
Publisher’s version / Version de l'éditeur:

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez
pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the
first page of the publication for their contact information.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

Workshop on Trading Agent Design and Analysis (TADA'04), held inconjunction
with the 3rd International Conference on Autonomous Agents and Multi-Agent
Systems (AAMAS'04) [Proceedings], 2004

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

NRC Publications Archive Record / Notice des Archives des publications du CNRC :
https://nrc-publications.canada.ca/eng/view/object/?id=3e4295e9-504c-4188-82dc-545dbafc9456

https://publications-cnrc.canada.ca/fra/voir/objet/?id=3e4295e9-504c-4188-82dc-545dbafc9456

NRC Publications Archive
Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. /
La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version
acceptée du manuscrit ou la version de l’éditeur.

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

An Algorithm for Procurement in Supply Chain Management
Buffett, Scott; Scott, N.

National Research
Council Canada

Institute for
Information Technology

Conseil national
de recherches Canada

Institut de technologie
de l'information

An Algorithm for Procurement in Supply Chain
Management *

Buffett, S., and Scott, N.
July 2004

* published at the Workshop on Trading Agent Design and Analysis (TADA’04); held in
conjunction with the 3rd International Conference on Autonomous Agents and Multi-Agent
Systems (AAMAS’04). New York, New York, USA. Pp. 9-14. July 20, 2004. NRC 47455.

Copyright 2004 by
National Research Council of Canada

Permission is granted to quote short excerpts and to reproduce figures and tables from this report,
provided that the source of such material is fully acknowledged.

An Algorithm for Procurement in Supply-Chain
Management

Scott Buffett
National Research Council Canada

Institute for Information Technology - e-Business
46 Dineen Drive

Fredericton, New Brunswick, Canada
E3B 9W4

scott.buffett@nrc.gc.ca

Nathan Scott
National Research Council Canada

Institute for Information Technology - e-Business
46 Dineen Drive

Fredericton, New Brunswick, Canada
E3B 9W4

nathan.scott@nrc.gc.ca

ABSTRACT
We propose a technique for use in supply-chain manage-
ment that assists the decision-making process for purchases
of direct goods. Based on projections for future prices and
demand, RFQs are constructed and quotes are accepted that
optimize the level of inventory each day, while minimizing
total cost. The problem is modeled as a Markov decision
process (MDP), which allows for the computation of the
utility of actions to be based on the utilities of consequen-
tial future states. Dynamic programming is then used to
determine the optimal quote requests and accepts at each
state in the MDP. We also discuss the implementation of
our entry in the TAC-SCM game, NaRC, and demonstrate
how the general technique presented can be specialized for
use in our TAC-SCM agent.

Keywords
supply-chain management, Markov decision process, dynamic
programming, purchasing

1. INTRODUCTION
With the dramatic increase in the use of the Internet for
supply chain-related activities, there is a growing need for
services that can analyze current and future purchase pos-
sibilities, as well as current and future demand levels, and
determine efficient and economical strategies for the pro-
curement of direct goods. Such solutions must take into
account the current quotes offered by suppliers, likely fu-
ture prices, projected demand, and storage costs in order to
make effective decisions on when and from whom to make
purchases. Based on demand trends and projections, there
is typically a target inventory level that a business hopes
to maintain. This level is high enough to be able to meet
fluctuations in demand, yet low enough that unnecessary
storage costs are minimized (see Shapiro [11] for example).

The focus of this paper is to provide an algorithm for pur-
chase decision-making that strives to keep inventory close to
its optimal level, while minimizing total cost.

In a perfect world, the best strategy for keeping inventory
as close to the optimal level as possible would be to delay
ordering to the last moment. That is, if demand trends indi-
cate that a new shipment will be needed on some particular
day, it would be best to delay ordering as long as possible
so that the quantity needed and be assessed with the most
certainty. An accurate estimate of the optimal quantity is
critical since an inventory shortage may result in lost sales,
while excessive inventory could result in unnecessary storage
costs. Because of the variance in the demand, the quantity
needed a few days from now can usually be more accurately
assessed than the quantity needed several days from now.
Thus by delaying ordering the expected utility of future de-
mand levels is increased. On the other hand, one may want
to order earlier if current prices are low, if there will more
selection (i.e. many quotes from which to choose), or simply
to ensure timely delivery. Thus there can be incentive to bid
both early and late.

In this paper, we propose a decision-theoretic algorithm that
advises the buyer when and from whom to buy by looking
at possible future decisions. The buyer is advised to take an
action if and only if there is no present or future alternative
that would yield greater overall expected utility. We con-
sider the request-for-quote (RFQ) model where the buyer
requests quotes from suppliers by specifying the quantity
needed and the desired delivery date, receives quotes a short
time after which specify the price and quantity that can be
delivered by the specified date (if not the entire order), and
has a fixed period of time to decide whether or not to accept
each quote. Factors that are of concern include the projected
demand for each day (or whatever time period granularity is
desired), current and projected sale prices each day for each
supplier, storage costs, and RFQ costs. While there might
not be direct costs associated with requesting quotes, indi-
rect costs such as the time taken to compute optimal RFQs,
as well as the possibility of being neglected by suppliers if we
repeatedly fail to respond to their quotes, must be consid-
ered. To compute optimal decisions, we model the problem
as a Markov decision process [10] and use dynamic program-
ming [2, 7] to determine the optimal action at each decision

point. Actions include submitting RFQs to the various sup-
pliers and accepting/rejecting quotes. With this model, the
value (i.e. expected utility) of future consequential decisions
can be taken into account when determining the value of
choices at current decisions.

The new Trading Agent Competition-Supply Chain Man-
agement game (TAC-SCM) [1] now provides a vehicle for
testing various techniques related to supply-chain manage-
ment in a competitive environment. While the theory in
this paper deals with supply chain management in general,
we show how the model is reduced to that of the TAC-SCM
game, and demonstrate how our technique is implemented
for our entry in the competition, NaRC.

The paper is organized as follows. In section 2 we give a for-
mal description of the problem. In section 3, we formulate
the problem as an MDP and define the dynamic program-
ming model. In section 4 we discuss the TAC-SCM game
and describe how the research discussed in this paper fits.
Finally, in section 5 we offer a few conclusions and outline
plans for future work.

2. PROBLEM FORMALIZATION
We consider the model where the buyer wants to purchase
multiple units of a single good for resale (perhaps first being
assembled with other items). Let SUP = {sup1, . . . , supm}
be the set of suppliers from whom the good can be obtained.
Let d = 0, 1, . . . n denote the days over the procurement
period (e.g. the next fiscal year, etc.). These could instead
be hours, weeks, etc., depending on the desired granularity
of time. Also, let k ∈ Z be an integer denoting the inventory
on a particular day d, and let h be the holding cost per unit
per day. That is, if k′ units are left over at the end of the day,
they are held at a cost of hk′. Also, let uk(k, d) be the utility
of holding k units at the start of day d. This is a function
of the expected income for d, taking into consideration the
expected demand on d and the expected cost of holding the
leftover inventory at the end of the day. This function will
be maximized with higher k during high-demand periods
and lower k over low-demand periods.

Our research is placed in the context of the request-for-quote
(RFQ) procurement model. At any time, the buyer can send
an RFQ to various suppliers. A subset of those suppliers
will then respond to the request by offering a quote which
specifies the terms of the offer. Let each RFQ be a tuple
〈supi, q, ddel〉 specifying the supplier supi, the quantity q

needed and the day ddel on which to deliver. Let each quote
be a tuple 〈supi, p, qdel, ddel, dr〉 specifying the supplier supi,
the price p of the order, the quantity qdel that can be de-
livered on ddel (in case the entire order cannot be filled by
that day), and the day dr on which the quoted price will be
rescinded if the buyer has not yet responded. Let c be the
small cost associated with each RFQ. Payment for the order
is assumed to be due upon receipt of the goods.

Also, for purposes of projecting future outcomes, assume we
have three probability distribution functions that are used
to predict future outcomes: the demand distribution func-
tion, the supply distribution function and the price distri-
bution function. The demand distribution function df(d, x)
takes a day d and an integer x and returns the probability

of selling x units on d. The supply distribution function
sf(sup, d, d′, x) takes a supplier sup, days d and d′ and an
integer x and returns the probability that sup can deliver x

units on day d′ if they were ordered on day d. Finally, the
price distribution function pf(sup, d, d′, x, y) takes a supplier
sup, days d and d′, an integer x and a monetary amount y

and returns the probability that sup will quote a price of
y for x units ordered on d to be delivered on day d′. Each
of these functions can be constructed by examining market
history, supplier history, or by using statistical projection
techniques.

The problem is to decide each day 1) which quotes that have
already been obtained to accept, and 2) whether to request
new quotes, and if so, how the RFQ’s should be formulated.
That is, we must decide on which days we will likely need
new shipments, and also what the optimal quantity is. The
goal is to make decisions that maximize the overall inventory
utility (i.e. keep the inventory close to optimal each day),
while minimizing the total amount spent on orders over the
duration of the purchase period.

3. MODELING THE PROBLEM AS A MAR-
KOV DECISION PROCESS

In this paper we capitalize on the idea of examining exactly
what information will be known at future choice points when
determining the optimal actions. For example, consider two
suppliers sup1 and sup2. If we choose to request a quote
for k units from each of them on some future day d, at
the time we receive the quotes we will know the exact price
being offered by each supplier. Based on this knowledge,
plus the knowledge of the expected utility of not ordering at
all, we can choose either to accept the cheaper quote or pass
altogether. While the expected utility of any course of action
on day d may not be as high as the expected utility of any
action at the current decision point (i.e. current quotes), it
is possible that the overall expected utility of waiting until
day d to take action is higher. This is due to the fact that
more information will be known on d than is known now,
which will allow the decision-maker to make a more informed
decision, thus increasing expected utility.

To determine the optimal quotes to accept and RFQs to
submit, the problem is modeled as a Markov decision pro-
cess (MDP) [10]. An MDP is a mathematical tool used to
aid decision-making in complex systems. In an MDP, the
possible states S that the decision-making agent can occupy
is defined, as well as the set of actions A that the agent can
take in each state. If action a is deterministic in state s,
then the transition function maps (s, a) to a new state s′.
Otherwise the action is stochastic, and the transition func-
tion maps (s, a) to states according to a probability function
Pr, where Pr(s′|s, a) is the probability of occupying s′ given
that a is performed in s. Also, some or all of the states may
have an associated reward. The purpose of modeling a prob-
lem as an MDP is to determine a policy function π : S → A,
which takes any state and specifies the action such that the
expected sum of the sequence of rewards is maximized. Dy-
namic programming is used to determine the optimal action
on each day in the procurement period.

3.1 States
Each state s in the MDP is a tuple 〈I,Q, C, d, k〉 where

• I is the set of incoming orders. That is, I contains
the orders known to be coming in on the day specified
in s or on some future day. Each i ∈ I is a tuple
〈q, d〉 where d is the day of the shipment and q is the
quantity.

• Q is the set of currently open quotes.

• C is the total amount spent on purchases thus far.

• d is the day.

• k is the current inventory.

3.2 Actions
Actions consist of accepting quotes and sending RFQs. Since
quote rescind times are always known (i.e. quotes are not
pulled without warning), we assume that decisions on whether
or not to accept a quote are delayed to the last possible mo-
ment, to allow decisions to be as informed as possible. Thus
quotes are only accepted on their rescind days. We also as-
sume that at most one RFQ is sent to each supplier each
day. This assumption is put in place merely to reduce the
number of possible actions at each state, and could easily
be lifted if desired. Let req(rfq) represent the act of sub-
mitting a request-for-quote rfq, and let acc(qu) represent
the act of accepting quote qu. For a state s with quotes Qs

and day ds, let {req(〈sup, q, ddel〉) | sup ∈ SUP, qmin ≤
q ≤ qmax, ds < d ≤ dn} be the set possible quote re-
quests, where qmin and qmax are the minimum and max-
imum quantities that can be ordered, respectively, and let
the set {acc(〈s, p, q, dr〉) | 〈s, p, q, dr〉 ∈ Qs, dr = ds} be the
set of possible quote acceptances. The set A of actions is
then the union of these two sets. Any subset A′ of the ac-
tions in A for a state s can be performed with the restriction
that at most one RFQ is submitted to each supplier. Let
the set of these valid subsets for a state s be denoted by As.

3.3 Rewards
The value of a state in an MDP is equal to the reward for
that state plus the expected rewards of future states. The
optimal action at each state is then the one defined to yield
the highest expected value. Our technique aims to optimize
two things: the utility of the inventory held each day, and
the total cost over the entire purchase period. Thus there
are two types of rewards given in the MDP. To assess the
reward to be assigned to each state, two utility functions are
used: the inventory utility function uk and the cost utility
function uc.

The inventory utility function uk : Z × Z → < takes an
inventory level k and a day d and returns the utility of hold-
ing k units on d. This utility is determined by measuring
the ability of meeting the expected demand for day d with
k units against the expected costs associated with holding
the leftover units. For example, if k′ is the optimal number
of units to hold on d (thus maximizing uk for d), then for
k < k′ inventory may not be high enough to meet the de-
mand so money may be lost, and for k > k′ inventory may
be too high and too costly to be worth holding.

Example. Let the demand function be such that either 1
or 2 units will be sold, each with 0.5 probability, on day d.
Also let the sale price of each unit be $10. The expected net
income (revenue - minus inventory cost) E(x, d) for x units
on day d is 0 if x = 0, 10 if x = 1 (since the one item will
be sold with certainty), and 16.5 − x if x ≥ 2 (taking into
account losses incurred by possible leftover inventory). The
utility function uk is then a function of E(x, d) (perhaps
concave to indicate aversion to risk). 2

The cost utility function uc : Z → < is a monotonically
decreasing function that takes a cost c and returns the utility
of spending c. It is typically a concave function reflecting
the risk-aversity of the decision-maker.

For each state s, the inventory reward is given. That is, if
k is the inventory for s and d is the day, then the inventory
reward for s is uk(k, d). For each terminal state a cost reward
is given, which is the utility uc(C) of spending a total of C

over the duration of the procurement period.

The value of each state is then a function of the expected
cost reward for the procurement period and the expected
inventory rewards for subsequent days.

3.4 The Transition Function
The transition function specifies which states can follow
from an action in a given state in the MDP. Let T (s, a) be
this function which takes a state s ∈ S and action a ∈ As,
and returns the set of states that can be occupied as a result
of performing a in s. Let Pr(s′|s, a) be the transition prob-
ability function, which specifies the probability of occupying
state s′ ∈ T (s, a) directly after a is performed in s. These
two functions are computed as follows.

Let s = 〈I, Q,C, d, k〉 be a state and a ∈ As an action where
a is a valid subset of requests and acceptances that can be
performed in s. Then s′ = 〈I ′, Q′, C′, d′, k′〉 ∈ T (s, a) if

• I ′ contains the incoming orders from I, minus those
offers that arrived on day d, plus new incoming or-
ders that result from the quotes accepted in a. More
formally, let Iold = {〈q, ddel〉 | 〈q, ddel〉 ∈ I, ddel =
d} be the orders that came in on d, and let Inew =
{〈q, ddel〉 | acc(〈sup, p, q, ddel, d〉) ∈ a} be the new in-
coming orders that arise as a result of accepting quotes.
Then I ′ = I \ Iold ∪ Inew.

• Q′ contains the quotes from Q, minus those that were
rescinded on day d, plus those that are received as a re-
sult of the requests in a. Let Qold = {〈sup, p, q, ddel, dr〉
| 〈sup, p, q, ddel, dr〉 ∈ Q,dr = d} be the orders were
rescinded, and let Qnew = {〈sup, p, q, ddel, d + 1 +
ql〉 | req(〈sup, q, ddel〉) ∈ a} be the quotes received
in response to the requests in a, where ql is the quote
length (i.e. the number of days for which the quote
is valid). This could be assumed to be constant over
all suppliers. Thus Q′ = Q \ Qold ∪ Qnew. Note that
there may be several possible values for the price p and
the deliverable quantity q in the quotes in Qnew. The
transition probability function will consider the prob-
ability of each outcome in determining the probability
of the state as a whole.

• C′ is the amount spent C by day d, plus the amount
spent on accepted quotes in a, plus the RFQ costs.
Thus C′ = C+

∑

p+creq over all acc(〈sup, p, q, ddel, d+
1〉) ∈ a, where creq is the cost of requests in a.

• k′ is the starting inventory for day d, minus the units
sold td on d, plus those received via incoming orders
in Inew. Thus k′ = k− td +

∑

q for all 〈q, ddel〉 ∈ Inew .
Note that there may be several possible values for td,
each with some probability of occurring.

• d′ = d + 1.

Let s be a state and let T (s, a) contain the states that can
follow from performing a in s. Then for each state s′ ∈
T (s, a), the probability P (s′|s, a) of occupying s′ after a is
performed in s is determined as follows. Let d be the day
specified in s, let Qnew be the set of new quotes received on
day d + 1, and let td be the number of units sold on day d,
which is the inventory in s′ minus the sum of the inventory
in s and the units received (i.e. in Inew). Let the demand
distribution function, supply distribution function and price
distribution function be as defined in section 2. Then the
probability of getting the quotes in Qnew is

Prob(Qnew) =

∏

qui∈Qnew

sf(supi, d+1, ddeli , qi)×pf(supi, d+1, ddeli , qi, pi)

where qui = 〈supi, pi, qi, ddeli , dri
〉, and the probability of

selling td units on d is df(d, td). Thus the probability of s′

occurring is P (s′|s, a) = Prob(Qnew) × df(d, td).

3.5 The Dynamic Programming Model
The value iteration method of dynamic programming is used
to determine the optimal action at each state. This optimal
action is the one that maximizes expected value (in this case
value is utility). Let v : S → < be the value function that
assigns to each state its value, let π : S → Q be the optimal
policy and let s = 〈I,Q, C, d, k〉 be a state. Then

v(s) =

{

fd(uk(k, d), uc(C)) if d = dn

maxa∈As

∑

s′∈T (s,a) fd(uk(k, d), v(s′)) × P (s′|s, a)

otherwise

π(s) =

arg max
a∈As

∑

s′∈T (s,a)

fd(uk(k, d), v(s′)) × P (s′|s, a) if d < dn

where arg is the operator that returns the maximizing a,
and fd is the function for computing the value of the state
in terms of the utility of the current inventory and the value
of the following states. This function may be constant or
variable and can be constructed to factor in the decision
maker’s relative importance for optimizing either cost or in-
ventory level.

4. THE TAC-SCM GAME
The Trading Agent Competition has occurred annually since
2000. The competition was designed to encourage research
in trading agent problems, and it provides a method for
direct comparison of different approaches, albeit in an ar-
tificial environment. The original competition focused on
acquiring a package of items in set of auctions, but in 2003
the ”Supply Chain Management” (SCM) game was intro-
duced. The TAC-SCM game charges the competing agent
with the task of successfully managing a computer dealer-
ship: acquiring components from suppliers, assembling these
components into complete PCs, and selling these PCs to a
group of customers.

4.1 Game Description
The unit of time in a TAC-SCM game is a single day. Each
day, all competing agents receive a variety of information
and can choose to perform several different actions. These
all occur in three main areas: Purchasing (from suppliers),
sales (to customers), and production and delivery.

The customers send a package of RFQs each day. Each
RFQ specifies a PC type, quantity, due date, reserve price
and penalty amount. Each agent may then choose to bid on
the RFQ. The customers choose the lowest bid it receives, as
long as the bid is below the reserve price, and accepts that
bid the following day. Once a bid is accepted, the agent has
committed to meet the bid by the specified due date: failure
to do so results in penalty fees for late or cancelled orders.

The production process takes a set of components in inven-
tory (that are never sought individually by customers) and
assembles them to create a finished product which can be
sold to customers. Different PC types require different com-
ponents and use different amounts of “assembly cycles”. All
agents have the same daily capacity for production. Once
assembled, PCs can be delivered freely, at any time, with no
limit on numbers. Additionally, inventory holding costs are
charged for all components and finished PCs held in inven-
tory.

Agents RFQ suppliers much like customers RFQ agents.
Each day, agents may choose to send an RFQ for a spe-
cific component, quantity and due date. The difference is in
the pricing. When the suppliers receive an RFQ, they re-
spond with a price based on the quantity requested, the due
date, and its projected capacity for production. Also, if the
supplier cannot complete an order by the requested date,
they may respond with a partial completion quote (for a
lower quantity) or an earliest completion quote (at a later
due date) or both.

The agent receives a response to its RFQs the following day.
When an agent receives an offer from a supplier, it must
choose to accept or decline the offer that same day. While
there is no immediate cost associated with making an RFQ,
there is a hidden cost that results from a simple ”reputation”
model that each supplier uses for the agents. The model
uses the ratio of the quantity requested by an agent to the
quantity actually ordered, over the entire game, to decide
which RFQs to process first. Being processed later than
other agents can lead to higher prices and less reliable dates.

There is additional information provided such as market and
price reports that can help gaage demand levels, but the
main focus of day-to-day decision making is: Bid on cus-
tomers, assemble and deliver PCs, send suppliers RFQs, and
choose supplier offers to accept.

4.2 Our “NaRC” Agent
NaRC is intended to use the Markov Decision Process model
described in this paper for dealing with the supplier end of
the SCM game. The customer sales portion of our agent sets
the ground rules for this aspect. It is in charge of gauging
the demand levels and setting the utility functions. In other
words, the sales portion tells the purchasing portion what
inventory levels it wished it had based on how the game
has been going (the inventory utility function). The sales
portion also decides what prices should be considered to
be ”too high” based on market conditions (the cost utility
function). The purchaser then uses the MDP model to fulfill
those requests as best it can. Whatever inventory it does
manage to acquire is used by the sales portion when it comes
down to actually bidding on customers.

The description of a state in the MDP provided in 3.1 maps
neatly to the SCM game with a few refinements. First of all,
the SCM is much more complex than the single-unit model
that we describe. There are several different computers sold
in the market, each of which composed of multiple compo-
nents. We reduce the SCM problem to our model as follows.
Each day, several subsets of the quotes received are exam-
ined to determine the optimal subset to accept. The value
of each set is assessed by determining the optimal allocation
of components that would be received as a result, as well
as those already in inventory, to the various computers that
can be built. If the optimal allocation will give us x units of
computer type A with assembly day d (i.e. the day that the
last of the necessary components will arrive), then an MDP
is built for A with an initial incoming order of x units on day
d. The value of the current state of this MDP is our value
for A. This is done for every computer given this allocation,
giving the total value for the allocation.

Another difference is that the set Q of open quotes will not
consist of a group of overlapping offers that expire at dif-
ferent times. Quotes given by suppliers in the SCM game
always arrive the day after the RFQ, and always close on
the same day. Thus decisions on open quotes must be made
immediately, and so considering accepting actions need only
be done on days immediately following a day we chose an
RFQ action.

Market conditions change from game to game, and even mid-
game, so the inventory utility function uk(k, d) will need to
be dynamic. The utility of an inventory vector k on day
d is based on comparing it to an estimated optimal inven-
tory vector k′ for day d. The optimal inventory is estimated
based on the market conditions and production capacity.
The cost utility function uc(C) could be based on the base
prices for each component (which are known at the begin-
ning of the game and do not change) or could be dynamic,
based on the average prices for the component for everyone
during that game.

Section 3.4 describes the transition function, which uses

three separate distributions in its calculations: the demand
distribution function, supply distribution function and price
distribution function. These are modeled by the agent each
game based on the actual history of the game up to the deci-
sion point. The demand distribution function represents the
expected “sales rate” for each component. The sales rate for
future days is based on our performance history, as well as
any confirmed orders that we have in the near future. The
supply and price distribution functions will also be based
on past history with suppliers. The formula for pricing is
given in the TAC-SCM documentation, and so will be easy
to predict if we can accurately estimate the supplier’s ca-
pacity. This estimation will also provide us with the key to
the supply distribution function.

5. CONLUSIONS AND FUTURE WORK
In this paper we present a mathematical model for determin-
ing when to request quotes from suppliers, how to construct
the RFQs, and which of the resulting quotes to accept. De-
cisions are made in such a way as to optimize the level of
inventory each day, while lowering total cost. The problem
is modeled as a Markov decision process (MDP), which al-
lows for the computation of the utility of actions to be based
on the utilities of consequential future states. Each action
is considered to be a set containing quote requests and ac-
cepts. Dynamic programming is then used to determine the
optimal action at each state in the MDP. The TAC-SCM
game is also discussed, and the implementation of technique
for own agent, NaRC, is described.

The idea of modeling problems similar to this as an MDP
has been done before. Boutilier et al. [3, 4], Byde [6], and
Buffett and Grant [5] have previously used MDPs for auc-
tion decision-making. However our model differs from these
works in two ways: 1) we consider the request-for-quote
model rather than the auction model, and 2) we buy items
for resale with the extra aim of maintaining a certain level
of inventory, in addition to cost minimization. Other tech-
niques have been presented by Priest et al. [8, 9] for purchas-
ing items for resale, however, these works do not attempt to
measure the value of current choices based on the value of
consequential future decisions.

For future work, we intend to test the technique against
other strategies to determine under what conditions and sit-
uations the technique performs well and not so well. Such
strategies range from the more näıve where quotes are re-
quested simply when inventories reach certain levels and the
cheapest quote is immediately accepted, to the more sophis-
ticated where massive amounts of inventories are built up
(regardless of overhead costs) and intelligent selling methods
are employed to maximize profit. We believe that the latter
type of strategy, which was employed by several agents in
the TAC-SCM game in 2003, might not yield as much profit
per unit as our technique, but could exceed our technique
in total profit because of the higher volume of transactions.
As far the potential success of using our technique in the
actual TAC-SCM game, we believe that while these high-
volume agents may monopolize supply early in the game, in
the long run our agent will perform better, especially in low-
demand games. Only after experimentation with real-world
examples as well as the TAC-SCM will these questions be
answered.

6. REFERENCES
[1] R. Arunachalam, J. Eriksson, N. Finne, S. Janson,

and N. Sadeh. The supply chain management game
for the trading agent competition 2004.
http://www.sics.se/tac/tacscm 04spec.pdf. Date
accessed: Apr 8, 2004, 2004.

[2] R. Bellman. Dynamic Programming. Princeton
University Press, Princeton, NJ, 1957.

[3] C. Boutilier, M. Goldszmidt, and B. Sabata.
Continuous value function approximation for
sequential bidding policies. In the Fifteenth Annual
Conference on Uncertainty in Artificial Intelligence
(UAI-99), pages 81–90, Stockholm, 1999.

[4] C. Boutilier, M. Goldszmidt, and B. Sabata.
Sequential auctions for the allocation of resources with
complementaries. In the Sixteenth International Joint
Conference on Artificial Intelligence (IJCAI-99),
pages 527–534, Stockholm, 1999.

[5] S. Buffett and A. Grant. A decision-theoretic
algorithm for bundle purchasing in multiple open
ascending price auctions. In the Seventeenth Canadian
Conference on Artificial Intelligence (AI’2004,
London, ON, Canada, 2004.

[6] A. Byde. A dynamic programming model for
algorithm design in simultaneous auctions. In
WELCOM’01, Heidelburg, Germany, 2001.

[7] R.A. Howard. Dynamic Programming and Markov
Processes. M.I.T. Press, Cambridge, Mass., 1960.

[8] C. Preist, C. Bartolini, and A. Byde. Agent-based
service composition through simultaneous negotiation
in forward and reverse auctions. In Proceedings of the
4th ACM Conference on Electronic Commerce, pages
55–63, San Diego, California, USA, 2003.

[9] C. Priest, A. Byde, C. Bartolini, and G. Piccinelli.
Towards agent-based service composition through
negotiation in multiple auctions. In AISB’01 Symp. on
Inf. Agents for Electronic Commerce, 2001.

[10] M.L. Puterman. Markov Decision Processes. Wiley,
1994.

[11] J. F. Shapiro. Modeling the Supply Chain. Duxbury,
Pacific Grove, CA, 2001.

