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Abstract—One of the main objectives of face recognition is 

to determine whether an acquired face belongs to a 

reference database and to subsequently identify the 

corresponding individual.  Face recognition has application 

in, for instance, forensic science and security.  A face 

recognition algorithm, to be useful in real applications, must 

discriminate in between individuals, process data in real-

time and be robust against occlusion, facial expression and 

noise.   

 

A new method for robust recognition of three-dimensional 

faces is presented.  The method is based on harmonic 

coding, Hilbert transform and spectral analysis of 3-D depth 

distributions.  Experimental results with three-dimensional 

faces, which were scanned with a laser scanner, are 

presented.  The proposed method recognises a face with 

various facial expressions in the presence of occlusion, has a 

good discrimination, is able to compare a face against a 

large database of faces in real-time and is robust against 

shot noise and additive noise. 

 

Index Terms—Correlation, Face Recognition, Fourier 

Transform, Hilbert Transform, Invariant, Robust, Spectral 

Analysis 

 

I.  INTRODUCTION 

Face recognition is a difficult task [1-10].  The reason 

can be traced back to the variability of facial expression 

which may vary to reflect emotions such as happiness, 

boredom, shock and sadness, just to mention a few.  In 

addition, in practical situations, a face can potentially be 

occluded by a mesh of hair or by the hand.  This problem 

has been addressed by, in many situations, enforcing a 

neutral facial expression.  This is the case, for instance, 

for Canadian passports.  Unfortunately, such an approach 

is limited to a controlled environment.  In an uncontrolled 

environment, facial expression and occlusion are issues 

that must be addressed. 

In order to be applicable to practical situations, face 

recognition algorithms must fulfil many requirements, 

including the following. The data must be processed in 

real-time, the algorithm should be invariant or at least 

covariant with face position and orientation, it should be 

robust against facial expression, detection must be robust 

against occlusion and acquisition noise, the algorithm 

must discriminate between faces and it must be scalable.  

Unless all these criterions are met, the algorithm has 

limited practical use. 

A new method that fulfils all the above-mentioned 

requirements is presented.  The method exploits the 

unique characteristics of 3-D depth distributions.  The 

algorithm is based on the Fourier transformation of the 

phase function of the 3-D depth distribution and on a 

non-linear transformation.  This paper is organised as 

follow.  First, the phase Fourier transform of a 3-D depth 

distribution is introduced and its properties, including its 

relation with the analytic form, are investigated.  Then, 

the invariant properties of the transformation are 

explored.  A correlation method, based on this 

transformation, is utilised in order to recognise faces.  

Experimental results are presented with scanned faces.  

The issues of facial expression, occlusion and acquisition 

noise are addressed with real measured data.  A 

conclusion follows.  This paper is an extended version of 

[11]. 

II.  THE PHASE FOURIER TRANSFORM OF A 3-D DEPTH 

DISTRIBUTION 

A mathematical framework for the proposed method is 

presented.  Let us consider a planar surface bounded by a 

binary domain R ( )x, y  in the xy plane, which is equal to 

one if the surface belongs to the domain and zero 

otherwise: 

( ) R ( )z = a x + b y + c   x, y                        (1) 

where a and b are the slopes of the planar surface.  The 

phase function associated with this planar surface is 

defined as the complex exponential of the later: 

[ ] [ ]exp exp ( ) R ( )i   z  =  i  a x + b y + c  x, yω ω       (2) 

where ω is a scale factor.  Let us compute the Fourier 

transform of the phase function and let us call this 

transformation a phase Fourier transform 

[ ]

[ ]

FT exp i    =   exp (i  c)  

  
 δ  - ,  -   *  FT  R ( )  

2 2

z

a b
u v x, y

ω ω

ω ω
π π

⎡ ⎤⎣ ⎦
⎧ ⎫⎛ ⎞
⎨ ⎬⎜ ⎟

⎝ ⎠⎩ ⎭

         (3) 



where * denotes the convolution operator.  The result of 

the Fourier transform is a unique peak for which the 

position is determined by the orientation of the planar 

surface and for which the shape is determined by the 

Fourier transform of the binary domain.  This 

transformation has a geometrical interpretation.  From the 

slopes of the plane, one can calculate the co-ordinates of 

the normal vector associated with the plane: 

T

2 2 2 2 2 2

1 1 1
 = a b

 +  + 1  +  + 1  +  + 1a b a b a b

⎡ ⎤
− −⎢ ⎥
⎣ ⎦

n (4) 

Let us consider a particular case: a plane bounded by a 

rectangular domain: 

( ) rect  rect 
x y

x y
z = a x + b y + c   

d d

⎡ ⎤⎛ ⎞⎛ ⎞
⎢ ⎥⎜ ⎟⎜ ⎟

⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦

           (5)    

   Let us compute the phase Fourier transform of this 

plane: 

[ ] ( )FT  exp (i   )  = exp (i  )     

  
sinc   -  ,    - 

2 2

x y

x y

z c   d d

a b
u vd d

ω ω

ω ω
π π

⎡ ⎤⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

              (6) 

As in the previous case, a peak is obtained for which 

the position is determined the orientation of the plane and 

the shape is determined by the Fourier transform of the 

domain.  One should note that the amplitude of the peak 

is proportional to the area of the corresponding domain.  

Since the Fourier transform of a phase function seems 

adapted to the study of three-dimensional depth 

distributions, it will be convenient to define the phase 

Fourier transform of a depth distribution as 

[ ] ( ) FT exp i   ( , )z f x yωΦ ≡ ⎡ ⎤⎣ ⎦                   (7) 

   There exists a formal correspondence between the 

phase Fourier transform and harmonic coding.  The phase 

function is the analytic form of the coded function.  In 

order to compute the analytic form we need the Hilbert 

transform, which is defined as 

[ ] 1 f ( )  d
HT f  ( )      

Z Z
z

Z - zπ

∞

−∞

≡ ∫                   (11) 

Then, the corresponding analytic form is defined as 

[ ] [ ]f  ( )  = f  ( ) - i HT f  ( ) z z zα                  (12) 

If one calculates the analytic form of the coded depth 

distribution one obtains: 

[ ]sin ( ) sin ( ) cos ( )

exp

    z   =   z  - i   z  = 

3 
 i    z +    

2

α ω ω ω

πω⎡ ⎤⎛ ⎞
⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

       (13) 

which is the phase function of the depth distribution. 

III.  INVARIANT PROPERTIES OF THE PHASE FOURIER 

TRANSFORM OF A DEPTH DISTRIBUTION 

Let us consider a planar surface bounded by a domain 

as defined in equation (1) and let us calculate its phase 

Fourier transform: 

[ ]

 ( ) =   exp (i  )    

  
  δ    - ,  -     *  FT   R ( )    

2 2

z c

a b
u v x, y

ω

ω ω
π π

Φ
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⎨ ⎬⎜ ⎟

⎝ ⎠⎩ ⎭

    (14) 

The power spectrum associated with the phase Fourier 

transform is defined as 

 

[ ]

[ ]

*

1
 
2

*

P ( )   ( )   ( )  =  
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2 2
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       (15) 

A peak is obtained for which the position is 

determined by the orientation of the planar surface and 

for which the shape is a function of the Fourier transform 

of the domain.  The position of the plane does not appear 

in the power spectrum.  Consequently, the position of the 

peak is invariant under a longitudinal translation of the 

plane.  Furthermore, the position of the peak is invariant 

under transversal translations of the plane i.e. translations 

in the xy plane.  We conclude that the position of the 

peak is translation invariant. 

Similar comments can be made about scale invariance.  

The position of the peak is invariant under scale 

transformation.  For instance, let us considered a planar 

surface.  The sole effect of the scale factor is to modify 

the extent of the binary domain and not the orientation of 

the corresponding planar surface.  Since the shape of the 

peak depends exclusively on the shape of the 

corresponding domain, the position of the peak remains 

unaffected after a scale transformation. 

The situation is quite different in the case of rotations.  

Let us considerer an azimuthal rotation, i.e. a rotation 

around the z-axis.  Such a rotation can be mathematically 

expressed as 

cos sin

sin cos

rz z

z z r

x   x

y   y

θ θ
θ θ

− ⎡ ⎤⎡ ⎤ ⎡ ⎤
= ⎢ ⎥⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦
              (16) 

If this transformation is applied to a planar surface one 

obtains: 

z z z z

[( cos sin )

( sin cos ) ]

R ( cos  -  sin   ,  sin  +  cos  )

r z z r

z z r

r rr r

   =  a   + b     x  +z

  - a    + b       + cy

x xy y

θ θ
θ θ
θ θ θ θ

    (17) 

The plane and the domain are rotated as a whole 

around the z-axis.  The shape of the domain is unaffected.  

Consequently, such a rotation is equivalent to rotate the 

spectrum as a whole. 

Finally, let us consider the case of transversal rotations 

i.e. rotation around the x or the y-axis.  Both types of 

rotation are applied to the bounded planar surface: 

( )
( )

x y

[tan arctan ( )

tan arctan ( ) ]

R   , 
cos  cos  

x

y

z =   a   +    x + 

 b   +    y + c  

x y
  

θ

θ

θ θ

⎛ ⎞
⎜ ⎟
⎝ ⎠

                    (18) 

As expected, the rotation affects the orientation of the 

planar surface.  Such a rotation corresponds in the power 

spectrum to a non-linear translation.  The position of the 

peak is a function of the applied rotation.  The translation 

is non-linear because the power spectrum is in the slope-

space and not in the angle-space.  Nevertheless, if the 

following transformation is applied: 



(v)  = V

(u)  = U

arctan

arctan
                           (19) 

it is possible to map the power spectrum from the slope-

space to the angle-space.  The translation corresponding 

to the transverse rotation is then entirely linear.  This 

result implies that it is possible to transform a transverse 

rotation into a translation if the phase Fourier transform is 

combined with a simple non-linear co-ordinates 

transformation. 

   Our argumentation is valid for all the peaks belonging 

to the power spectrum.  As a consequence, in the angular 

space, each peak is submitted to a linear translation when 

a transversal rotation is applied to the depth distribution.  

Since the amplitude of this translation depends solely on 

the amplitude of the applied rotation, each peak is 

submitted to an identical displacement.  That means that a 

transversal rotation preserves the relative positions of the 

peaks as long as the corresponding planar surfaces remain 

visible. 

   Up to this point, we have restricted our considerations 

to planar surfaces.  Nevertheless, our method 

encompasses many kinds of surfaces, since it is possible 

to decompose an arbitrary surface into a set of small 

planar patches.  This is what happens, for instance, when 

a three-dimensional model is tessellated.  Since the 

Fourier transform and the phase Fourier transform are 

linear transformations, each patch contributes a small 

peak to the spectrum and the peaks combine linearly.  

Since the position of each peak is related to the 

orientation of the corresponding normal vectors 

associated with the planar patches, the phase Fourier 

transform provides the distribution of normal vectors 

associated with the surface of the three-dimensional depth 

distribution.  

IV.  CORRELATION, PHASE FOURIER TRANSFORM AND 

FACE RECOGNITION 

The most common technique to compare two spectra 

is the correlation.  It is defined as 

( ) ( )u r0, 0 0 0 0 0γ ( )     ,   d dP P- -
 u, v     u v u u v v u v

∞ ∞
∞ ∞≡ − −∫ ∫    (20) 

where ( )u 0, 0   P u v   is the unknown power spectrum and 

( )r 0 0  ,P u u v v− −   is the reference power spectrum.  Such 

a correlation can be calculated with the help of the 

Fourier transform: 

[ ] [ ]1 *
u rγ ( ) FT  FT   ( )  FT    ( )  P P u, v  = u, v -u, - v− ⎡ ⎤⎣ ⎦     (21) 

where we have taken into account that the power 

spectrum is real.  Generally, the result of the correlation 

is a peak.  Its amplitude is a measure of the similitude 

between the two spectra.  This amplitude is not absolute, 

since it depends on the total power of the spectrum.  Such 

a difficulty can be overcome by normalising the 

spectrum: 

- -

P ( )
p ( )  

   P ( )  d   d

u, v
u, v

u, v u v
∞ ∞
∞ ∞

≡
∫ ∫

                     (22) 

where p ( )u, v  is the normalised power.  Normalisation 

can be interpreted as follow.  It has been demonstrated 

that the amplitude of a peak is a function of the total area 

of the surfaces to which it corresponds.  That means that 

in a power spectrum, the total power corresponds to the 

total area of the corresponding surfaces.  After 

normalisation, a representation for which the amplitude 

of a peak corresponds to the ratio between the area of a 

given orientation and the area of all the orientations of the 

surfaces is obtained.  Such a distribution corresponds to 

the probability of having a given orientation.  

Consequently, the amplitude of the correlation peak is a 

measure of the similarity between two distributions of 

normal vectors.  This amplitude of the correlation peak is 

unitary in the case of an auto-correlation and lower than 

one otherwise.   

    From our previous considerations, it is concluded that 

the correlation spectrum is translation and scale invariant 

and covariant for moderate transversal rotations.  By 

covariant we mean that the position of the correlation 

peak is proportional to the amount of transversal rotation.   

In order to be able to acquire and process data rapidly, 

it is important that the method is invariant and covariant 

to the later transformations.  For instance, it is difficult to 

precisely and rapidly position an individual in order to 

acquire his face.  The same remark applies for transversal 

rotations.  The case of azimuthal rotation is not too 

problematic because of the stiffness of the neck in that 

direction; in other words, it is much easier to bow one’s 

head forward or backward then laterally. 

TABLE I.  CORRELATION OF FACE 1.13 WITH THE FACES OF 

FIGURE 1 WITH THE PROPOSED METHOD. 

Input Correlation Input Correlation
1  0.614 13  1.000 

2  0.860 14  0.848 

3  0.852 15  0.875 

4  0.870 16  0.863 

5  0.868 17  0.865 

6  0.846 18  0.860 

7  0.843 19  0.856 

8  0.855 20  0.855 

9  0.851 21  0.853 

10  0.869 22  0.849 

11  0.862 23  0.856 

12  0.857  24  0.848 

 

   Nevertheless, if the azimuthal rotation becomes 

problematic, the method can be made invariant to many 

types of rotations by computing the distance in between 

the main peaks of the spectrum in the angle-space.  Then, 

their distribution is represented by a histogram.  

 

As previously mentioned, the amplitude of the 

normalised power spectrum is related to the probability of 

occurrence of a given normal vector orientation.  Such an 

orientation is not invariant under azimuthal and 

transversal rotations.  Nevertheless, in the case of a rigid 

object, the angle in between two orientations is invariant 

under the above mentioned transformations.   Strictly 



speaking, a face cannot be considered as a rigid object, 

but as a semi-rigid object.  That means that an important 

proportion of the face surface is rigid or quasi-rigid e.g. 

the nose, the front head and the chin, just to mention a 

few. 

The power spectrum represents a substantial amount 

of information.  As we previously saw, such a large 

amount of information can easily be processed with a 

correlation technique.  Nevertheless, the calculation of 

the angles in between all the normal vectors involves 

                               !

2! ( 2)!

n

n −
   (23)                                                   

operations, where n is the number of normal vectors 

associated with the 3-D face.  Consequently, in order to 

process the spectrum in real-time, it is necessary to 

analyze the content of the spectrum in order to determine 

the most salient normal vector orientations.  From a 

probability point of view, the most important orientations 

are the one having the highest probability which is 

associated, in our case, to the orientations for which the 

area is the most important as we have demonstrated in 

section III and in the present section e.g. equation (22). 

Those orientations are relatively easy to detect, they 

correspond to the local maxima in the normalised power 

spectrum.  Consequently, the determination of the most 

salient features is equivalent to find the local maxima in 

the power spectrum which correspond to the most 

probable orientations.  In order to further reduce the 

amount of information, only the most probable peaks are 

considered.  In practice, we consider only peaks for 

which their amplitude is at least exp( 1)−  of the absolute 

maximum.  Typically, the power spectrum associated 

with a face contains ten peaks.  Such a number is easily 

manageable for real-time implementation. 

In order to obtain a description that is invariant both 

for azimuthal and transversal rotations, we compute the 

angle in between each pair of local maxima.  The angles 

obtained are invariant under azimuthal and transversal 

rotations.  From the set of angles, a histogram is 

constructed.  Such a histogram is associated with their 

statistical distribution: the horizontal axis of the 

histogram corresponds to the angles in between two local 

maxima and the vertical axis to the frequency of 

occurrence of such an angle.  The histogram is 

remarkable compact with a typical size of a few hundred 

bytes.  This is a remarkable factor of compression when 

one considers that the size of the file associated with a 

scanned face can easily reach hundreds of megabytes.  

Such a high compression ratio can be achieved because 

only the most important facial characteristics are 

considered.   

In order to facilitate the comparison in between the 

histograms, the later are normalised.  This is achieved by 

normalising the maximum frequency of occurrence to 

unity. Face retrieval is performed by comparing the 

associated histograms.  The comparison metrics is based 

on the Euclidian distance.  The histogram with the 

smallest distance, with respect to the reference histogram, 

corresponds to the closest match.   

For mission critical applications, it is also possible to 

train a neural network with the histograms.  For instance, 

the neural network can be trained with the same 

individual with various facial expressions, hair cuts and 

beards.  Multilayer neural network trained with the back-

propagation algorithm are well suited for this task. 

 

Our technique is applied to face recognition.  This is a 

challenging task, because most faces present a high 

degree of resemblance.  The experimental data set is 

shown in figure 1 and the individuals are numbered from 

left to right and from top to bottom.  Each face 

corresponds to a real individual and was acquired with 

the help of the auto-synchronized laser scanner developed 

at the National Research Council of Canada (NRC) [12].  

In our first experiment, figure 1.13 is selected as our 

reference face.  The correlation between the data set and 

the reference face are calculated and the amplitude of the 

corresponding correlation peak is measured.  The results 

are reported in table 1. 

 

 
Figure 1.  Depth distribution of the 24 faces of the experimental set.  

Each face was acquired with NRC’s auto-synchronized laser scanner. 

 

   As shown in the table, the reference face has been 

properly identified.  Facial expression can have a 

considerable effect on the appearance of a face.  Our 

correlation technique, in order to be applicable to 

practical problems, must be able to handle such situation.  

Consequently, another experiment is performed with 

figure 1.12 as the reference face.  The results are reported 

in table 2. 



The peak of correlation with the highest amplitude 

corresponds to the autocorrelation peak.  The peak 

corresponding to the correlation in between figure 1.2 and 

figure 1.12 follows immediately.  These two figures 

correspond to the same individual:  one of the authors!  

The presence of the hand in figure 1.12 makes the 

identification task much more complicated. This is due to 

the fact that the shape of the hand modifies the 

distribution of normal vectors by introducing new 

surfaces and by occluding previously visible surfaces.  

The normal vectors associated with the forehead, the nose 

and the beard are relatively immune against a change of 

facial expression.  This fact explains, up to a certain 

point, why the algorithm is robust against facial 

expression.  

TABLE II.  CORRELATION OF FACE 1.12 WITH THE FACES OF 

FIGURE 1 WITH THE PROPOSED METHOD.  FACE 1.2 CORRESPONDS TO 

THE SAME INDIVIDUAL THAN FACE 1.12 BUT THE FACIAL EXPRESSION IS 

DIFFERENT.  IN ADDITION, THE FACE IS PARTLY OCCLUDED BY A HAND. 

Input Correlation Input Correlation
1  0.635 13  0.857 

2  0.885 14  0.861 

3  0.852 15  0.859 

4  0.862 16  0.838 

5  0.864 17  0.841 

6  0.854 18  0.860 

7  0.861 19  0.849 

8  0.870 20  0.838 

9  0.857 21  0.856 

10  0.857 22  0.870 

11  0.859 23  0.850 

12  1.000 24  0.871 

 

V.  FACE RECOGNITION IN THE PRESENCE OF SHOT NOISE 

AND ADDITIVE NOISE 

The influence of noise on our algorithm is explored 

next. Two kinds of noise are considered: shot noise and 

additive noise.  Pre-processing the depth distribution 

reduces additive noise by a substantial amount. 

Shot noise is associated with the lost of one or many 

points during the acquisition of the face.  This noise is 

common when a highly specular surface is scanned with a 

laser scanner.  When a specular surface is encountered, 

the laser beam of the scanner is reflected in a direction, 

which does not necessarily correspond to the direction of 

the scanner’s sensor.  This problem is relatively 

uncommon for diffuse surfaces because, by their very 

nature, they reflect light in all directions. 

Shot noise has been applied randomly to figure 1.2 on 

half of the points of the depth distribution.  The outcome 

of the operation is shown in figure 2.1.  The experience 

performed in table 1 was repeated with the noisy face.  

The amplitude of the correlation peaks are reported in 

table 3. 

 

 

 
 

Figure 2.  The effect of noise of face 1.2.  Face 2.1 was obtained by 

applying shot noise on half the points of face 1.2.  Face 2.2 was 

obtained by applying additive noise on face 1.2.  Face 2.3 shows the 

pre-processing of face 2.2 with a Hann filter. 

 

   Despite of the importance of the noise, the face has 

been properly identified.  Discrimination is low but that 

should be considered normal in relation to the level of 

noise; remember that half of the information is missing.  

It is concluded that our correlation technique is robust 

against shot noise. 

TABLE III.  CORRELATION OF THE FACE 2.1 WITH THE 

FACES OF FIGURE 1 WITH THE PROPOSED METHOD.  SHOT 

NOISE WAS APPLIED ON HALF OF THE POINTS OF THE FACE.   

Input Correlation Input Correlation

1  0.589 13  0.813 

2  0.898 14  0.847 

3  0.834 15  0.817 

4  0.843 16  0.807 

5  0.833 17  0.832 

6  0.837 18  0.850 

7  0.838 19  0.791 

8  0.851 20  0.808 

9  0.836 21  0.848 

10  0.833 22  0.841 

11  0.822 23  0.813 

12  0.832 24  0.853 

The robustness comes from the phase Fourier transform.  

Indeed, we have seen previously that if a planar surface is 

fragmented, the position of the corresponding peak in the 

phase Fourier spectrum is not affected; only the shape of 

the peak is modified.  In the present case, not only the 

domain of the surface is modified but also a certain 

fraction of the surface is lost.  Each lost direction reduces 

the amplitude of the corresponding peak in the phase 

Fourier spectrum.  If the shot noise is distributed 



uniformly, the spectrum is also uniformly affected 

because each orientation looses in proportion the same 

amount of points, which explains why that the proposed 

method is robust against shot noise 

Let us add Gaussian noise to our distribution: 

f  ( ) + G ( )z = x, y x, y                             (24) 

An example of such a noisy face is shown in figure 2.2.  

Now, let us calculate the normal vector of a noisy planar 

surface from three non-collinear points.  If additive 

Gaussian noise is applied, the normal vector becomes: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
  

f  2 G 2  - f  1  - G 1 f  3  + G 3  - f  1  - G 1

2 1 3 1

2 1 3 1

 -  - x x x x

 =   -  - y y y y

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥

∧⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥+⎣ ⎦ ⎣ ⎦

n
  (25) 

where ∧  is the exterior product and G ( )x, y is a 

Gaussian distribution.   As shown by the equation, the 

noise distributes the normal vectors randomly.   For our 

technique to be applicable in such a case, a sufficient 

proportion of normal vectors must be restored to their 

original orientation. 

If the shift induced by the noise is relatively small to 

the depth, it is possible to reduce the level of noise with a 

convolution in between the depth distribution and a Hann 

filter, the later being defined as 

1 2  x 2  y
h (x, y) =   1 - cos       1 - cos   

4 L - 1 L - 1

π π⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

    (26) 

   Although repeated experimentation tends to favour the 

Hann filter, the shape of the filter is not critical and the 

Hann filter can be replaced with a Gaussian filter.  The 

Hann filter is a low-pass filter.  That means that after the 

convolution, small features or high frequencies are 

removed.  These features correspond in proportion to a 

small number of normal vectors and for that reason, their 

effect on the correlation is temperate.  Figure 2.3 shows 

the restoration of the noisy face with a Hann filter.  The 

results of the correlation of this face with the faces of 

figure 1 are reported in table 4. 

TABLE IV.  CORRELATION OF FACE 2.3 WITH THE FACES OF FIGURE 

1 WITH THE PROPOSED METHOD.  ADDITIVE NOISE WAS APPLIED TO FACE 

1.2 AS ILLUSTRATED IN FIGURE 2.2 AND THE LATER WAS PRE-PROCESSED 

WITH A HANN FILTER AS ILLUSTRATED IN FIGURE 2.3. 

Input Correlation Input Correlation
1  0.647 13  0.844 

2  0.938 14  0.871 

3  0.847 15  0.834 

4  0.846 16  0.801 

5  0.871 17  0.829 

6 0.854 18  0.861 

7  0.864 19  0.825 

8  0.866 20  0.827 

9  0.837 21  0.847 

10  0.845 22  0.857 

11  0.844 23  0.832 

12  0.872 24  0.866 

 Even if the post-restoration face presents a relatively 

good overall aspect, one must remember that the surface 

still presents many asperities, which are associated with 

randomly orientated normal vectors.  That explains why 

the discrimination is lower relatively to the non-noisy 

case. 

   More sophisticated signal processing techniques would 

be needed in order to address the problem of strong 

additive noise, but strong shot noise is remarkably 

handled by the algorithm. 

VI. CONCLUSIONS 

 

   A new robust method for face recognition has been 

presented.  This method is based on the phase Fourier 

transform of 3-D depth distributions and on a non-linear 

correlation.  According to our experimental results, the 

discrimination of the method is high.  The method is 

robust against occlusion and facial expression and can 

handle them simultaneously. 

   Recall that shot noise is not uncommon for faces 

acquired with a laser scanner, since  such a phenomenon 

can occur for instance if the skin is shinny or oily.  The 

algorithm shows a remarkable robustness against such 

shot noise. Furthermore, the algorithm is covariant to 

transversal rotations and invariant to translation which 

means that the positioning of the head is not critical.  This 

is important to facilitate and accelerate the acquisition 

process.  The background can be easily eliminated by 

applying a threshold to the 3-D depth distribution, which 

means that the method is suitable for an uncontrolled 

environment. 

   Real-time implementation of the algorithms will be 

facilitated by the fact that it is based on the Fourier 

transform which as a complexity of O (N log (N)).  Such 

a transformation can be calculated in real-time with the 

help of a digital signal processing or DSP board.  The 

scalability of the algorithm has not been proven, because 

of the small size of the data set, but many reasons make 

us believe that it could be potentially high. This is due to 

the consistency of the correlation results and the fact that 

the method is independent of any segmentation scheme, 

which makes it stable.  

   Our algorithm has many features that make it an 

excellent candidate for electro-optical implementation.  

Although a complex technology, an electro-optical 

correlator allows unmatched performances for algorithms 

that heavily rely on the Fourier transform.  For details 

about electro-optical implementation and optical 

correlator, the reader is referred to [13].  In the following 

paragraphs, we review the most important aspects of 

electro-optical correlation as well as the features that are 

specific to our algorithm.   

   As shown by equation (23), the correlation can be 

computed with the help of two Fourier transforms.  Such 

a transformation can be calculated with a lens as follows.  

The phase of a collimated laser beam is modulated by a 

filter located at the focus of a convex lens for which most 

aberrations have been corrected.  The Fourier transform 

of the phase image associated with the filter is then 

performed by the lens aperture and imaged, by the lens 

per se, at the output focus.  The phase is input in real time 



with a laser scanner and a light valve.  More details can 

be found in [13]. 

 

  In order to implement our algorithms, we must first 

compute the phase of the range image.  This is done, as 

mentioned earlier, by directly inputting the range image 

on the phase modulator.  The modulation range of most 

phase modulators is limited to 2π.  However, a range 

image has a range of thousands of π.  In order to solve 

this problem, one has to compute the kinoform of the 

phase image.  The kinoform is defined as 

[ ]mod ( , ),2f x yω πΘ =                   (27) 

where mod, the modulo function, is the remainder after 

the numerical division.  If the modulator is digital, the 

modulation must be performed with at least 8 levels of 

phase in order to maximise the diffractional efficiency, 

i.e. minimising the artefact in the Fourier spectrum. 

   Once the kinoform has been addressed on the filter, the 

Fourier transform of the filter is computed with a lens as 

described earlier.  An important aspect that remains to be 

implemented is the non-linear transformation i.e. 

equation (19).  Such a transformation can be implemented 

with a holographic element, which is basically a 

computer generated hologram design in such a way as to 

perform the required transformation.  For more details the 

reader is referred to [13].  Once the non-linear 

transformation has been performed, the obtained 

spectrum is multiplied with the corresponding spectrum 

of the reference face.  The multiplication is achieved by 

inserting another phase modulator at the output focus of 

the lens.  The calculation of the correlation is completed 

by computing a last Fourier transform with a second lens.  

Then, the power spectrum is obtained directly from an 

intensity sensor (e.g. CCD) situated at the output focus of 

the second lens.  
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