-wise extensions. The
building blocks of Reaction RuleML (version 0.2) are: [23]

• One general (reaction) rule form (< Rule >) that can
be specialized to e.g. production rules, trigger rules,
ECA rules, messaging rules ...

• Three execution styles defined by the attribute @style

– Active: ’actively’ polls/detects occurred events
in global ECA style, e.g. by a ping on a ser-
vice/system or a query on an internal or external
event database

– Messaging : waits for incoming complex event mes-
sage and sends outbound messages as actions

– Reasoning : Knowledge representation derivation
and event/action logic reasoning and transitions
(as e.g. in Event Calculus, Situation Calculus,
TAL formalizations)

• Messages < Message > define inbound or outbound
event message

A reaction rule might apply globally as, e.g. global ECA
rules or locally nested within other reaction or derivation
rules as e.g. in the case of messaging reaction rules (e.g.
complex event processing rules). The general syntax of a
reaction rules consists of six partially optional parts:

<Rule style="active" evaluation="strong">
<label> <!-- metadata --> </label>
<scope> <!-- scope --> </scope>
<qualification> <!-- qualifications --> </qualification>
<oid> <!-- object identifier --> </oid>
<on> <!-- event --> </on>
<if> <!-- condition --> </if>
<then> <!-- conclusion --> </then>
<do> <!-- action --> </do>
<after> <!-- postcondition --> </after>
<else> <!-- else conclusion --> </else>
<elseDo> <!-- else/alternative action --> </elseDo>
<elseAfter> <!-- else postcondition --> </elseAfter>

</Rule>

Inbound and outbound messages < Message > are used
to interchange events (e.g. queries and answers) and rule
bases (modules) between the agent nodes:

<Message mode="outbound" directive="pragmatic performative">
<oid> <!-- conversation ID--> </oid>
<protocol> <!-- transport protocol --> </protocol>
<sender> <!-- sender agent/service --> </sender>
<content> <!-- message payload --> </content>

</Message>

• @mode = inbound|outbound - attribute defining the
type of a message

• @directive - attribute defining the pragmatic context
of the message, e.g. a FIPA ACL performative

• < oid > - the conversation id used to distinguish mul-
tiple conversations and conversation states

• < protocol > - a transport protocol such as HTTP,
JMS, SOAP, Jade, Enterprise Service Bus (ESB) ...

• < sender >< receiver > - the sender/receiver agent/service
of the message

• < content > - message payload transporting a RuleML
/ Reaction RuleML query, answer or rule base

The directive attribute corresponds to the pragmatic in-
struction, i.e. the pragmatic characterization of the message
context. External vocabularies defining pragmatic perfor-
matives might be used by pointing to their conceptual de-
scriptions. The typed logic approach of RuleML enables the
integration of external type systems such as Semantic Web
ontologies or XML vocabularies. [2, 18] A standard nomen-
clature of pragmatic performatives is defined by the Knowl-
edge Query Manipulation Language (KQML) and the FIPA
Agent Communication Language (ACL) which defines sev-
eral speech act theory-based communicative acts. [8] Other
vocabularies such as OWL-QL or the normative concepts of
Standard Deontic Logic (SDL), e.g., to define action obliga-
tions or permissions and prohibitions, might be used as well.

The conversation identifier is used to distinguish multiple
conversations and conversation states. This allows to asso-
ciate messages as follow-up to previously existing conversa-
tions, e.g. to implement complex coordination and nego-
tiation protocols, message-oriented workflows and complex
event processing situations. For an overview and description
of several negotiation and coordination protocols see [21].
Via sub-conversations it is possible to start e.g. meaning ne-
gotiations about the common shared pragmatic context and
the shared ontologies which are necessary to understand the
rule and event-based content of the interchanged messages.

The protocol might define lower-level ad-hoc or enterprise
service bus transport protocols such as HTTP, JMS, and
higher-level agent-oriented communication protocols such as
Jade or Web Service protocols such as SOAP. More than 30
different transport protocols are supported by the enterprise
service bus which is the main communication backbone in
our implementation.

The content of a message might be a query or answer fol-
lowing a simple request-response communication pattern or
it might follow a complex negotiation or coordination proto-
cols where complete rule sets, complex events or fact bases
serialized in RuleML / Reaction RuleML are interchanged.

The RuleML Interface Description Language.
(RuleML IDL) as sublanguage of Reaction RuleML adopts

the ideas of interface definition languages such as Corbas’
IDL or Web Service WSDL. It describes the signatures of
public rule functions together with their mode and type dec-
larations and narrative human-oriented meta descriptions.

Modes are states of instantiation of the predicate described
by mode declarations, i.e. declarations of the intended input-
output constellations of the predicate terms with the follow-
ing semantics:

• ”+” The term is intended to be input

• ”−” The term is intended to be output

• ”?” The term is undefined/arbitrary (input or output)

We define modes with an optional attribute @mode which
is added to terms in addition to the @type attribute, e.g.

6

< V ar mode = ”− ” type = ”java : //java.lang.Integer >
X < /V ar >, i.e. the variable X is an output variable of
type java.lang.Integer. By default the mode is undefined
”?”.

For instance, the interface definition for the function
add(Arg1, Arg2, Result) with the modes add(+, +,−) is as
follows:

<Interface>
<label>

<Expr>
<Fun uri="dc:description"/>
<Ind>Definition of the add function which takes two Java

integer values as input and returns the Integer result
value

</Ind>
</Expr>

</label>
<Expr>

<Fun>add</Fun>
<Var type="java://java.lang.Integer" mode="-">Result</Var>
<Var type="java://java.lang.Integer" mode="+">Arg1</Var>
<Var type="java://java.lang.Integer" mode="+">Arg2</Var>

</Expr>
</Interface>

3.2 Enterprise Service Bus as Communication
Middleware

To seamlessly handle message-based interactions between
the responder agents/services and with other applications
and services using disparate complex event processing (CEP)
technologies, transports and protocols an enterprise service
bus (ESB), the Mule open-source ESB [17], is integrated as
communication middleware. The ESB allows deploying the
rule-based agents as highly distributable rule inference ser-
vices installed as Web-based endpoints in the Mule object
broker and supports the Reaction RuleML based communi-
cation between them. That is, the ESB provides a highly
scalable and flexible application messaging framework to
communicate synchronously but also asynchronously with
external services and internal agents.

Mule is a messaging platform based on ideas from ESB
architectures, but goes beyond the typical definition of an
ESB as a transit system for carrying data between applica-
tions by providing a distributable object broker to manage
all sorts of service components. The three processing modes
of Mule are [17]:

• Asynchronously: many events can be processed by the
same component at a time in various threads. When
the Mule server is running asynchronously instances of
a component run in various threads all accepting in-
coming events, though the event will only be processed
by one instance of the component.

• Synchronously: when a UMO Component receives an
event in this mode the whole request is executed in a
single thread

• Request-Response: this allows for a UMO Component
to make a specific request for an event and wait for a
specified time to get a response back

The object broker follows the Staged Event Driven Archi-
tecture (SEDA) pattern [28]. The basic approach of SEDA
is to decomposes a complex, event-driven application into
a set of stages connected by queues. This design decou-
ples event and thread scheduling from application logic and

Figure 3: Integration of Mule into RBSLM

avoids the high overhead associated with thread-based con-
currency models. That is, SEDA supports massive concur-
rency demands on Web-based services and provides a highly
scalable approach for asynchronous communication.

Figure 3 shows a simplified breakdown of the integration
of Mule into Rule Responders’ Pragmatic Agent Web.

Several agent services which at their core run a rule en-
gine are installed as Mule components which listen at config-
ured endpoints, e.g., JMS message endpoints, HTTP ports,
SOAP server/client addresses or JDBC database interfaces.
Reaction RuleML is used as a common platform indepen-
dent rule interchange format between the agents (and pos-
sible other rule execution / inference services). Translator
services are used to translate inbound and outbound mes-
sages from platform-independent Reaction RuleML into the
platform-specific rule engines execution syntaxes and vice
versa. XSLT and ANTLR based translator services are pro-
vided as Web forms, HTTP services and SOAP Web services
on the Reaction RuleML Web page [23].

The large variety of transport protocols provided by Mule
can be used to transport the messages to the registered end-
points or external applications / tools. Usually, JMS is used
for the internal communication between distributed agent
instances, while HTTP and SOAP is used to access external
Web services. The usual processing style is asynchronous us-
ing SEDA event queues. However, sometimes synchronous
communication is needed. For instance, to handle commu-
nication with external synchronous HTTP clients such as
Web browsers where requests, e.g. by a Web from, are send
through a synchronous channel. In this case a synchronous
bridge component dispatches the requests into the asynchro-
nous messaging framework and collects all answers from the
internal service nodes, while keeping the synchronous chan-
nel with the external service open. After all asynchronous
answers have been collected they are send back to the still
connected external service via the synchronous channel.

3.3 Platform-dependent Rule Engines as Exe-
cution Environments

Each agent service might run one or more arbitrary rule
engines to execute the interchanged queries, rules and events
and derive answers on requests. In this subsection we will

7

introduce Prova [15, 19], a highly expressive Semantic Web
rule engine which we used in our reference implementation
for agents with complex reaction workflows, decision logic
and dynamic access to external Semantic Web data sources.
Another rule engine which we applied was the OO jDrew
rule engine [1] in order to demonstrate rule interchange be-
tween various rule engines. Further rule engines and event
correlation engines (CEP engines) are planned to join the
Rule Responder project.

Prova follows the spirit and design of the recent W3C Se-
mantic Web initiative and combines declarative rules, on-
tologies and inference with dynamic object-oriented Java
API calls and access to external data sources such as rela-
tional databases or enterprise applications and IT services.
One of the key advantages of Prova is its elegant separation
of logic, data access, and computation and its tight inte-
gration of Java and Semantic Web technologies. It includes
numerous expressive features and logical formalisms such as:

• Easy to use and learn ISO Prolog related scripting syn-
tax

• Well-founded Semantics for Extended Logic Programs
with defeasible conflict resolution and linear goal mem-
oization

• Order-sorted polymorphic type systems compatible with
Java and Semantic Web ontology languages RDF/RDFS
and OWL

• Seamless integration of dynamic Java API invocations

• External data access by e.g., SQL, XQuery, RDF triple
queries, SPARQL

• Meta-data annotated modular rule sets with expres-
sive transactional updates, Web imports, constructive
views and scoped reasoning for distributed rule bases
in open environment such as the Web

• Verification, Validation and Integrity tests by integrity
constraints and test cases

• Messaging reaction rules for workflow like communica-
tion patterns based on the Prova Agent Architecture

• Global reaction rules based on the ECA approach

• Rich libraries and built-ins for e.g. math, date, time,
string, interval, list functions

For a detailed description of the syntax, semantics and
implementation of several of these formalisms see e.g. [19].

4. RULE RESPONDER USE CASE
In this section we describe a real-world use case, namely

the RuleML-200x Symposium organization, which address
typical problems and tasks in a virtual organization. Further
use cases can be found on the Rule Responder project site:
responder.ruleml.org.

The RuleML-200x Responder use case implements the
RuleML-200x symposium organization as a virtual organiza-
tion consisting of self-autonomous rule-based agents who ful-
fil typical conference organization and project management
tasks and who respond to incoming requests from external

Figure 4: RuleML-200x Use Case

agents, e.g., from authors, participants, program committee
members ... (see figure 4).

The RuleML-200x Responder agent (organizational agent)
acts as a single point of entry for the RuleML-200x organi-
zation. It filters, decides and delegates incoming queries
and requested tasks to the organizations’ members (e.g. the
organizing committee members) which are implemented as
distributed rule-based personal agents. Project management
techniques such as a responsibility assignment matrix (see
table 1) and role models are implemented by the RuleML-
2007 Responder as ontological models (in OWL) to describe
the roles and responsibilities of the personal agents in the
virtual organization. Negotiation and distributed coordina-
tion protocols are applied to manage and communicate with
the project team and external agents.

Table 1: Responsibility Assignment Matrix

General Chair Program Chair Publicity Chair ...

Symposium responsible consulted supportive ...

Website accountable responsible ...

Sponsoring informed, signs verifies responsible ...

Submission informed responsible ...

...

The personal agents act as self-autonomous agents having
their own rule-based decision and behavioural logic on top
of their personal information sources, Web services, vocab-
ularies / ontologies and knowledge structures. This allows
them, e.g., to selectively reveal personal information such as
contact information (e.g. show only parts of FOAF profiles
or vCards) or react and proactively plan according to the oc-
cured situation (e.g. schedule a meeting based on personal
iCal calendar data - see figure 7).

As shown in figure 5, each agent in the RuleML-200x vir-
tual organization is implemented as a Web-based service
consisting of a set of internal or external data and knowl-
edge sources and a rule execution environment (a rule en-
gine). Reaction RuleML is applied as common rule inter-
change and event messaging format, Prova and OO jDrew
are used as two exemplary rule engines in the implemen-
tation of the organizational and personal agents, and the
Mule ESB is used as communication middleware between
the agent endpoints. Reaction RuleML messages (event
messages) are transported by the ESB to the appropriate

8

Figure 5: RuleML-200x Use Case Implementation

internal agent nodes or external communication interfaces
based on a broad spectrum of selectable transport proto-
cols such as HTTP, JMS, Web Service protocols (SOAP) or
e.g. agent communication languages (JADE). The platform-
independent interchanged RuleML messages which contain
the message payload, e.g. queries or answers, as well as
meta information about the conversation and the pragmatic
context of the message, are translated by translator services
(e.g. XSLT style sheets) into the platform-dependent, spe-
cific execution language of the rule-based execution environ-
ment at the agent endpoint(s).

The Role Activity Diagram (RAD) shown in figure 6 de-
scribes a simple query-answer (request-response) pattern.
An external agent requests some information from the RuleML-
2007 organization. The organizations’ responder agent tries
to understand the query and starts a sub-conversation in-
forming the requester if the pragmatic context or the mes-
sage content was not understood. In this case the requester
agent informs the organization agent with further relevant
information which is need to understand the query, e.g. ref-
erences to relevant ontology parts or synonyms. If the mes-
sage is understood by the organizational agent it delegates
the query (possibly executing some further preprocessing)
in a new sub-conversation to the responsible personal agent
(according to the responsibility assignment matrix). Other
roles (personal agents) might be informed in parallel (not
shown here). The personal agent derives the answers and
sends them back one by one to the organizational agent
which might simply forward them to the original external
requesting agent.

The implementation in Prova uses messaging reaction rules

Figure 6: Role Activity Diagram for a simple Query-

Answer Conversation

9

which send and receive outbound and inbound messages.
For instance, the rule receives a query from the ESB, sends
it to another agent in a new sub-conversation, receives the
answer from the agent, and sends back the answer to the
original requester: (variables start with upper case letters)

rcvMsg(CID,esb, Requester, acl_query-ref, Query) :-
...
sendMsg(Sub-CID,esb,Agent,acl_query-ref, Query),
rcvMsg(Sub-CID,esb,Agent,acl_inform-ref, Answer),
...
sendMsg(CID,esb,Agent,acl_inform-ref,Answer).

On the PIM layer this Prova rule is serialized in Reaction
RuleML as a reaction rule:

<Rule style="active">
<event> <!-- receive inbound message -->

<Message mode="inbound">...</Message>
</event>
<condition>
<And>

<Rule style="active"> <!-- send outbound message -->
<action>

<Message mode="outbound">...</Message>
</action>

</Rule>
<Rule style="active"> <!-- receive inbound messages -->

<event>
<Message mode="inbound">...</Message>

</event>
</Rule>

</And>
</condition>
<action> <!-- send outbound message -->

<Message mode="outbound">...</Message>
</action>

</Rule>

The corresponding reaction rule on the personal agents’
side might look at follows:

% answers query
rcvMsg(XID, esb, From, Performative, [X|Args]):-

derive([X|Args]),
sendMsg(XID,esb,From, answer, [X|Args]).

This rule tries to derive every incoming query and sends
back the answers. The list notation [X|Args] will match
with arbitrary n-ary predicate functions, i.e., it denotes a
kind of restricted second order notation since the variable X
is always bound, but matches to all functions in the signa-
ture of the language with an arbitrary number of arguments
Args. For instance, a function p(X, Y) is equivalent to a list
[p, X, Y] where the function name being the first element in
the list. Note, that the complete conversation is local to
the conversation ID, the used protocol and the pragmatic
context denoted by the performative(s).

With this flexible reaction rules process flows can be im-
plemented such as complex negotiation and coordination
protocols [21]. For instance, a typical process in a virtual
organization such as the RuleML-200x organization is the
scheduling of a meeting (e.g. a telephone conference) as de-
scribed in figure 7.

The RuleML-200x organizational agent creates a possible
date for the meeting from the public organizational calen-
dar (accessed e.g. via iCAL) and proposes this date to all
personal agents. The agents compare this date with their
personal calendars and send counter-proposals if the dead-
line does not fit according to their personal decision logic.
The organizational agent then creates a new proposal. This
process is repeated until all agents agreed on the proposed

Figure 7: Role Activity Diagram for Scheduling a

Meeting

Figure 8: Role Activity Diagram for the Reviewing

Process

meeting date; the organizational agent then creates an en-
try in the public calendar and informs all agents about this
date. The personal agents add this date to their personal
(not public) calendars. Note, that the personal agents im-
plement their own, self-autonomous decision logic. For in-
stance, they can lie and pretend they have no time at a
certain date or propose strategic counter-proposals.

Another scenario is the reviewing process of submissions
to the conference, as modelled in figure 8.

The program chair assigns papers to program committee
members and sends requests to them. Each program com-
mittee members then reviews the assigned submissions and
informs the program chair about the review comments and
the acceptance or rejection decision. If there are further
pending reviews the program committee member agent it-
erates the ”awaiting review” state until all assigned papers
have been reviewed. The program chair processes the re-
ceived reviews.

Several other typical processes in conference organizations

10

demonstrating the interplay of the different agent roles, e.g.,
between the responsible, supportive, consulted, sings, in-
formed, ... role for a particular task according to the role
assignment matrix, have been implemented in this use case.

In summary, conversations via event messages are used to
coordinate the agents in the RuleML-200x organization. A
conversation is local to the conversation id, the pragmatic
context, the used protocols and the sender,receiver agents.
Each agent implements his own decision and reaction logic
in terms of rules with public interfaces which can be accessed
and queried and not public rules. These rules might e.g., rep-
resent personal strategies, failure handling policies or negoti-
ation patterns, e.g. for meaning clarification. External data
sources such as calendars, vocabulary definitions, databases,
web pages, meta data sources, personal data (e.g. FOAF
profile, vCard) are dynamically queried at runtime and used
as facts in the internal knowledge base of an agents.

5. CONCLUSION
Recently, there have been many efforts aiming on rule in-

terchange and building a general rule markup and modelling
standard for the (Semantic) Web. This includes several im-
portant general standardization or standards-proposing ef-
forts including RuleML [3], W3C RIF [25], OMG PRR and
others. However, to the best of our knowledge no method-
ological and architectural design and comprehensive imple-
mentation exists which makes this idea of a practical dis-
tributed rule layer in the Semantic Web a reality. Moreover,
in the current rule interchange formats the pragmatic aspect
is missing.

In the Rule Responder project we follow a constructivists
design science research methodology [12] and contribute with
a rule-based middleware based on modern efficient and scal-
able enterprise service technologies, complex event process-
ing techniques and standardized web rule and Semantic Web
languages in combination with existing meta data vocabu-
laries and ontologies to capture and negotiate the individual
and shared semantic and pragmatic context of rule-based
agents and service networks. The application in virtual or-
ganizations such as Agent communities or (business) service
networks is of high practical relevance and transfers the ex-
isting work in multi-agent systems (e.g. Jade, FIPA-OS) to
the Semantic-Pragmatic Web and rule-based service archi-
tecture.

Rule Responder builds upon these existing ideas and tech-
nologies in multi-agent systems and tackles the manifold
challenges which are posed by the highly complex, dynamic,
scalable and open distributed nature of semi-automated prag-
matic agents communities or service component architec-
tures. Our proposed design artifact exploits RuleML and
Reaction RuleML for the XML-based representation of reac-
tion rules and message based conversations at the platform-
independent level as a compact, extensible and standardized
rule and event interchange format. A highly scalable and ef-
ficient enterprise service bus is integrated as a communica-
tion middleware platform and web-based agent/service ob-
ject broker. Via translator services the interchanged RuleML
messages are translated into the platform-specific execution
syntaxes of the arbitrary agents’ rule execution environ-
ments such as Prova. In sum, the proposed design arti-
fact addresses many practical factors of rule-based service
technologies ranging from system engineering features like
modular management and encapsulation to interchangeabil-

ity and interoperability between system and domain bound-
aries in open environments such as the Web.

6. REFERENCES

[1] M. Ball, H. Boley, D. Hirtle, J. Mei, and B. Spencer.
The OO jDrew Reference Implementation of RuleML.
In RuleML 2005, Galway, 2005.

[2] H. Boley. The Rule-ML Family of Web Rule
Languages. In 4th Int. Workshop on Principles and
Practice of Semantic Web Reasoning, Budva,
Montenegro, 2006.

[3] H. Boley and S. Tabet. RuleML: The RuleML
Standardization Initiative, http://www.ruleml.org/,
2000.

[4] D. Brickley and R. Guha. RDF Vocabulary
Description Language 1.0: RDF Schema,
http://www.w3.org/TR/rdf-schema/, accessed June
2005, 2004.

[5] A. Consortium. vCard: The Electronic Business Card,
http://www.imc.org/pdi/vcardwhite.html, 1997.

[6] F. Dawson and D. Stenerson. Internet Calendaring
and Scheduling Core Object Specification (iCalendar),
http://www.ietf.org/rfc/rfc24, 1998.

[7] DCMI. Dublin Core Metadata Initiative,
http://dublincore.org/, accessed June 2004, 2001.

[8] FIPA. FIPA Agent Communication Language,
http://www.fipa.org/, accessed Dec. 2001, 2000.

[9] FOAF. The Friend-Of-A-Friend project,
http://www.foaf-project.org/, accessed June 2005,
2005.

[10] GRDDL. Gleaning Resource Descriptions from
Dialects of Languages,
www.w3.org/2004/01/rdxh/spec, accessed June 2001,
2001.

[11] P. Hayes. RDF Semantics,
http://www.w3.org/TR/2004/REC-rdf-mt-20040210,
accessed Dec. 2005, 2004.

[12] A. Hevner, S. March, J. Park, and S. Ram. Design
Science in Information Systems Research. MIS
Quarterly, 28(1):75–101, 2004.

[13] M. N. Huhns and M. P. Singh. Readings in Agents.
Morgan Kaufmann, San Francisco, 1998.

[14] G. Klyne and J. Caroll. Resource Description
Framework (RDF): Concepts and Abstract Syntax,
http://www.w3.org/TR/2004/REC-rdf-concepts-
20040210, accessed Nov. 2005,
2004.

[15] A. Kozlenkov, A. Paschke, and M. Schroeder. Prova,
http://prova.ws, accessed Jan. 2006, 2006.

[16] D. L. McGuinness and F. v. Harmelen. OWL Web
Ontology Language,
http://www.w3.org/TR/owl-features/, accessed June
2005, 2004.

[17] Mule. Mule Enterprise Service Bus,
http://mule.codehaus.org/display/MULE/Home,
2006.

[18] A. Paschke. A Typed Hybrid Description Logic
Programming Language with Polymorphic
Order-Sorted DL-Typed Unification for Semantic Web
Type Systems. In OWL-2006 (OWLED’06), Athens,
Georgia, USA, 2006.

11

[19] A. Paschke. Rule-Based Service Level Agreements -
Knowledge Representation for Automated e-Contract,
SLA and Policy Management. Idea Verlag GmbH,
Munich, 2007.

[20] A. Paschke, B. Harold, A. Kozlenkov, and B. Craig.
Rule Responder: A RuleML-Based Pragmatic Agent
Web for Collaborative Teams and Virtual
Organizations, http://ibis.in.tum.de/projects/paw/,
2007.

[21] A. Paschke, C. Kiss, and S. Al-Hunaty. NPL:
Negotiation Pattern Language - A Design Pattern
Language for Decentralized (Agent) Coordination and
Negotiation Protocols. In R. Banda, editor,
E-Negotiation - An Introduction. ICFAI University
Press, ISBN 81-314-0448-X, 2006.

[22] A. Paschke, A. Kozlenkov, and H. Boley. A
Homogenous Reaction Rules Language for Complex
Event Processing. In International Workshop on Event
Drive Architecture for Complex Event Process
(EDA-PS 2007), Vienna, Austria, 2007.

[23] A. Paschke, A. Kozlenkov, H. Boley, M. Kifer,
S. Tabet, M. Dean, and K. Barrett. Reaction RuleML,
http://ibis.in.tum.de/research/ReactionRuleML/,
2006.

[24] O. Patashnik. BibTeXing. 1998.

[25] RIF. W3C RIF: Rule Interchange Formant,
http://www.w3.org/2005/rules/, accessed Oct. 2005,
2005.

[26] M. Schoop, A. Moor, and J. Dietz. The Pragmatic
Web: A manifesto. Communications of the ACM,
49(5), 2006.

[27] SIOC. Semantically-Interlinked Online Communities,
http://sioc-project.org/, accessed June 2005, 2005.

[28] M. Welsh, D. Culler, and E. Brewer. SEDA: An
Architecture for WellConditioned, Scalable Internet
Services. In Proceedings of Eighteeth Symposium on
Operating Systems (SOSP-18), Chateau Lake Louise,
Canada, 2001.

12

