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Abstract Statistical machine translation systems are usually trained on large

amounts of bilingual text (used to learn a translation model), and also large amounts

of monolingual text in the target language (used to train a language model). In this

article we explore the use of semi-supervised model adaptation methods for the

effective use of monolingual data from the source language in order to improve

translation quality. We propose several algorithms with this aim, and present the

strengths and weaknesses of each one. We present detailed experimental evaluations

on the French–English EuroParl data set and on data from the NIST Chinese–English

large-data track. We show a significant improvement in translation quality on both

tasks.
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1 Introduction

In statistical machine translation (SMT), translation is modeled as a decision process.

The goal is to find the translation t of source sentence s which maximizes the posterior

probability:

arg max
t

p(t | s) = arg max
t

p(s | t) · p(t) (1)

This decomposition of the probability yields two different statistical models which

can be trained independently of each other: the translation model p(s | t) and the target

language model p(t).

State-of-the-art SMT systems are trained on large collections of text which consist

of bilingual corpora, to learn the parameters of the translation model, p(s | t), and of

monolingual target language corpora, for the target language model, p(t). It has been

shown that adding large amounts of target language text improves translation quality

considerably, as improved language model estimates about potential output transla-

tions can be used by the decoder in order to improve translation quality (Brants et al.

2007).

However, the availability of monolingual corpora in the source language has not

been shown to help improve the system’s performance. In this article, we aim to show

how such corpora can be used to achieve higher translation quality.

Even if large amounts of bilingual text are given, the training of the statistical

models usually suffers from sparse data. The number of possible events, e.g. word

pairs or phrase pairs or pairs of subtrees in the two languages, is too big to reliably

estimate a probability distribution over such pairs.

Another problem is that for many language pairs the amount of available bilingual

text is very limited. In this work, we will address this problem and propose a general

framework to solve it. Our hypothesis is that adding information from source language

text can also provide improvements. Unlike adding target language text, this hypothesis

is a natural semi-supervised learning problem.

To tackle this problem, we propose algorithms for semi-supervised model adapta-

tion. We translate sentences from the development set or test set and use the generated

translations to improve the performance of the SMT system. In this article, we show

that such an approach can lead to better translations despite the fact that the devel-

opment and test data are typically much smaller in size than typical training data for

SMT systems.

The proposed semi-supervised learning can be seen as a means of adapting the

SMT system to a new type of text, e.g. a system trained on newswire could be used

to translate weblog texts. The proposed method adapts the trained models to the style

and domain of the new input without requiring bilingual data from this domain.

2 Baseline MT system

The SMT system we applied in our experiments is PORTAGE. This is a state-of-the-art

phrase-based translation system developed by the National Research Council Canada
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which has been made available to Canadian universities for research and education

purposes. We provide a basic description here; for a detailed description see Ueffing

et al. (2007).

The models (or features) which are employed by the decoder are:

– one or several phrase table(s), which model the translation direction p(s | t). They

are smoothed using the methods described in Foster et al. (2006),

– one or several n-gram language model(s) trained with the SRILM toolkit (Stolcke

2002); in the experiments reported here, we used three different 4-gram models

on the NIST data, and a trigram model on EuroParl,

– a distortion model which assigns a penalty based on the number of source words

which are skipped when generating a new target phrase,

– a word penalty assigning a constant cost to each generated target word.

These different models are combined log-linearly. Their weights are optimized with

respect to BLEU score using the algorithm described in Och (2003). This is done on

a development corpus which we will call dev1 in this article.

The search algorithm implemented in the decoder is a dynamic-programming beam-

search algorithm. After the main decoding step, rescoring with additional models is

performed. The system generates a 5,000-best list of alternative translations for each

source sentence. These lists are rescored with the following models:

– the different models used in the decoder which are described above,

– two different features based on IBM Model 1 (Brown et al. (1993)): a Model 1

probability calculated over the whole sentence, and a feature estimating the number

of source words which have a reliable translation. Both features are determined

for both translation directions,

– posterior probabilities for words, phrases, n-grams, and sentence length (Zens and

Ney 2006; Ueffing and Ney 2007), all calculated over the N -best list and using

the sentence probabilities which the baseline system assigns to the translation

hypotheses.

The weights of these additional models and of the decoder models are again opti-

mized to maximize BLEU score. This is performed on a second development corpus,

which we call dev2 in this article.

3 The framework

3.1 The algorithm

Our model adaptation algorithm, Algorithm 1, is inspired by the Yarowsky algo-

rithm (Yarowsky 1995; Abney 2004). We will describe it here for (re-)training of the

translation model. However, the same algorithm can be used to (re-)train other SMT

models, such as the language model as we will show later.

The algorithm works as follows. First, the translation model π (i) is estimated based

on the sentence pairs in the bilingual training data L . Then a set of source language

sentences, U , is translated based on the current model. A subset of good translations

123



N. Ueffing et al.

Algorithm 1 Model adaptation algorithm for statistical machine translation

1: Input: training set L of parallel sentence pairs.

// Bilingual training data.

2: Input: unlabeled set U of source text.

// Monolingual source language data.

3: Input: number of iterations R, and size of N -best list.

4: T−1 := {}. // Additional bilingual training data.

5: i := 0. // Iteration counter.

6: repeat

7: Training step: π (i) := Estimate(L , Ti−1).

8: Xi := {}. // The set of generated translations for this iteration.

9: for sentence s ∈ U do

10: Labeling step: Decode s using π (i) to obtain N -best target sentences (tn)N
n=1 with their scores

11: Xi := Xi ∪ {(tn , s, π (i)(tn | s))N
n=1}

12: end for

13: Scoring step: Si := Score(Xi )

// Assign a score to sentence pairs (t, s) from Xi .

14: Selection step: Ti := Select(Xi , Si )

// Choose a subset of good sentence pairs (t, s) from Xi .

15: i := i + 1.

16: until i > R

and their sources, Ti , is selected in each iteration and added to the training data.

These selected sentence pairs are replaced in each iteration, and only the original

bilingual training data, L , is kept fixed throughout the algorithm. The process of

generating sentence pairs, selecting a subset of good sentence pairs, and updating the

model is continued until the stopping condition is met. Note that the set of sentences

U is drawn from a development set or the test set that will be used eventually to

evaluate the SMT system. However, the evaluation step is still done just once at the

end of our learning process and all optimization steps are carried out on development

data.

In Algorithm 1, changing the definition of Estimate, Score and Select will give

us the different semi-supervised learning algorithms we will discuss in this article.

We will present experimental results for applying semi-supervised adaptation to the

phrase translation model, the language model, and both of them at the same time.

Given the probability model p(t | s), consider the distribution over all possible

translations t for a particular input sentence s. We can initialize this probability distri-

bution to the uniform distribution for each sentence s in the unlabeled data U . Thus,

this distribution over translations of sentences from U will have the maximum en-

tropy. Under certain precise conditions, as described in Abney (2004), we can analyze

Algorithm 1 as minimizing the entropy of the distribution over translations of U .

However, this is true only when the functions Estimate, Score and Select have

very prescribed definitions. In this article, rather than analyzing the convergence of

Algorithm 1, we run it for a fixed number of iterations and instead focus on finding

useful definitions for Estimate, Score and Select that can be experimentally shown

to improve MT performance.
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3.2 The estimate function

We consider the following different definitions for Estimate in Algorithm 1:

– Full re-training (of the model): If Estimate(L , T ) estimates the model parameters

based on L ∪ T , then we have a semi-supervised algorithm that re-trains a model

on the original training data L plus the sentences decoded in the last iteration.

– Additional model: On the other hand, a new model can be learned on T alone

and then this model is added as a new component in the log-linear SMT model.

This is an attractive alternative as the full re-training of the model on labeled and

unlabeled data is computationally expensive if L is very large (as on the Chinese–

English data set). This additional model is small and specific to the development

or test set it is trained on. As the analysis of such an additional phrase table in

Section 4.2.2 shows, it overlaps with the original phrase tables, but also contains

many new phrase pairs.

– Mixture model: Another alternative for Estimate is to create a mixture model of the

original model probabilities with the newly trained one. In the case of the phrase

translation model, this yields:

p(s | t) = λ · pL(s | t) + (1 − λ) · pT (s | t) (2)

where pL and pT are phrase table probabilities estimated on L and T , respectively.

In cases where new phrase pairs are learned from T , they get added into the merged

phrase table.

3.3 The scoring function

In Algorithm 1, the Score function assigns a score to each translation hypothesis t.

We used the following scoring functions in our experiments:

– Length-normalized score: Each translated sentence pair (t, s) is scored according

to the model probability p(t | s) (assigned by the SMT system) normalized by the

length |t| of the target sentence:

Score(t, s) = p(t | s)
1
|t| (3)

– Confidence estimation: The goal of confidence estimation is to estimate how reli-

able a translation t is, given the corresponding source sentence s. The confidence

estimation which we implemented follows the approaches suggested in Blatz et al.

(2003) and Ueffing and Ney (2007), where the confidence score of a target sen-

tence t is calculated as a log-linear combination of several different sentence scores.

These scores are Levenshtein-based word posterior probabilities, phrase posterior

probabilities, and a target language model score. The posterior probabilities are

determined over the N -best list generated by the SMT system.

The word posterior probabilities are calculated on basis of the Levenshtein align-

ment between the hypothesis under consideration and all other translations con-

tained in the N -best list. The Levenshtein alignment is performed between a given
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hypothesis t and every sentence tn contained in the N -best list individually. To

calculate the posterior probability of target word t occurring in position i of the

translation, the probabilities of all sentences containing t in position i or in a

position Levenshtein-aligned to i is summed up. This sum is then normalized by

the total probability mass of the N -best list.

Let L(t, tn) be the Levenshtein alignment between sentences t and tn , and

Li (t, tn) that of word t in position i in t. Consider the following example.

Calculating the Levenshtein alignment between the sentences t =“A B C D E”

and tn =“B C G E F” yields:

L(t, tn) = “– B C G E”

where “–" represents insertion of the word A into t, and in the above alignment

F is deleted from tn . Using this representation, the word posterior probability of

word t occurring in a position Levenshtein-aligned to i is given by:

plev(t | s, t,L) =

N
∑

n=1

δ(t,Li (t, tn)) · p(s, tn)

N
∑

n=1

p(s, tn)

(4)

To obtain a score for the whole target sentence, the posterior probabilities of

all target words are multiplied. The sentence probability is approximated by the

probability which the SMT system assigns to the sentence pair. More details on

computing word posterior probabilities are available in Ueffing and Ney (2007).

The phrase posterior probabilities are determined in a similar manner by sum-

ming the sentence probabilities of all translation hypotheses in the N -best list

which contain the phrase pair. The segmentation of the sentence into phrases is

provided by the SMT system. Again, the single values are multiplied to obtain a

score for the whole sentence.

The language model score is determined using a 5-gram model trained on the

English Gigaword corpus for NIST. On French–English, we used the trigram model

which was provided for the NAACL 2006 shared task.

The log-linear combination of the different sentence scores into one confidence

score is optimized with respect to sentence classification error rate (CER) on the

development corpus. The weights in this combination are optimized using the

Downhill Simplex algorithm (Press et al. (2002)). In order to carry out the opti-

mization, reference classes are needed which label a given translation as either

correct or incorrect. These are created by calculating the word error rate (WER)

of each translation and labeling the sentence as incorrect if the WER exceeds a

certain value, and correct otherwise. Then the confidence score c(t) of translation

t is computed, and the sentence is classified as correct or incorrect by comparing

its confidence to a threshold τ :

c(t)

{

> τ ⇒ t correct

≤ τ ⇒ t incorrect
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The threshold τ is optimized to minimize CER.

We then compare the assigned classes to the reference classes, determine the

CER and update the weights accordingly. This process is iterated until the CER

converges.

3.4 The selection function

The Select function in Algorithm 1 is used to create the additional training data Ti

which will be used in the next iteration i + 1 by Estimate to augment the information

from the original bilingual training data. This augmentation is accomplished in differ-

ent ways, depending on the definition of the Estimate function. We use the following

selection functions:

– Importance sampling: For each sentence s in the set of unlabeled sentences U ,

the Labeling step in Algorithm 1 generates an N -best list of translations, and the

subsequent Scoring step assigns a score to each translation t in this list. The set of

generated translations for all sentences in U is the event space and the scores are

used to put a probability distribution over this space, simply by renormalizing the

scores described in Sect. 3.3. We use importance sampling to select K translations

from this distribution. Sampling is done with replacement which means that the

same translation may be chosen several times. Furthermore, several different trans-

lations of the same source sentence can be sampled from the N -best list. The K

sampled translations and their associated source sentences make up the additional

training data Ti .

– Selection using a threshold: This method compares the score of each single-best

translation to a threshold. The translation is considered reliable and added to the

set Ti if its score exceeds the threshold. Otherwise it is discarded and not used

in the additional training data. The threshold is optimized on the development

beforehand. Since the scores of the translations change in each iteration, the size

of Ti also changes.

– Keep all: This method does not perform any selection at all. It is simply assumed

that all translations in the set X i are reliable, and none of them are discarded. Thus,

in each iteration, the result of the selection step will be Ti = X i . This method was

implemented mainly for comparison with other selection methods.

4 Experimental results

4.1 Setting

We ran experiments on two different corpora; one is the French–English translation

task from the EuroParl corpus, and the other one is Chinese–English translation as

performed in the NIST MT evaluation.1

1 http://www.nist.gov/speech/tests/mt.
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Table 1 French–English EuroParl corpora

Corpus Use Sentences

EuroParl Phrase table + language model 688 K

dev06 dev1 2,000

test06 Test in-domain/out-of-domain 2,000/1,064

Table 2 NIST Chinese–English corpora

Corpus Use Sentences Domains

Non-UN Phrase table + language model 3.2M News, magazines, laws

UN Phrase table + language model 5.0M UN Bulletin

English Gigaword language model 11.7M News

multi-p3 dev1 935 News

multi-p4 dev2 919 News

eval-04 Test 1,788 Newswire, editorials,

political speeches

eval-06 GALE Test 2,276 Broadcast conversations,

broadcast news, news-

groups, newswire

eval-06 NIST Test 1,664 Broadcast news, news

groups, newswire

For the French–English translation task, we used the EuroParl corpus as distributed

for the shared task in the NAACL 2006 workshop on statistical machine translation.2

The corpus statistics are shown in Table 1. The development set is used to optimize

the model weights in the decoder, and the evaluation is done on the test set provided

for the NAACL 2006 shared task. Note that this test set contains 2,000 in-domain

sentences and 1,064 out-of-domain sentences collected from news commentary. We

will carry out evaluation separately for these two domains to investigate the adaptation

capabilities of our methods.

For the Chinese–English translation task, we used the corpora distributed for the

large-data track in the 2006 NIST evaluation (see Table 2). We used the LDC segmenter

for Chinese. A subset of the English Gigaword corpus was used as additional language

model training material. The multiple translation corpora multi-p3 and multi-p4 were

used as development corpora. Evaluation was performed on the 2004 and 2006 test sets.

Note that the training data consists mainly of written text, whereas the test sets comprise

three and four different genres: editorials, newswire and political speeches in the 2004

test set, and broadcast conversations, broadcast news, newsgroups and newswire in the

2006 test set. Most of these domains have characteristics which are different from those

of the training data, e.g. broadcast conversations have characteristics of spontaneous

speech, and the newsgroup data is comparatively unstructured.

Given the particular data sets described above, Table 3 shows the various options

for the Estimate, Score and Select functions in Algorithm 1 (see Sect. 3). The table

provides a quick guide to the experiments we present in this article as opposed to those

2 http://www.statmt.org/wmt06/shared-task/.
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Table 3 Feasibility of settings for Algorithm 1

Estimate Select Score EuroParl NIST

Full re-training ∗ †

Mixture model ∗ ∗

Additional model Keep all ∗∗ ∗

Importance sampling Norm. scores ∗∗ ∗

Confidence ∗∗ ∗

Threshold Norm. scores ∗∗ ∗

Confidence ∗∗ ∗

we did not attempt due to computational infeasibility. We ran experiments correspond-

ing to all entries marked with ∗ (see Sect. 4.2). For those marked ∗∗ the experiments

produced only minimal improvement over the baseline and so we do not discuss them in

this article. The entry marked as † (full re-training on the NIST data) was not attempted

because this is not feasible. However, it was run on the smaller EuroParl corpus.

4.1.1 Evaluation metrics

We evaluated the generated translations using three different evaluation metrics: BLEU

score Papineni et al. (2002), mWER (multi-reference word error rate), and mPER

(multi-reference position-independent word error rate) Nießen et al. (2000). Note

that BLEU score measures translation quality, whereas mWER and mPER measure

translation errors.

We will present 95%-confidence intervals for the baseline system which are calcu-

lated using bootstrap resampling. The metrics are calculated with respect to one and

four English references; the EuroParl data comes with one reference, the NIST 2004

evaluation set and the NIST section of the 2006 evaluation set are provided with four

references each, and the GALE section of the 2006 evaluation set comes with one

reference only. This results in much lower BLEU scores and higher error rates for the

translations of the GALE section in comparison with the NIST section (see Sect. 4.2).

Note that these values do not indicate lower translation quality, but are simply a result

of using only one reference.

4.2 Results

4.2.1 EuroParl

We ran our initial experiments on EuroParl to explore the behavior of the model

adaptation algorithm. In all experiments reported in this subsection, the test set was

used as unlabeled data. In one set of experiments, we reduced the size of the bilingual

training data according to the similarity of its sentences to the test set. This was done

by computing the similarity of each source sentence in the training set to the set of

sentences in the test set, defined as the average similarity of the source sentence to

the test set sentences in the set. The similarity between two sentences was measured

based on the fraction of n-grams shared by them. We used the 100K and 150K training
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Fig. 1 Translation quality for importance sampling with full re-training on train100K (left) and train150K

(right). EuroParl French–English task

sentences filtered according to n-gram coverage over the test set. The selection and

scoring was carried out using importance sampling with normalized scores. We fully

re-trained the phrase tables on these data and 8,000 test sentence pairs sampled from

20-best lists in each iteration. The results on the test set can be seen in Fig. 1. The

BLEU score increases, although with slight variation, over the iterations. In total, it

increases from 24.1 to 24.4 for the 100K filtered corpus, and from 24.5 to 24.8 for

150K, respectively.

Moreover, we see that the BLEU score of the system using 100K training sentence

pairs and model adaptation is the same as that of the one trained on 150K sentence

pairs. Thus, the information extracted from untranslated test sentences is equivalent

to having an additional 50K sentence pairs.

In a second set of experiments, we used the whole EuroParl corpus and the sampled

sentences for fully re-training the phrase tables in each iteration. We ran the algorithm

for three iterations and the BLEU score increased from 25.3 to 25.6. Even though this

is a small increase, it shows that the unlabeled data contains some information which

can be exploited using model adaptation.

In a third experiment, we applied the mixture model idea as explained in Sect. 3.2.

The initially learned phrase table was merged with the newly learned phrase table in

each iteration with a weight of λ = 0.9. This value for λ was found based on cross

validation on a development set. We ran the experiments on in-domain and out-of-

domain sentences separately, and the results can be seen in Table 4. Again this is a

Table 4 EuroParl results based on the mixture of phrase tables with λ = 0.9

Test set Selection method BLEU [%]

French–English EuroParl (1 ref.)

In-domain Baseline 28.1 ± 0.8

Importance sampling 28.4

Keep all 28.3

Out-of-domain Baseline 18.8 ± 0.8

Importance sampling 18.9

Keep all 19.0
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small increase in the performance of the model, but it shows that the unlabeled data

contains some information which can be explored in semi-supervised learning.

The main point of the EuroParl experiments described in this section was to explore

the nature of full re-training and multiple iterations in model adaptation. Our experi-

ments show that full re-training can be problematic as the new phrase pairs from the

test set are swamped by the training data. As we show, this effect can be alleviated by

filtering the training data when doing full re-training, or by using a mixture model.

The significance of the results in the EuroParl experiments is compromised by having

only one reference translation. The improvements achieved on the EuroParl corpus

are slightly below the 95%-significance level. However, we observe them consistently

in all settings. Furthermore, these experiments on the smaller EuroParl dataset pro-

vide us with insight on how to organize the experiments on the NIST large data track

Chinese–English MT task.

4.2.2 NIST

Table 5 presents translation results on NIST with different versions of the scoring

and selection methods introduced in Sect. 3. For each corpus U of unlabeled data

(i.e. the development or test set), 5,000-best lists were generated using the baseline

SMT system. Since re-training the full phrase tables is not feasible here, a (small)

additional phrase table, specific to U , was trained and plugged into the SMT system as

an additional model. The decoder weights thus had to be optimized again to determine

the appropriate weight for this new phrase table. This was done on the dev1 corpus,

using the phrase table specific to dev1. Every time a new corpus is to be translated,

an adapted phrase table is created using semi-supervised learning and used with the

weight which has been learned on dev1.

In the first experiment presented in Table 5, all of the generated 1-best translations

were kept and used for training the adapted phrase tables. This method (which was

mainly tested as a comparative method to assess the impact of the scoring and selection

steps) yields slightly higher translation quality than the baseline system.

The second approach we studied is the use of importance sampling over 20-best

lists, based either on length-normalized sentence scores or confidence scores. As the

results in Table 5 show, both variants outperform the first method, with a consistent

improvement over the baseline across all test corpora and evaluation metrics. The

third method uses a threshold-based selection method. Combined with confidence

estimation as scoring method, this yields the best results. All improvements over the

baseline are significant at the 95%-level.

We used this scoring and selection method to carry out experiments on semi-

supervised language model adaptation on the NIST data. A unigram language model

was trained on the translations selected by the semi-supervised learning algorithm and

plugged into the SMT system as an additional model. Again, we obtained a small and

very specific model for each development or test set.

We also investigated learning higher-order n-gram language models on the selected

data. We found that a unigram language model (or sometimes a bigram) yields best

results. The model adaptation seems, therefore, to mainly boost the relevant vocabulary

in the language model.
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Table 5 NIST Chinese–English results with an additional phrase table trained on the dev/test set

Selection method Scoring method BLEU [%] mWER [%] mPER [%]

eval-04 (4 refs.)

Baseline 31.8 ± 0.7 66.8 ± 0.7 41.5 ± 0.5

Keep all 33.1 66.0 41.3

Importance sampling Norm. scores 33.5 65.8 40.9

Confidence 33.2 65.6 40.4

Threshold Norm. scores 33.5 65.9 40.8

Confidence 33.5 65.3 40.8

eval-06 GALE (1 ref.)

Baseline 12.7 ± 0.5 75.8 ± 0.6 54.6 ± 0.6

Keep all 12.9 75.7 55.0

Importance sampling Norm. scores 13.2 74.7 54.1

Confidence 12.9 74.4 53.5

Threshold Norm. scores 12.7 75.2 54.2

Confidence 13.6 73.4 53.2

eval-06 NIST (4 refs.)

Baseline 27.9 ± 0.7 67.2 ± 0.6 44.0 ± 0.5

Keep all 28.1 66.5 44.2

Importance sampling Norm. scores 28.7 66.1 43.6

Confidence 28.4 65.8 43.2

Threshold Norm. scores 28.3 66.1 43.5

Confidence 29.3 65.6 43.2

The bold face numbers indicate the best performance obtained on each measure

Table 6 NIST results with an additional phrase table and language model

Test corpus Model BLEU [%] mWER [%] mPER [%]

eval-04 (4 refs.) Baseline 31.8 ± 0.7 66.8 ± 0.7 41.5 ± 0.5

Language model 33.1 65.9 41.1

Phrase table 33.5 65.3 40.8

Both 33.3 65.4 40.6

eval-06 GALE (1 ref.) Baseline 12.7 ± 0.5 75.8 ± 0.6 54.6 ± 0.6

Language model 13.3 74.2 53.8

Phrase table 13.6 73.4 53.2

Both 13.3 74.2 53.4

eval-06 NIST (4 refs.) Baseline 27.9 ± 0.7 67.2 ± 0.6 44.0 ± 0.5

Language model 28.6 66.0 43.8

Phrase table 29.3 65.6 43.2

Both 28.6 65.9 43.4

Scoring: confidence estimation, selection: threshold

The bold face numbers indicate the best performance obtained on each measure

The results of these experiments are shown in Table 6. The table compares the

translation quality achieved by semi-supervised learning of a language model, a phrase

translation model, and the combination of both. We see that semi-supervised language

model adaptation yields a significant improvement in translation quality over the base-

line on all three test sets. However, a higher improvement is obtained from adapting

the phrase translation model. Unfortunately, the improvements achieved by adapting

the two models do not add up. Adaptation of the phrase translation model only yields

the best results.
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Table 7 NIST results with a mixture-model phrase table, λ = 0.9

Test corpus Model BLEU [%] mWER [%] mPER [%]

eval-04 (4 refs.) Baseline 31.8 ± 0.7 66.8 ± 0.7 41.5 ± 0.5

Mixture model 32.5 66.7 41.2

eval-06 GALE (1 ref.) Baseline 12.7 ± 0.5 75.8 ± 0.6 54.6 ± 0.6

Mixture model 13.1 75.3 54.0

eval-06 NIST (4 refs.) Baseline 27.9 ± 0.7 67.2 ± 0.6 44.0 ± 0.5

Mixture model 28.5 66.7 43.9

Scoring: confidence estimation, selection: threshold

Table 8 Statistics of the phrase tables trained on the genres of the NIST test corpora

eval-04 Editorials Newswire Speeches

Sentences 449 901 438

Selected translations 101 187 113

Size of adapted phrase table 1,981 3,591 2,321

Adapted phrases used 707 1,314 815

New phrases 679 1,359 657

New phrases used 23 47 25

eval-06 Broadcast Broadcast Newsgroup Newswire

conversations news

Sentences 979 1,083 898 980

Selected translations 477 274 226 172

Size of adapted phrase table 2,155 4,027 2,905 2,804

Adapted phrases used 759 1,479 1,077 1,115

New phrases 1,058 1,645 1,259 1,058

New phrases used 90 86 88 41

Scoring: confidence estimation, selection: threshold

Rather than using the phrase table learned on the selected data as an additional

model in the SMT system, we can also interpolate it with the original phrase table as

shown in Eq. 2. This has the advantage that we do not have to re-optimize the system

in order to learn a decoder weight for the additional model. However, as we see in

Table 7, this method yields an improvement in translation quality which is much lower

than the ones achieved in the other experiments reported earlier in this section. There

is a small gain on all test corpora and according to all three evaluation metrics, but it

is not significant in most cases.

In all experiments on NIST, Algorithm 1 was run for one iteration. We also inves-

tigated the use of an iterative procedure here, but this did not yield any improvement

in translation quality.

In order to see how useful the new models are for translation, we analyzed the phrase

tables generated in semi-supervised learning (with confidence estimation for scoring

and threshold-based selection) and the phrases which the SMT system actually used.

The statistics are presented in Table 8, separately analyzed for the different genres in

the NIST test sets. It shows how many of the machine translations of the unlabeled data

were considered reliable; in most cases, this is roughly a quarter of the translations.
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The exception is the broadcast conversation part of the 2006 data where almost half

the translations are kept.

On these sentence pairs, between 1,900 and 4,000 phrase pairs were learned for the

different sub-corpora. The average phrase length is slightly above 2 words for both

source and target phrases for all phrase tables (as opposed to an average length of

3–3.5 words in the original phrase tables).

To see how useful this new phrase table actually is, we analyzed how many of the

phrases which have been learned from the test corpus are used later in generating

the best translations (after rescoring). The fourth row in each block shows that for

all corpora, about 40% of the phrase pairs from the adaptive model are actually used

in translation. We can see, therefore, that this phrase table which was trained using

semi-supervised learning provides a very important source of information for the SMT

system.

Out of the phrase pairs in the adaptive phrase table, 28% to 48% are entries which

are not contained in the original phrase tables (see row 5, titled ‘new phrases’). This

shows that the system has learned new phrases through model adaptation. However,

an analysis of the number of new phrase pairs which are actually used in translation

(presented in the last row of each block of Table 8) shows that the newly learned

phrases are rarely employed. A comparative experiment showed that removing them

from the adapted phrase table yields about the same gain in translation quality as

the use of the full adapted phrase table. Thus, the reward from model adaptation

seems to come from the reinforcement of the relevant phrases in the existing phrase

tables.

We leave it to future work to see whether the new phrases could actually be more

useful in improving translation quality, and if the minimum error rate training of the

feature weights could be modified to encourage the use of these new phrases from the

domain to which we wish to adapt our translation system.

4.3 Translation examples

Table 9 presents some French–English translation examples of the baseline and the

adapted system where for Estimate, the mixture model was used; for Selection, all

generated sentence pairs are used, and the test set consists of out of domain sen-

tences. The examples are taken from the WMT 2006 EuroParl shared task test set. The

parts of the translations which improve through model adaptation are highlighted in

bold.

Table 10 presents some Chinese–English translation examples of the baseline and

the adapted system using confidence estimation with a threshold in model adapta-

tion. The square brackets indicate phrase boundaries. All examples are taken from the

GALE portion of the 2006 test corpus. The domains are broadcast news and broadcast

conversation. The examples show that the adapted system outperforms the baseline

system both in terms of adequacy and fluency. Italics indicate bad phrase translations

generated by the baseline system, and the better translations picked by the adapted

system are printed in bold. The third example is especially interesting. An analysis

showed that the target phrase “what we advocate” which is used by the baseline system
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Table 9 Translation examplesa from the WMT 2006 EuroParl corpus

Baseline indeed , in external policy , is inconsistency is often a virtue .

Adapted indeed , in foreign policy , the inconsistency is often a virtue .

Reference indeed , in foreign policymaking , inconsistency is often a virtue .

Baseline but the faith in the taking of detailed information on the structure

high-protein from patterns x-ray continues , but only if this infor-

mation could come to light .

Adapted but the faith in the taking of information about the structure high-

protein from x-ray detailed , but only if information can be dis-

covered .

Reference but the faith remained that detailed information about protein struc-

ture could be obtained from the x-ray patterns in some way , if

only it could be discovered .

Baseline the opportunities to achieve this are good but are special efforts are

indispensable .

Adapted the chances of achieving this are good but special efforts are still

necessary .

Reference there is a good chance of this , but particular efforts are still needed .

Baseline this does not want to say first of all , as a result .

Adapted it does not mean that everything is going on .

Reference this does not mean that everything has to happen at once .

a lower-cased output, punctuation marks tokenized

Table 10 Translation examplesa from the 2006 GALE corpus

Baseline [the report said] [that the] [united states] [is] [a potential] [prob-

lem] [, the] [practice of] [china ’s] [foreign policy] [is] [likely

to] [weaken us] [influence] [.]

Adapted [the report] [said that] [this is] [a potential] [problem] [in] [the

united states] [,] [china] [is] [likely to] [weaken] [the impact

of] [american foreign policy] [.]

Reference the report said that this is a potential problem for america .

china ’s course of action could possibly weaken the influence

of american foreign policy .

Baseline [what we advocate] [his] [name]

Adapted [we] [advocate] [him] [.]

Reference we advocate him .

Baseline [the fact] [that this] [is] [.]

Adapted [this] [is] [the point] [.]

Reference that is actually the point .

Baseline [”] [we should] [really be] [male] [nominees] [..] [. . . .]

Adapted [he] [should] [be] [nominated] [male] [,] [really] [.]

Reference he should be nominated as the best actor, really .

a lower-cased output, punctuation marks tokenized

is an overly confident entry in the original phrase table. The adapted system, however,

does not use this phrase here. This indicates that the shorter and more reliable phrases

have been reinforced in model adaptation.
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5 Previous work

While many researchers have studied language model adaptation, there is not much

work on translation model adaptation. One notable exception is Hildebrand et al.

(2005), where information retrieval is used to select training sentences similar to those

in the test set. Unlike the work presented here, this approach still requires bilingual

data from the domain it adapts to.

Semi-supervised learning has previously been applied to improve word alignments.

In Callison-Burch et al. (2004), a generative model for word alignment is trained

using unsupervised learning on parallel text. In addition, another model is trained on

a small amount of hand-annotated word alignment data. A mixture model provides a

probability for word alignment. Experiments showed that putting a large weight on

the model trained on labeled data performs best.

Along similar lines, Fraser and Marcu (2006) combine a generative model of word

alignment with a log-linear discriminative model trained on a small set of hand-aligned

sentences. The word alignments are used to train a standard phrase-based SMT system,

resulting in increased translation quality.

In Callison-Burch (2002), co-training is applied to MT. This approach requires

several source languages which are sentence-aligned with each other and all translate

into the same target language. One language pair creates data for another language pair

and can be naturally used in a Blum and Mitchell (1998)-style co-training algorithm.

Experiments on the EuroParl corpus show a decrease in WER. However, the selection

algorithm applied there is actually supervised because it takes the reference translation

into account. Moreover, when the algorithm is run long enough, large amounts of

co-trained data injected too much noise and performance degraded.

Self-training has been investigated in other NLP areas, such as parsing. McClosky

et al. (2006a) introduces self-training techniques for two-step parsers. In McClosky

et al. (2006b), these methods are then used to adapt a parser trained on Wall Street

Journal data, without using labeled data from the latter domain.

Self-training for SMT was proposed in Ueffing (2006). An existing SMT system is

used to translate the development or test corpus. Among the generated machine trans-

lations, the reliable ones are automatically identified using thresholding on confidence

scores. The work which we presented here differs from Ueffing (2006) as follows:

– We investigated different ways of scoring and selecting the reliable translations and

compared our method to this work. In addition to the confidence estimation used

there, we applied importance sampling and combined it with confidence estimation

for semi-supervised model adaptation (see Table 5).

– We studied additional ways of exploring the newly created bilingual data, namely

re-training the full phrase translation model or creating a mixture model (see

Sect. 4.2.1).

– We proposed an iterative procedure which translates the monolingual source lan-

guage data anew in each iteration and then re-trains the phrase translation model

(see Fig. 1).

– We applied semi-supervised model adaptation not only to the phrase translation

model, but also to the language model (see Table 6).
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6 Discussion

It is not intuitively clear why the SMT system can learn something from its own

output and is improved through semi-supervised model adaptation. There are two

main reasons for this improvement.

Firstly, the selection step provides important feedback for the system. The confi-

dence estimation, for example, discards translations with low language model scores or

posterior probabilities. The selection step discards bad machine translations and rein-

forces phrases of high quality. As a result, the probabilities of low-quality phrase pairs,

such as noise in the table or overly confident singletons, degrade. Our experiments

comparing the various settings for model adaptation show that selection clearly out-

performs the method which keeps all generated translations as additional training data.

The selection methods investigated here have been shown to be well-suited to boost

the performance of semi-supervised model adaptation for SMT.

Secondly, our algorithm constitutes a way of adapting the SMT system to a new

domain or style without requiring bilingual training or development data from this

domain. Those phrases or n-grams in the existing phrase tables or language model

which are relevant for translating the new data are reinforced. The probability distrib-

ution over the events thus gets more focused on the (reliable) parts which are relevant

for the test data.

We showed in this article how a phrase-based SMT system can benefit from semi-

supervised learning. However, the method is applicable to other types of systems, such

as syntax-based ones, as well.

In this work, the unlabeled data used in the algorithm is always the development or

test data. In Ueffing et al (2008), the use of additional source language data in semi-

supervised learning is explored. Unlike the experiments in this article, in that work the

additional source data is from the same domain as the test data but does not include

the test data itself. As a result, typically larger amounts of source data are required.

These data are filtered with respect to the development or test set to identify the source

data that is relevant to the domain and then used in a similar manner as described in

this article.

In scenarios where bilingual training data are scarce, an SMT system could be

trained on a small amount of data and then iteratively improved by translating addi-

tional monolingual source language data and adding the reliable translations to the

training material. This would be similar to bootstrapping approaches in speech recog-

nition.
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