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The ability to store multiple optical modes in a quantum memory allows for increased efficiency of

quantum communication and computation. Here we compute the multimode capacity of a variety of

quantum memory protocols based on light storage in ensembles of atoms. We find that adding a controlled

inhomogeneous broadening improves this capacity significantly.
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Quantum memories with the ability to store multiple

optical modes [1,2] offer advantages in speed and robust-

ness over single mode memories when incorporated into

quantum communication [3–5] and computation [6,7]

schemes. For example, dual rail encoding [8] and photon

loss codes [9] can be integrated into ensemble based com-

putation schemes if multimode storage is available. It is

therefore useful to characterize the multimode capacity of

a given quantum memory protocol; this is the problem we

address in this Letter.

Any quantum memory must operate as a linear map, so

that quantum superpositions are maintained. Therefore

analysis and optimization of the storage efficiency and

multimode capacity of any quantummemory can be under-

stood using the well-developed tools of linear algebra. Of

central importance is the singular value decomposition

(SVD), or Schmidt decomposition [10,11], which exists

for all linear maps. In this Letter we introduce a universal

method for calculating the multimode capacity of a quan-

tum memory, based on the SVD of the Green function for

the memory interaction. We apply this technique to mem-

ories with no inhomogeneous broadening, and we find that

their multimode capacity scales poorly with the optical

depth of the ensemble. We go on to calculate the multi-

mode capacity of protocols based on controlled reversible

inhomogeneous broadening (CRIB) [12,13], and find that

their capacities scale more favorably. We then consider a

modification to the well-known Raman memory protocol

[14–17], in which a longitudinal inhomogeneous broad-

ening is applied [18,19]; we show that this modified pro-

tocol exhibits the same favorable multimode scaling as

CRIB. Finally we examine the scaling of the recently

proposed atomic frequency comb (AFC) protocol [1],

which was designed with multimode storage in mind; its

performance is the best out of the protocols we analyzed.

In the following we deal exclusively with quantum

memories based on ensembles of atoms, or atomlike ab-

sorbers, although we neglect memories based on measure-

ment and feedback [20–24]. In a typical ensemble quantum

memory, an incident signal field with temporal envelope

Ainð�Þ is converted to a stationary excitation known as a

spin wave, which is distributed as a function of position z

within the ensemble with amplitude BðzÞ [see Fig. 1(a)].

The quantum memory map takes the form

BðzÞ ¼
Z 1

�1
Kðz; �ÞAinð�Þd�; (1)

where the kernel K is a Green function for the storage

interaction. In some cases, the form of K can be derived in

closed form. The general strategy is to solve the linearized

Maxwell-Bloch equations describing the coupling of the

signal to the atoms—the Fourier transform is an invaluable

tool in this connection. Even when an analytic solution is

not possible, K can always be constructed numerically. In

fact, although we use a one-dimensional treatment here and

in what follows, the same arguments apply if transverse

coordinates are included, although the numerical problem

becomes significantly larger in this case. Discussions of

multimode storage using the transverse spatial degrees of

freedom can be found elsewhere [2,6,25]. Using the SVD,

we can always express the Green function as a convex sum

Kðz; �Þ ¼
X

k

c kðzÞ�k�
�
kð�Þ; (2)

where the sets of modes fc kg, f�kg each form orthonormal

bases, the former for the space of spin wave amplitudes—

the ‘‘output space’’—and the latter for the space of signal

envelopes—the ‘‘input space.’’ Note that the SVD does not

require the kernel K to be Hermitian: in general, losses can

make the kernel complex and non-Hermitian. The positive

real singular values �k couple each input mode �k to the

corresponding output mode c k. The probability that a
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FIG. 1 (color online). (a) An incident signal field is mapped to

a stationary spin wave inside an ensemble quantum memory.

(b) The multimode scaling of unbroadened ensemble memories

(solid line) alongside the TCRIB (dashed line) and LCRIB

(dotted line) protocols, with a threshold � ¼ 70%.
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single photon in mode �k is stored by the memory is �2
k.

The optimal performance of a memory is achieved when

the storage and retrieval processes are simply time reverses

of each other [15,26,27], in which case the retrieval inter-

action is described by the conjugated Green function K�.
The retrieval efficiency for the kth mode is then the same as

the storage efficiency �2
k, and so the total efficiency of

storage followed by retrieval—the ‘‘memory effi-

ciency’’—is given by �4
k.

The maximum number of modes of the optical field that

can be stored by the memory is just the number of non-

negligible singular values. We note that the orthonormal

basis f�kg is the ‘‘natural’’ input basis for the memory

interaction, as determined by its dynamics. It represents the

best possible encoding, and the multimode capacity can

only be reduced by choosing some other encoding, such as

time or frequency bin encoding, for the input modes. To

quantify the multimode capacity of a memory, we label the

�k in order of descending magnitude, and define the aver-

age memory efficiency for the first k modes, �k ¼
P

k
j¼1 �

4
j=k. Let �k be equal to 1 when �k exceeds some

threshold efficiency �, with �k ¼ 0 otherwise. Then we

define the multimode capacityN ¼ P

k�k as the number of

modes with average memory efficiency greater than �. In
this Letter we use � ¼ 70% for all calculations; this choice

makes the multimode scaling apparent for experimentally

achievable, and numerically tractable, parameters. We

have checked that the scaling of N does not depend on

the choice made for �, although imposing higher thresh-

olds reduces N, as might be expected.

The SVD ofK is related to the spectral decomposition of

the normally and antinormally ordered products (cf.

Theorem 5.4 in [10])

KNð�; �0Þ ¼
Z 1

0
K�ðz; �ÞKðz; �0Þdz;

KAðz; z0Þ ¼
Z 1

�1
Kðz; �ÞK�ðz0; �Þd�:

(3)

Direct substitution of Eq. (2) into the above expressions

shows that the eigenvalues of both KA and KN are given by

�k ¼ �2
k; the capacity N can therefore be directly calcu-

lated from these eigenvalues. Here we normalized the

longitudinal coordinate so that z runs from 0 to 1. In

some cases we may have access to an explicit form for

the Green function KT for the entire memory interaction,

that is, storage followed by readout. Suppose that we have

Aoutð�Þ ¼
Z 1

�1
KTð�; �0ÞAinð�0Þd�0; (4)

where Aout is the temporal profile of the signal field

retrieved from the memory. This is, in some sense, more

complete than the storage Green function in Eq. (1), since

it tells us directly about the connection between the modes

that can be stored and the modes that can be retrieved. The

SVD can be applied to the bivariate function KT precisely

as it was to K in Eq. (2), and the singular values �k

extracted. In the optimal case that retrieval is the time

reverse of storage, we have KN ¼ KT , and so for consis-

tency we define the multimode capacity in terms of the �k

by making the replacement �2
k ! �k.

Finally, we note that the singular values are invariant

under unitary transformations. In particular, we are free to

Fourier transform position to spatial frequency (z ! k) or
time to angular frequency (� ! !); the singular values of a

kernel K are unchanged by such transformations, and so

the multimode capacity can equally well be calculated

from the transformed kernel ~K.
It has previously been shown [17] that optimal storage

in an ensemble memory without inhomogeneous broad-

ening—whether by using electromagnetically induced

transparency (EIT) [17,28,29] or Raman [14–17] storage,

or simply linear absorption—is characterized by the kernel

KAðz; z0Þ ¼
d

2
e�dðzþz0Þ=2I0ðd

ffiffiffiffiffiffi

zz0
p

Þ; (5)

where d is the resonant optical depth of the ensemble [17],

and I0 is a modified Bessel function [30]. Using this result,

we calculate the multimode capacity as a function of the

optical depth d [see Fig. 1(b)]. A numerical fit reveals a

square-root scaling N �
ffiffiffi

d
p

=3. We can identify this as the

scaling of the absorption linewidth of an ensemble of

2-level atoms, each with a Lorentzian line shape. Since

large optical depths can be challenging to achieve in the

lab, this scaling makes unbroadened ensemble memories

unattractive candidates for multimode storage. Can this

poor scaling be improved? Clearly we can always store

N modes if we have N separate memories, as long as each

has sufficient optical depth d� such that �4
1 > �. Then the

total optical depth is simply d ¼ Nd�, so that N scales

linearly with d. Below we show that in fact separate

ensembles are not required for linear scaling. A single

physical memory can be made ‘‘parallel’’ by redistributing

atoms in frequency.

We now calculate the multimode capacity for memory

protocols based on CRIB [12,13], in which a spatially

varying external field is applied to an ensemble in order

to artificially broaden the range of frequencies absorbed by

the atoms. A signal field is absorbed resonantly by the

broadened ensemble. Some time later, the polarity of the

external field is reversed, so that the inhomogeneous broad-

ening profile is flipped, with red-detuned atoms becoming

blue detuned and vice versa. The optical dipoles eventually

rephase, and the signal field is reemitted. The optimal

efficiency is achieved if the signal field is reemitted in

the backward direction, but phase-matching considerations

sometimes favor forward emission. In the following we

consider ideal backward emission, since forward emission

cannot perform any better. The artificial broadening can be

applied in a direction transverse to the propagation direc-

tion of the signal field to be stored (TCRIB), or longitudi-

nally—parallel to the signal beam (LCRIB). As in the rest

of this Letter, we use a one-dimensional propagation

model. Since TCRIB is laterally asymmetric, coupling

between the transverse spatial structure and the spectrum
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of the signal is potentially important. Nonetheless the re-

sults presented below represent an upper bound on the per-

formance of TCRIB. The Green function relating the input

and output spectra of the signal field is given by [12,31]

~K Tð!;!0Þ ¼ 1

2�

e�d½fð!Þþfð!0Þ� � 1

2	þ ið!þ!0Þ ; (6)

where the line shape function is fð!Þ ¼ R1
�1

	pð�Þ
	þið�þ!Þ d�,

with pð�Þd� the proportion of atoms whose optical reso-

nance is shifted by a detuning � away from its unbroad-

ened frequency. Here and in what follows 2	 is the

homogeneous linewidth of the unbroadened transition.

Note that d is the total optical depth of the ensemble—if

the broadening were removed, the total resonant optical

depth of the ensemble would be given by d; this definition
enables a direct comparison with unbroadened memory

protocols. The capacity of TCRIB is plotted in Fig. 1(b),

optimized with respect to the spectral width �0 of the

applied broadening, assuming a rectangular broadening

profile. The scaling is manifestly linear, with N � d=25.
We found that the optimal width also scales linearly,

�
opt
0 =	� 9d=5. These results can be explained qualita-

tively by considering spectral modes of bandwidth 	.
Every such mode requires a resonant optical depth d� *

10. To store N modes side by side in frequency we should

have a broadening �0 � N	 and a total optical depth d�
Nd�, so that N rises linearly with d, provided we increase

�0 at the same time. Next we consider LCRIB.

The storage kernel for LCRIB, where the atomic reso-

nance frequency varies linearly with the longitudinal co-

ordinate z, can be calculated in terms of the spatial

frequency k of the spin wave. In this case the spin wave

represents the atomic polarization. We obtain [32]

~Kðk; �Þ ¼
ffiffiffiffiffiffiffi

d	

2�

s

e�	�k�i
ðkþ �0�Þi
�1; (7)

where �0 is the total spectral width of the broadening

applied, and 
 ¼ d	=�0. Note that k is dimensionless,

because of the normalization of z. Unfortunately this ker-

nel is singular when k ¼ ��0�, so a numerical SVD fails.

We can, however, directly construct the Green function in

terms of z and �, which is not divergent, by solving the

optical Maxwell-Bloch equations numerically. In Fig. 1(b)

we plot the multimode capacity, optimized over the broad-

ening width�0, found from such a numerically constructed

Green function. We used spectral collocation [33] for the

spatial propagation, and a second-order Runge-Kutta

method for the time stepping. The capacities of TCRIB

and LCRIB are nearly identical, and our numerics suggest

that the multimode scaling of both these protocols is the

same.

Having shown that artificially broadened memories ex-

hibit superior multimode scaling, we now consider a modi-

fication to the standard Raman protocol, in which a lon-

gitudinal broadening is applied to the storage state. The

hope is that such a protocol will combine the advantages of

Raman storage, namely, broadband, tunable operation, in-

sensitive to unwanted inhomogeneous broadening, with the

superior multimode capacity of LCRIB. This type of ‘‘hy-

brid’’ storage has recently been experimentally demon-

strated using magnetic gradients in a warm rubidium

vapor [18]. The atoms comprising such a memory have a

�-type structure [15,17,18], with an excited state coupled

strongly to both a ground and a storage state. A direct

transition from the ground to the storage state is forbidden,

and therefore storage of an incident signal field is mediated

by an off-resonant Raman interaction with the excited

state, the strength of which is controlled by the application

of an intense control field coupling the storage and excited

states. An external field is applied so that the energy of the

storage state varies linearly along the length of the en-

semble, covering a spectral width �0. The spin wave B in

this protocol represents the coherence between ground and

storage states. Under adiabatic conditions [15,17], the

following expression approximates the memory map,

~Kðk; �Þ ¼
ffiffiffiffiffiffiffi

d	

2�

s

��ð�Þgðk; �Þeð1=�Þ
R1

�
j�ð�0Þj2½1�d	gðk;�0Þ�d�0 ;

(8)

where gðk; �Þ ¼ ½d	þ i�ðkþ �0�Þ��1. Here � ¼ 	þ i�
is the complex detuning, with � the common detuning

of the signal and control fields from the excited state. �
is the slowly varying Rabi frequency of the control field.

Figure 2(a) shows the multimode capacity for this broad-

ened Raman protocol, operated with a Gaussian control

field. Changing the temporal profile of the control pulse,

while maintaining a constant energy, affects the shapes of

the input modes f�kg, but not the multimode capacity. As

anticipated, the square-root scaling of the unbroadened

memory—smaller than predicted by Eq. (5) because we

operate far from resonance—is transformed into the linear

scaling of the CRIB protocols by application of a broad-

ening. We found N � d=300 with �
opt
0 =	� d=77; in gen-

eral, larger optical depths are required to achieve the same

capacity for the Raman protocol, again due to the large

detuning from resonance.

Finally we turn to the recently proposed AFC protocol

[1]. This protocol is similar to TCRIB, except that the in-
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FIG. 2 (color online). (a) The multimode scaling for the

Raman protocol with an applied broadening (solid line) and

without (dashed line). Here we set �ð�Þ ¼
ffiffiffiffiffiffiffiffi

10d
p

	e�ð10	�Þ2 and
� ¼

ffiffiffiffiffiffiffiffi

90d
p

	. (b) The capacity of AFC with several different

numbers of comb teeth, indicated by the numbers in the plot. We

used a threshold � ¼ 70%.
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homogeneous profile pð�Þ takes the form of a comb with

spectral width �0, composed of M equally spaced reso-

nances, each with optical depth d: pð�Þ¼P
M
j¼1�ð���jÞ,

with �j ¼ ��0=2þ ðj� 1Þ�0=ðM� 1Þ. The frequency

comb is prepared from an initially uniform naturally in-

homogeneously broadened ensemble by optical pumping,

which essentially removes atoms that would absorb at

frequencies between the comb teeth. More teeth can be

added by pumping out fewer atoms, which does not require

any change in the size or density of the ensemble.

Therefore the important physical resource is the depth d
associated with each tooth, since this is set by the ensemble

density. Note, however, that the total optical depth dtot ¼
Md, found by summing the contributions from all the teeth,

increases as we add more teeth. This explains the remark-

able multimode scaling discussed below. The inhomoge-

neous broadening does not need to be ‘‘flipped’’ before

retrieval, as it does for CRIB, since its discrete structure

leads to periodic rephasing of the atomic dipoles. The

Green function for storage, followed by backward re-

trieval, using the same notation as in Eq. (6), is [1,31]

~K Tð!;!0Þ ¼ 1

2�

fð!Þ � fð!0Þ
!�!0

e�d½fð!Þþfð!0Þ� � 1

fð!Þ þ fð!0Þ : (9)

In Fig. 2(b) we plot the multimode capacity of AFC for

several values of M. For every M the capacity exhibits the

square-root scaling characteristic of unbroadened memo-

ries, but N / M, and can be made arbitrarily large simply

by adding more teeth to the comb. This increases dtot, but
requires no increase in the ensemble density. Provided d >
d� � 10 the multimode capacity is, in principle, infinite. Of

course, as with all of these protocols, N can never exceed

the total number of atoms in the ensemble. More impor-

tantly, however, as more teeth are added the comb width�0

must be increased to ensure the teeth are well separated; we

found a finesse [1] F ¼ �0=2	ðM� 1Þ * 30 is required.

N is therefore limited because �0 is bounded by the

spectral width of the initial inhomogeneous line.

In conclusion, we have developed a universal approach

to quantifying the ability of ensemble quantum memories

to store multiple spectral or temporal modes of an optical

field. We showed that the multimode capacity of standard

EIT and Raman memory protocols scales with
ffiffiffi

d
p

, while

the capacity of CRIB protocols scales linearly with d. We

considered the capacity of a modified Raman protocol in

which a longitudinal broadening is applied to the storage

state, and found that this linear scaling is reproduced.

Finally we considered the AFC protocol; its capacity is

not limited by d, provided a certain threshold is exceeded.

This work was supported by the EPSRC through the QIP

IRC (GR/S82716/01) and project EP/C51933/01. J. N.

thanks Hewlett-Packard. I. A.W. was supported in part by

the European Commission under the Integrated Project

Qubit Applications (QAP) funded by the IST directorate

as Contract No. 015848, and the Royal Society.

*j.nunn1@physics.ox.ac.uk

[1] M. Afzelius, C. Simon, H. de Riedmatten, and N. Gisin,

arXiv:0805.4164.

[2] D. V. Vasilyev, I. V. Sokolov, and E. S. Polzik, Phys.

Rev. A 77, 020302 (2008).

[3] N. Sangouard et al., Phys. Rev. A 77, 062301 (2008).

[4] C. Simon et al., Phys. Rev. Lett. 98, 190503 (2007).

[5] O. A. Collins, S. D. Jenkins, A. Kuzmich, and T.A. B.

Kennedy, Phys. Rev. Lett. 98, 060502 (2007).

[6] K. Tordrup, A. Negretti, and K. Molmer, Phys. Rev. Lett.

101, 040501 (2008).

[7] S. D. Barrett, P. P. Rohde, and T.M. Stace,

arXiv:0804.0962.

[8] M. Nielsen and I. Chuang, Quantum Computation and

Quantum Information (Cambridge University Press,

Cambridge, England, 2000).

[9] W. Wasilewski and K. Banaszek, Phys. Rev. A 75, 042316

(2007).

[10] L. Trefethen and D. Bau, Numerical Linear Algebra

(Society for Industrial Mathematics, Philadelphia, 1997).

[11] W. P. Grice, A. B. U’Ren, and I. A. Walmsley, Phys. Rev.

A 64, 063815 (2001).

[12] N. Sangouard, C. Simon, M. Afzelius, and N. Gisin, Phys.

Rev. A 75, 032327 (2007).

[13] G. Hétet, J. Longdell, A. Alexander, P. Lam, and M.

Sellars, Phys. Rev. Lett. 100, 023601 (2008).

[14] A. E. Kozhekin, K. Mølmer, and E. Polzik, Phys. Rev. A

62, 033809 (2000).

[15] J. Nunn et al., Phys. Rev. A 75, 011401 (2007).

[16] O. Mishina, N. Larionov, A. Sheremet, I. Sokolov, and

D. Kupriyanov, Phys. Rev. A 78, 042313 (2008).

[17] A. V. Gorshkov, A. Andre, M.D. Lukin, and A. S.

Sorensen, Phys. Rev. A 76, 033805 (2007).

[18] G. Hétet et al., Opt. Lett. 33, 2323 (2008).

[19] S. A. Moiseev and W. Tittel, arXiv:0812.1730v1.

[20] K.Hammerer,A.Sorensen, andE.Polzik, arXiv:0807.3358.

[21] C. Muschik, K. Hammerer, E. Polzik, and J. Cirac, Phys.

Rev. A 73, 062329 (2006).

[22] B. Julsgaard, J. Sherson, J. I. Cirac, J. Fiurášek, and E. S.
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