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High harmonic generation in semiconductors is analyzed for high mid-infrared laser intensities for which the

electron-hole pair is driven beyond the first Brillouin zone and exhibits Bloch oscillations. We find that even

a two-band analysis exhibits second and higher plateaus. Whereas the first plateau is shown to be consistent

with high harmonic generation through electron-hole recollision, the higher plateaus arise from dynamic Bloch

oscillations; however, the driving process is interband in nature, in contrast to the generally accepted intraband

Bloch oscillation mechanism. Energy conservation is fulfilled, as harmonics beyond the first plateau come from

a cascaded nonlinearity.
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I. INTRODUCTION

The process of high-harmonic generation (HHG) has been
studied extensively in atomic and molecular systems [1,2] over
the past several decades. Recently, however, interest has grown
towards studying HHG in condensed matter systems. Experi-
ments generating high-order harmonics in bulk semiconductor
crystals for wavelengths in the mid-infrared (mid-ir) [3,4]
and THz [5,6] regimes have been performed, establishing a
foundation on which attosecond electron dynamics in solids
can be studied.

HHG in solids can result from two distinct contributions—
an interband and an intraband current [7,8]. Theoretical
analysis [9,10] and recent experiments [11] revealed that the
interband current created by electron hole recollision is the
dominant mechanism for mid-ir driver pulses. Its similarity
to HHG in atomic gases allows one to adapt attosecond
technology from gases to solids, with potential applications
such as, bandgap tomography, solid-state PHz oscilloscope,
and in situ measurement of electric signals in semiconductor
devices [11]. By contrast, for longer wavelengths towards the
THz regime, intraband HHG, as a result of the nonlinear band
velocity [6,12–15], was found to be dominant [6,10].

Mid-ir HHG experiments [3] have been confined to moder-
ate intensities by the onset of material damage. However, the
material damage threshold can be shifted to higher intensities
by using shorter pulse durations and/or by going to different
materials. This makes the study of the higher intensity regime
meaningful and interesting from an application perspective.
Higher laser intensities can potentially translate into shorter
harmonic wavelengths and shorter pulse durations, both being
of interest for attosecond spectroscopy in solids.

At higher intensities, when electrons are driven beyond the
first Brillouin zone boundary, two additional processes take
place. First, the bandgap between first and second conduction
band is usually smallest at the Brillouin zone edge, so that
transitions to higher bands may become important [16].
Second, once a conduction electron has crossed the edge
of the Brillouin zone, it will begin to move in the opposite
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direction. This results in the intraband phenomenon known as
Bloch oscillation (BO) where the electron moves periodically
in space by repeatedly crossing the Brillouin zone boundaries
[17].

In interband HHG through recollision in a two-band system,
energy conservation limits the harmonic plateau region to
the maximum bandgap energy [10]. Recently, in numerical
studies a second plateau with harmonics beyond the maximum
bandgap [18] was found. Both, higher bands and intraband
BOs, were identified as candidates for generating the second
plateau.

The main finding of our investigation is a BO mechanism
driving HHG that is interband in nature, relying on the
polarization buildup between valence and conduction band.
It manifests as a second plateau, but is fundamentally different
from conventional intraband BO referred to above. For our
investigation we use three-dimensional (3D), two- and three-
band calculations of ZnO. We have chosen to use ZnO because
it is the only material for which mid-ir HHG experiments have
been performed [3,11]. The interband BO mechanism is a new
mechanism that has yet to be examined experimentally.

Interband BO–HHG appears for two bands; the role of
higher bands is investigated by adding a second conduction
band. In ZnO, the second is close to the first conduction
band and therefore is potentially important; higher bands are
neglected. The presence of the third band affects the harmonic
spectrum only weakly, although population in the first and
second conduction band are found to be comparable; the
electron-hole recollision mechanism remains the dominant
source for HHG in the fundamental plateau.

In a more general analysis of 3D model systems, the
efficiency of BO–HHG is studied with regard to the parameters
of the third band. The efficiency increases substantially with
shrinking bandgap between the two conduction bands. Still,
interband BOs remain the dominant driving mechanism. As
a result, interband BO–HHG presents a potential pathway
towards extending HHG to shorter wavelengths in selected
solids, where closely spaced higher conduction bands enhance
its efficiency.

Finally, the mechanism driving HHG from interband BOs
is revealed by a saddle point analysis for a two-band model.
After the electron is promoted to the conduction band by
tunnel ionization, the laser field drives the electron periodically
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through the first Brillouin zone which leads to a fast oscillation
in the bandgap energy; the integral over the bandgap energy,
the classical action S, determines the phase of interband
polarization. As integrals over fast oscillations yield zero,
HHG through interband BO can happen only around the saddle
points in S which occur at each nodal point of the laser field;
there BOs are suppressed and the bandgap energy remains
approximately constant resulting in a sinusoidal oscillation
of the interband polarization and therewith emission of a
harmonic photon. Bangap and photon energy are determined
by the electron-hole crystal momentum at the field nodal
points. Each of these saddle points can create a harmonic
spectrum with highest photon energy equal to the maximum
bandgap energy, as is required by energy conservation in a
two-band model. As the consecutive saddle points can act as a
cascaded nonlinearity, the harmonic spectrum can extend over
multiples of the maximum bandgap energy.

II. DERIVATION OF THE DENSITY MATRIX EQUATIONS

Our analysis is based on a 3D, three-band model of
ZnO (wurtzite structure). Here we will derive the density
matrix equations for a solid with an arbitrary number of
bands. We will then use these general equations to define
our three-band model. We begin with the time-dependent
Schrödinger equation (TDSE) in the length gauge where the
time-dependent Hamiltonian in atomic units is written as
H (t) = H0 − x · F(t), where H0 = T + U is the unperturbed
Hamiltonian with T = (1/2)∇2 the kinetic energy and U (x)
the periodic potential of the lattice. The field free Hamiltonian
H0 has Bloch eigenstates �m,k(x) = um,k(x) exp(ik · x) with
energies Em,k = Em(k) in band m with crystal momentum k;
um,k is the periodic part of the Bloch function.

In the presence of the laser field the wave function becomes
time dependent. In the length gauge it is represented as

�(x,t) =
∑

m

∫

BZ

am(k,t)�m,k(x) d3k, (1)

where am(k,t) are the probability amplitudes and integration
is over the full Brillouin zone (BZ).

The derivation of the equations of motion for the probability
amplitudes proceeds in the same manner as the supplementary
material of Ref. [9]. Equation (1) is substituted into the TDSE
and the Bloch eigenstates are integrated out yielding,

ȧm = (−iEm(k) + F(t)∇k)am + iF(t)
∑

m′ �=m

dmm′(k)am′ , (2)

where

dmm′ (k) = i

∫

d3xu∗
m,k(x)∇kum′,k(x) (3)

is the transition dipole.
Following the Keldysh approach [19], we use the trans-

formation am = bm exp(−i
∫ t

−∞
Emdt ′) together with K =

k − A(t) in Eq. (2) where A(t) is the vector potential defined
by F = −dA/dt . As a result we arrive at

ḃm(K,t) = i
∑

m�=m′

�mm′ (K,t)bm′(K,t)eiSmm′ (K,t), (4)

where �mm′ = F(t)dmm′[K + A(t)] and

Smm′ (K,t) =

∫ t

−∞

εmm′ [K + A(t ′)]dt ′ (5)

is the classical action with εmm′ = Em − Em′ being the
bandgap between bands m and m′.

To connect the Eq. (4) to the density matrix equations
we define nm = |bm|2 and πmm′ = b∗

mbm′ for m �= m′. Putting
these definitions into Eq. (2) yields,

ṅm = i
∑

m′ �=m

�mm′πmm′eiSmm′ + c.c. (6a)

π̇mm′ = −
πmm′

T2

+ i�∗
mm′ (nm − nm′)e−iSmm′

+ i
∑

m′′ /∈{m,m′}

(�m′m′′πmm′′eiSm′m′′ − �∗
mm′′π

∗
m′m′′e

−iSmm′′ ).

(6b)

In Eq. (6) we have dropped the input (K,t) for simplicity.
The first term in Eq. (6b) is a phenomenological term that
takes into account the dephasing time T2. This could be
derived by accounting for coupling to a phonon bath and
impurities and for electron-electron scattering. The functions
πmm′ (K,t) are connected to the polarization by pmm′(K,t) =

dmm′ (K,t)πmm′ (K,t) exp(iSmm′ (K,t)) + c.c. Equation (6) is
subject to the constraint

∑

m nm = 1.
The above set of equations is general for any number of

bands in a solids. For the three-band model we will use
a single valence band and two conduction bands. There is
a dipole transition moment between the valvence and first
conduction band and between the first and second conduction
bands. However, the dipole transition moment between the
valence and second conduction band is set to zero. From Eq. (6)
we will have six equations to solve in our three-band model.
The workload to solve this system will be approximately
double that required for the two-band model.

III. NUMERICAL CALCULATIONS

A. Description of ZnO model

For our calculations we use a 3D, three-band model of
ZnO (wurtzite structure). However, most of our analysis is
confined to the lowest two bands; three-band results are
discussed at the end of the paper. The reciprocal lattice is
oriented so that x̂ is along Ŵ − M , ŷ along Ŵ − K , and ẑ along
Ŵ − A (optical axis); the lattice constants are (ax,ay,az) =

(5.32,6.14,9.83) a.u. In the two-band model, the bandgap
is determined by εg = Ec(k) − Ev(k) = Eg + �Eg(k) where
Ec is the conduction band (electrons) and Ev is the valence
band (holes). The bands were determined by the nonlocal em-
pirical pseudopotential method (NL–EPM) [20]; the complete
3D band in the first Brillouin zone is approximated as the sum
over the three one-dimensional bands. Since the wave vector
(k ‖ ẑ) is much smaller in magnitude than the reciprocal lattice
vectors, the dipole approximation is used.

For our three-band model we use a single valence band (V )
and two conduction bands obtained from Ref. [20]. Figure 1
shows the structure along Ŵ − M . The lowest conduction band
(C1) couples to both the valence and higher conduction band
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FIG. 1. (Color online) Band structure along Ŵ − M for three-

band model with a single valence band (blue) and two conduction

bands (red). In the two-band model only the valence and lowest

conduction band are used.

(C2); however, there is no coupling between V and C2. At the
Ŵ point the bandgap between V and C1 is 3.3 eV. By contrast
the bandgap at the Ŵ point between V and C2 is 8 eV. This
makes it unlikely that population will be transferred directly
from V to C2 for the field parameters that we use.

At the edge of the Brillouin zone the bandgap between C1

and C2 is ≈1 eV. For field strengths that are strong enough
to drive an electron near, or beyond, the BZ edge it becomes
possible to transfer population between the two conduction
bands. The conduction band above C2 is far enough away that
it should not have a significant effect.

Interaction with the intense laser field is calculated using
the density matrix equations derived in the previous section.
For the k dependence of the dipole we use the same model as
presented in the supplementary material of Ref. [9]. Here each
dipole element is calculated by

dj (k) =

√

Ep,j

2ε2
g(k)

, (7)

were j = x, y, z, εg is the bandgap, and Ep,j are the Kane
parameters [21–24]. For our calculations we use Ep,x =

Ep,y = 0.302 a.u. and Ep,z = 0.375 a.u. for both the C1 − V

and the C1 − C2 pairs. The crystal is exposed to a laser field
F(t) = x̂F0f (t) where f (t) consists of a sine carrier with
wavelength λ = 3.25 μm and temporal Gaussian envelope
with a full width at half maximum (FWHM) equal to 10
cycles. For momentum-space integration 600 points along
Ŵ − M are used for the full Brillouin zone; 200 points are
used along the other two directions. The interband contribution
to the harmonic spectrum is calculated by taking the Fourier
transform of the interband current (see Ref. [9]).

B. Two-band results

Before solving the full three-band equations we will
investigate the two-band system where we only consider
bands V and C1. Figure 2 shows the harmonic spectra for
field strengths F0 = 0.007 a.u. (blue) and F0 = 0.01 a.u. (red)
in the crystal. These field strengths correspond to vacuum
field intensities of Iv = 3.6 TW/cm2 (Fv = 0.51 V/Å) and
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FIG. 2. (Color online) Harmonic spectra for F0 = 0.007 a.u.

(blue) and F0 = 0.01 a.u. (red) for λ = 3.25 μm, and for a dephasing

time of T2 = 5.4 fs (equal to half cycle).

Iv = 7.4 TW/cm2 (Fv = 0.73 V/Å), respectively. By contrast,
the highest vacuum intensity used for experimental measure-
ment in Ref. [3] was 5 TW/cm2 (0.6 V/Å). The relation
between F0 and Fv is F0 = 2Fv/(n + 1) where the index
of refraction for our system is n ≈ 1.9. A dephasing time
of T2 = 5.4 fs—equivalent to a laser half cycle—is used
in our calculations. At both field strengths electrons will
travel beyond the first Brillouin zone and a second plateau
emerges followed by another exponential drop; for higher
field strengths the second plateau is more pronounced. This
“staircase” structure is not observed when the field is too
weak for electrons to travel beyond the first Brillouin zone.
Finally, the staircase structure appears also in the intraband
current, however, is considerably weaker, and therefore not
shown here.

Figure 3 shows the results of a windowed Fourier transform
of the interband current for F0 = 0.01 a.u. using a 0.34 cycle
Blackman window scanned across two optical cycles near the
peak of the pulse. This narrow temporal window allows only
a single recollision event and thus the resulting spectrum is
continuous rather than composed of discrete harmonics. This
process is carried out with a spectral filter placed near the first
cutoff [Fig. 3(a)] and is repeated with a spectral filter placed
near the second cutoff [Fig. 3(b)].

Figure 3(a) shows the time-frequency analysis for the
fundamental plateau. The highest photon energy is emitted
slightly before a field zero; this structure will repeat itself every
half-cycle. The white lines show the results of the classical
trajectories calculated from the recollision model similar to
Ref. [10]; here there are two branches. The branch on the right
corresponds to trajectories that stay within the first Brillouin
zone; these trajectories are born after the peak of the field.
The branch on the left results from trajectories born before the
peak of the field; these can extend into the second Brillouin
zone. In contrast to gases—where trajectories born before the
peak don’t recollide—it is these trajectories that dominate the
harmonic spectrum of the first plateau in our solid. While the
Bloch oscillation influences the classical trajectory, it is clear
that recollision is the main driver of the harmonic spectrum
for the first cutoff.

Figure 3(b) shows the results of our time-frequency analysis
for the second cutoff. In this case all harmonics are emitted in
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FIG. 3. (Color online) Harmonic order versus time for the time-

frequency analysis for the (a) fundamental and (b) second cutoff for

field intensity F0 = 0.01 a.u. with λ = 3.25 μm and T2 = 5.4 fs. The

field peaks occur at quarter-cycle times and the nodes occur at integer

and half-integer cycle times. The white lines are the results for the

first returns from the semiclassical trajectory analysis. The color scale

is logarithmic.

phase near a field zero. The observed difference is indicative
of an interband process for emitting harmonic radiation that
occurs when electrons traverse beyond the first Brillouin zone
that is fundamentally different from the classical trajectory
picture. While emission in the first plateau is still timed to
the recolliding electron-hole pairs, harmonics in the second
plateau are all emitted in phase at the field node.

IV. SADDLE POINT ANALYSIS OF INTERBAND

BLOCH OSCILLATIONS

In order to get a physical picture of the process creating
the harmonics beyond the maximum bandgap, we perform a
saddle point analysis in the Bloch oscillation limit where the
electron traverses the Brillouin zone many times. We begin
with the expression for the interband current from Ref. [9],

jer(ω) =ω

∫

BZ

d3k d(k)

∫ ∞

−∞

dteiωt

∫ t

−∞

dt ′F (t ′)d∗(κ t ′)

× e−iS(k,t ′,t)−(t−t ′)/T2 + c.c. (8)

For our physical picture in the Bloch oscillation limit we are
interested in the exponential term. Integration over k and t ′

will yield

jer(ω) =
∑

tb

Q(tb)

∫ ∞

−∞

dteiωte−iS(tb,t) + c.c., (9)

where tb is the birth time, Q is the pre-exponential factor,
S(tb,t) =

∫ t

tb
εg[A(t ′′) − A(tb)]dt ′′, and A(t) is the vector

potential with dA/dt = −F (t). Here we are using the sad-
dle point condition k = A(t) − A(tb) derived in Ref. [9].

−1

0

1

F

(a)

−1

0

1

ε
g

(b)

0 0.5 1 1.5 2
0

1

2

Time (laser cycles)

I g

(c)

FIG. 4. (Color online) (a) Laser field normalized by peak ampli-

tude. (b) Integrand of Ig; that is �−1(εg − Eg). The saddle points

occur at the field nodes. (c) Full integral Ig . The steps result from

the contributions from the individual saddle points. Here we use

the fundamental frequency ω0 = 0.014 a.u., lattice constant a =

5.32 a.u., and F0 = 0.04 a.u. The field strength is made artificially

strong for illustrative purposes.

Furthermore, for the purpose of our analysis we have set
T2 = ∞. Moreover, to simplify our expressions we will use
the tight binding approximation for the bandgap εg = Eg +

�{1 − cos[a(A(t ′′) − A(tb))]} where a is the lattice constant.
Looking at a single birth time and ignoring the pre-expontential
factor, we can then write the polarization as

p̃tb (ω) ∝

∫ ∞

−∞

eiωte−i(Eg+�)(t−tb)ei�Ig(tb,t)dt, (10)

where Ig(tb,t) =
∫ t

tb
cos[a(A(t ′′) − A(tb))]dt ′′. In Fig. 4 the

laser field F , εg , and Ig are plotted as a function of time. Note
that εg is a rapidly oscillating function so that the integral Ig in
the exponent has to be calculated with the saddle point method.
This is fundamentally different from the usual use of saddle
point integration for HHG, which is applied to the integral over
the exponent,

∫

dt ′ exp(iS(t ′,t)) [25].
Defining the phase term in Ig(tb,t) as φ(tb,t

′′) = a(A(t ′′) −

A(tb)) at the saddle point ts we get the condition,

dφ

dt ′′

∣

∣

∣

∣

t ′′=ts

= −aF (ts) = 0. (11)

This implies that the saddle points occur at the nodal points
of the field (when the vector potential is at a maximum); this
can be seen in Fig. 4(b). That is, the saddle points are given
by ts = nπ/ω0, where ω0 is the fundamental frequency of the
driving field and n ∈ Z. Thus, at the saddle point ts we have
φ(tb,ts) = a(A(ts) − A(tb)) and φ′′(tb,ts) = −aḞ (ts).

In the neighborhood of a saddle point ts we then have the
integral,

I (s)
g ≈

∫ t−ts

tb−ts

cos

[

φ(tb,ts) +
1

2
φ′′(tb,ts)τ

2

]

dτ. (12)

Letting φs = φ(tb,ts) and β =
√

aḞ (ts)/2, Eq. (12) can be
written as

I (s)
g ≈ β−1

∫ β(t−ts )

β(tb−ts )

cos(φs − τ 2)dτ. (13)
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This can be further simplified using the trigonometric identity
cos(u − v) = cos u cos v + sin u sin v, becoming

I (s)
g ≈ β−1{cos(φs)C[β(tb − ts),β(t − ts)]

+ sin(φs)G[β(tb − ts),β(t − ts)]}. (14)

The functions C and G are given by

C[β(tb − ts),β(t − ts)] =

∫ β(t−ts )

β(tb−ts )

cos(τ 2)dτ, (15a)

G[β(tb − ts),β(t − ts)] =

∫ β(t−ts )

β(tb−ts )

sin(τ 2)dτ, (15b)

where C(0,x) and G(0,x) are Fresnel integrals. Performing a
Taylor expansion of the above expressions yields

C[β(tb − ts),β(t − ts)] = τ −
τ 5

10
+ . . .

∣

∣

∣

∣

β(t−ts )

β(tb−ts )

, (16a)

G[β(tb − ts),β(t − ts)] =
τ 3

3
−

τ 7

30
+ . . .

∣

∣

∣

∣

β(t−ts )

β(tb−ts )

. (16b)

Only the function C has a linear term; this can be observed in
Fig. 4(c). Thus, retaining only the linear term gives

I (s)
g ≈ cos(φs)(t − tb). (17)

As saddle point integration was performed on the integral
in the exponent, the sum over individual saddle points in
the exponent is equivalent to a product of exponents, each
belonging to an individual saddle point contribution. As a
result, the Fourier integral for the polarization becomes

p̃tb (ω) ∝
∏

ts

∫ ∞

−∞

e−i(Eg+�−ω)(t−tb)ei�I
(s)
g dt. (18)

Inserting Eq. (17) into the above expression and integrating
over t results in a delta function yielding the relation,

ω = Eg + �{1 − cos(φs)}. (19)

Maximum ionization occurs at field peaks for which A(tb) = 0.
Then, ω becomes maximum when the last term in Eq. (19),
cos[aA(ts)] = −1. That is fulfilled when the laser is strong
enough so that the electron reaches the edge of the Brillouin
zone during its excursion, i.e., for F0/ω0 � π/a, or for
F0 � Fb with Fb = πω0/a the Bloch field strength. For our
system with a = 5.32 a.u. and ω0 = 0.014 a.u. we have
Fb ≈ 0.008 a.u. As a result, for F = Fb a single saddle point
can produce a harmonic with cutoff equal to the fundamental
plateau.

This implies that in Eq. (18) we have a cascaded nonlin-
earity, the Fourier transform of a product of functions each
having the possibility to produce a spectral range equal to
the fundamental plateau. Put in another way, the electron
can only collect the bandgap energy. However, it can collect
this energy at each nodal point of the laser field in a way
that emission at nodal points act as a cascaded nonlinearity.
The cascaded nature of the process allows the generation of
harmonics up to multiples of the fundamental cutoff. However,
as the efficiency goes with the power of the number of saddle
points contributing to the cascaded nonlinearity, there is a rapid
drop in efficiency, as can be seen in Fig. 2.

V. EFFECT OF THE SECOND CONDUCTION BAND

Finally, we will investigate the effect of including a second
conduction band into our model as described in Sec. III A.

Figure 5(a) shows a comparison of the two-band (red)
and three-band (green) models for ZnO for F0 = 0.01 a.u.
Here it can be seen that the the addition of the second
conduction band has little effect on the overall harmonic
spectrum. Furthermore, we have investigated the influence of
the shape of the second conduction band on HHG via BOs by
altering its width, the bandgap between the two conduction
bands at the Brillouin zone, and by flipping the band at the Ŵ

point, thus turning it from valley to peak; only the bandgap
seems to have a significant effect on the spectrum. Increasing
the bandgap between the conduction bands at the Brillouin
zone edge results in little change of the three-band spectrum.
However, reducing it from 1 eV (ZnO) to 0.75 eV results in a
significant enhancement of the second plateau; see the purple
line in Fig. 5(a). This suggests that there is the possibility to
extend HHG to higher frequencies by using materials with a

FIG. 5. (Color online) (a) Comparison of the harmonic spectra at

F0 = 0.01 a.u. for the two-band (red) and three-band (green) ZnO

models. In addition a harmonic spectrum with a reduced bandgap

between the conduction bands at the Brillouin zone edge is shown

(purple). (b) Time-frequency analysis of the first cutoff for the three-

band model. (c) Time-frequency analysis of the first cutoff for the

three-band model with reduced bandgap between conduction bands

at the Brillouin zone edge. The white lines are the results for the

first two electron-hole recollisions from the semiclassical trajectory

analysis for the two-band model. The color scale is logarithmic.
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reduced bandgap at the Brillouin zone edge. The nature of this
enhancement is subject to future research.

In Fig. 5(b), the time-frequency analysis centered at the first
cutoff of the (green) three-band spectrum in Fig. 5(a) is shown;
Recollision is still the dominant mechanism for harmonics
below the maximum bandgap. The time frequency analysis
of the (purple) spectrum in Fig. 5(a) for the reduced bandgap
shows that recollision still plays a dominant role below the
maximum bandgap. However, the BO contribution to the first
plateau at field zero times 0.5 and 1 has also become visible; see
Fig. 5(c). This demonstrates that the BO mechanism remains
intact in multiband systems and is responsible for the enhanced
second plateau.

VI. CONCLUSION

We have investigated theoretically HHG in semiconductors
for mid-ir laser fields strong enough to drive the electron-hole
pair beyond the first Brillioun zone. So far the generation
of radiation via Bloch oscillations has been viewed as an
intraband mechanism, where radiation is created by the
nonlinear motion of electrons and holes in their respective
bands. Here we have identified HHG via interband Bloch
oscillations, which is different in nature as it relies on the
buildup of polarization between electrons and holes. Building

on our previous work, we have shown that, even in the Bloch
oscillation limit, recollison remains the dominant mechanism
for HHG up to the first cutoff.

The harmonics generated by interband Bloch oscillations
appear to be too weak to be observed experimentally by
current ZnO experiments. However, in combination with
higher bands, interband Bloch oscillations appear to be
a promising mechanism to push HHG in solids towards
shorter wavelengths. In this spectral region, materials typically
become more transparent than in the ultraviolet, effectively
enhancing interband Bloch oscillations. For example, in silicon
the absorption length increases from a minimum of 7 nm
at ∼5.6 eV to 66 nm at ∼31 eV [26]—an increase of 4
orders of magnitude in transmission at such distance from
the surface. It is conceivable to engineer materials that are
capable of exploiting interband Bloch oscillations to increase
the harmonic efficiency of harmonics beyond the first cutoff.
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