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Discriminative vs. Generative Classifiers

for Cost Sensitive Learning

Chris Drummond

Institute for Information Technology,
National Research Council Canada,
Ottawa, Ontario, Canada, K1A 0R6
Chris.Drummond@nrc-cnrc.gc.ca

Abstract. This paper experimentally compares the performance of dis-
criminative and generative classifiers for cost sensitive learning. There is
some evidence that learning a discriminative classifier is more effective for
a traditional classification task. This paper explores the advantages, and
disadvantages, of using a generative classifier when the misclassification
costs, and class frequencies, are not fixed. The paper details experiments
built around commonly used algorithms modified to be cost sensitive.
This allows a clear comparison to the same algorithm used to produce
a discriminative classifier. The paper compares the performance of these
different variants over multiple data sets and for the full range of misclas-
sification costs and class frequencies. It concludes that although some of
these variants are better than a single discriminative classifier, the right
choice of training set distribution plus careful calibration are needed to
make them competitive with multiple discriminative classifiers.

1 Introduction

This paper compares the performance of discriminative and generative classifiers.
It focuses on cost sensitive learning when the misclassification costs, and class
frequencies, may change, or are simply unknown ahead of time. The distinction
between these two types of classifier has only recently been made clear within
the data mining and machine learning communities [1], although both have a
long history. For a traditional classification task, it seems intuitive that directly
learning the decision boundary, as discriminative classifiers do, is likely to be the
more effective option. Indeed, many experiments have shown that such classifiers
often have better performance than generative ones [1, 2]. There is also some
theory suggesting why this holds true, at least asymptotically [2].

Nevertheless the debate continues, with some research showing that the con-
clusion is not as simple as the discriminative classifier being always better. Some
restrictions on the sort of distributions the generative model learns have been
shown to improve the accuracy of classification [3] over and above that of dis-
criminatory classifiers. In addition, although theory suggests that the asymptotic
performance of the discriminative classifier maybe better, a generative one may
outperform it for realistic training set sizes [4]. Further, generative classifiers are



a natural way to include domain knowledge, leading some researchers to propose
a hybrid of the two [5].

This paper explores the advantages, and disadvantages, of using a generative
classifier for cost sensitive learning. Cost sensitive learning is a research area
which has grown considerably in recent years. This type of learning seems a
much more natural fit with generative classifiers. Without clear knowledge of the
class frequencies and misclassifications costs, a discrimination boundary cannot
be constructed whereas class likelihood functions can still be learned.

Researchers have proposed simple ways of modifying popular algorithms for
probability estimation [6, 7], experimentally comparing these new variants with
the original discriminative forms. This paper presents a much more comprehen-
sive set of experiments comparing the generative and discriminative versions of
the algorithms. It displays the results graphically, for multiple data sets, using
cost curves [8]. This provides a clear picture of the difference in performance of
these algorithms for all possible class distributions and misclassification costs. It
concludes that although all the generative forms improve considerably on a single
discriminative classifier, the right choice of training set distribution plus careful
calibration are needed to make them competitive with multiple discriminative
classifiers.

2 Discriminative vs. Generative Classifiers

The difference between a discriminative and a generative classifier is the dif-
ference in being able to recognize something and being able to reproduce it. A
discriminative classifier learns a border; one side it labels one class, the other
side it labels another. The border is chosen to minimize error rate, or some
correlated measure, effectively discriminating between classes. When misclassifi-
cation costs are included, a discriminative classifier chooses a border such as to
minimize expected cost. A generative classifier learns the full joint distribution
of class and attribute values and could generate labeled instances according to
this distribution. To classify an unlabeled instance, it applies decision theory.
For classification, we want to reliably recognize something as belonging to a par-
ticular class. Learning the full distribution is unnecessary and, as discussed in
the introduction, often results in lower performance.

One situation where the generative classifier should dominate is when these
misclassification costs change independent of the joint distribution. Then the
boundary will need to change, necessitating re-learning the discriminative clas-
sifier. But the distribution learned by the generative classifier will still be valid.
All that is required is that decision theory be used to relabel the instances. A
closely related situation, where the generative classifier should also dominate,
is when changes in distribution affect only a few marginals. A common way to
factor the joint distribution is by using Bayes rule:

P (Cl, D) = P (D|Cl)P (Cl) (1)

The distribution is the product of the likelihood function P (D|Cl) (the proba-
bility of data D given class Cl) and the prior probability of the class P (Cl). If



only the prior probabilities change, the joint probability can be reconstructed
using the new values of these marginals. The priors may be known for different
applications in the same domain or they may need estimating. But even in the
latter case, it is a multinomial distribution and easy to reliably estimate.

The close relationship between prior probabilities, or class frequencies, and
costs is clarified in the decision theoretic equation:

Best(L) = min
i

C(L
i
|Cli)P (Cli|D) = P (D)min

i

C(L
i
|Cli)P (D|Cli)P (Cli) (2)

Here C(L
i
|Cli) is the cost of misclassifying an instance, which is assumed to be

independent of how it is misclassified (As this paper is only concerned with two
class problems, this assumption is trivially true). The best class label to choose
is the one with the lowest expected cost. Using Bayes rule, we can covert this
to the likelihood multiplied by the prior and the misclassification cost. Thus if
the likelihood is constant, changes in class frequencies and misclassification costs
have the same influence on the choice of best label.

3 Cost Curves

This section gives a brief introduction to cost curves [8], a way to visualize clas-
sifier performance over different misclassification costs and class distributions.

The error rate of a binary classifier is a convex combination of the likelihood
functions P (−|+), P (+|−), where P (L|Cl) is the probability that an instance
of class Cl is labeled L and the coefficients P (+), P (−) are the class priors:

E[Error] = P (−|+)
︸ ︷︷ ︸

FN

P (+) + P (+|−)
︸ ︷︷ ︸

FP

P (−)

Estimates of the likelihoods are the false positive (FP) and false negative
(FN) rates. A straight line, such as the one in bold in Figure 1, gives the error
rate on the y-axis (ignore the axis labels in parentheses for the moment), for each
possible prior probability of an instance belonging to the positive class on the x-
axis. If this line is completely below another line, representing a second classifier,
it has a lower error rate for every probability. If they cross, each classifier is
better for some range of priors. Of particular note are the two trivial classifiers,
the dashed lines in the figure. One always predicts that instances are negative,
the other that instances are positive. Together they form the majority classifier,
the shaded triangle in Figure 1, which predicts the most common class. The
figure shows that any single classifier with a non-zero error rate will always be
outperformed by the majority classifier if the priors are sufficiently skewed. It
will therefore be of little use in this situation.

If misclassification costs are taken into account, expected error rate is re-
placed by expected cost, defined by Equation 3. The expected cost is also a
convex combination of the priors, but plotting it against them would produce a
y-axis that no longer ranges from zero to one. The expected cost is normalized
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by dividing by the maximum value, given by Equation 4. The costs and priors
are combined into the PC(+) the Probability Cost on the x-axis, as in Equation
5. Applying the same normalization factor results in an x-axis that ranges from
zero to one, as in Equation 6. The positive and negative Probability Costs now
sum to one, as was the case with the probabilities.

E[Cost] = FN ∗ C(−|+)P (+) + FP ∗ C(+|−)P (−) (3)

max(E[Cost]) = C(−|+)P (+) + C(+|−)P (−) (4)

PC(+) = C(−|+)P (+) (5)

Norm(E[Cost]) = FN ∗ PC(+) + FP ∗ PC(−) (6)

With this representation, the axes in Figure 1 are simply relabeled, using
the text in parentheses, to account for costs. Misclassification costs and class
frequencies are more imbalanced the further away from 0.5, the center of the
diagram. The lines are still straight. There is still a triangular shaded region,
but now representing the classifier predicting the class with the smaller expected
cost. For simplicity, we shall continue to refer to it as the majority classifier.

In Figure 2 the straight continuous lines are the expected cost for discrim-
inative classifiers for two different class frequencies, or costs, indicated by the
vertical dashed lines. To build a curve requires many different classifiers, each
associated with the PC(+) value used to generate it. Let’s assume each classi-
fier is used in the range from half way between its PC(+) value and that of its
left neighbor to half way between this value and that of its right neighbor. The
resulting black curve, which includes the trivial classifiers, is shown in Figure 2.
It has discontinuities where the change over between classifiers occurs.

To produce a curve for a generative classifier, each instance is associated
with the PC(+) value at which the classifier changes the way it is labeled. If the



instances are sorted according to this value, increasing PC(+) values generate
unique FP and TP pairs. A curve is constructed in the same way as that for
the discriminative classifiers. But now there are many more points, one for each
instance in the test set, typically producing a much smoother looking curve.

4 Experiments

This section discusses experiments comparing the performance of various pop-
ular algorithms, as implemented in the machine learning system called Weka
[9]. The main set of experiments compares the expected cost of a single gen-
erative classifier to that of a single discriminative classifier and to a series of
such classifiers trained on data sets with different class frequencies. The ques-
tion it addresses is to what extent the existing variants of standard algorithms
are effective for cost sensitive learning. Further experiments look at how these
probability estimators might be improved, firstly by calibration and secondly by
using more balanced training sets.

To produce different PC(+) values, the training set is under-sampled, the
number of instances of one class being reduced to produce the appropriate class
distribution. This is done for 16 PC(+) values, roughly uniformly covering the
range 0 to 1. The FP and TP values are estimated using ten-fold stratified cross
validation. Experimental results, drawn from a larger experimental study [10],
are given for 8 data sets from the UCI collection [11].

4.1 Decision Trees

We begin with the decision tree algorithm J48, Weka’s version of C4.5 [12].
Figure 3 shows cost curves for the 8 data sets (the name is just above the x-
axis). The gray solid curves give the expected cost for the generative classifier.
This is calculated from probability estimates based on the class frequency at the
leaves of the tree, adjusted for the class distribution in the training set.

To interpret these graphs, let us note that, in these experiments at least,
there is little or no difference between discriminative and generative classifiers
for the particular PC(+) value at which they were trained. The main advan-
tage of a generative classifier is that it will operate effectively at a quite different
PC(+) values. The solid black curve is for 14 discriminative classifiers generated
by under-sampling. It acts, essentially, as a lower bound on the expected cost
of using the generative classifier. The bold black straight line is the standard
classifier trained (with default settings) at the original data set frequency, indi-
cated by the vertical line. At this frequency, the black line, the gray solid curve,
and the black curve have a similar expected cost (being essentially the same
classifier). The cost sensitivity of the generative classifier is seen by comparing
the distance of the gray curve to the straight black line and the distance to the
black curve, as one moves away from the original frequency. Closer to the black
curve is better.
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Fig. 3. Cost Curves: Decision Tree Generative Classifier
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Fig. 4. Improving the Decision Tree Generative Classifier

Although close to the original frequency there is little to separate the curves,
the difference grows as the distance increases. For PC(+) values closer to zero
and one, the solid gray curves are much better than the single discriminative clas-
sifiers and quite close to the multiple ones. Unfortunately, here the performance
is worse than the majority classifier, making any gain over the discriminative
classifier of dubious merit. One way to improve the probability estimates is to
use Laplace correction at the leaves of an unpruned tree [6]. In Figure 3 this
variant is indicated by the dashed gray curve. Generally, this improves on the
standard algorithm, again it is most clear far away from the original frequency.
For some data sets, e.g. letterK and Sick, it is indistinguishable from the black
solid curve. But for other data sets, e.g. credit-a and hepatitis, without pruning
means it is worse than the standard classifier around the original frequency.

There are two commonly methods to improve cost sensitivity: calibration and
changing the training set distribution. Calibration refines the existing probability
estimates to better reflect the true distribution using the training, or a hold-out,
data. Figure 4 compares the cost curves to their lower envelopes, the dashed
curves. The envelopes represent perfect calibration. The figure also shows results
for using a balanced set for training the generative classifier. For many data sets,
like Bupa and Hepatitis, balancing the training set makes the cost curve more
symmetric. Calibration has greater potential impact, although often the best one
might expect to do as well as the majority classifier far away from the original
frequency.

4.2 Support Vector Machines

The original Support Vector Machine [2] had no means of producing probability
estimates and only acted as a discriminative classifier. Platt [7] showed that
a sigmoid could be applied to the normal output, the distance to the optimal
hyperplane (the sign deciding the class), to represent the posterior probability.
This sigmoid is learned from the training set (or by cross validation) using cross
entropy as the error measure. Figure 5 shows that this variant, the gray curve,
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Fig. 5. Cost Curves: Support Vector Machine Generative Classifier
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Fig. 6. Improving the Support Vector Machine Generative Classifier

is extremely competitive with the multiple discriminative classifiers. For only a
couple of data sets, letterK and credit-a, are the two discernibly different.

Figure 6 shows, there is typically little difference between the cost curves
(solid lines) and their lower envelopes (dashed lines), so calibrating the classifier
should have little effect. This is not surprising as fitting a sigmoid is, itself, a
form of calibration. Although the sigmoid only has two degrees of freedom, one
can see more flexible schemes are unlikely to improve calibration much. This may
be why no real benefit was seen using isotonic regression [13]. There is one data
set, LetterK, that shows a large difference in expected cost. This is an extremely
imbalanced domain and by training the classifier on a balanced data set, the
black curves in Figure 6, considerable improvement is gained. For, credit-a the
difference is smaller and largely on the left hand side of the original frequency.
But here neither better balance nor calibration reduce the problem.

4.3 Neural Networks

Weka implements the traditional PDP algorithm [14] which is trained using back
propagation and minimizes the squared error of the network output. This can be
used as a discrimination classifier or, by using the standard sigmoid output of the
network, as a probability estimator. As Figure 7 shows, much like the standard
decision tree, it improves on a single discriminative classifier but mainly where
the majority classifier is best. It certainly falls way short of the performance of
the multiple discriminative classifiers. Figure 8 shows that balancing the training
set offers some improvement but much of the error is due to poor calibration.
It is noteworthy that the Weka algorithm minimizes squared error. Minimizing
cross entropy, like the generative version of the Support Vector Machine, should
produce better probability estimates [15].
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Fig. 7. Cost Curves: Multilayer Perceptron Generative Classifier
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Fig. 8. Improving the Multilayer Perceptron Generative Classifier

5 Discussion

In summary, the sigmoid variant for the Support Vector Machine, with a bal-
anced training set, was extremely effective as a generative classifier. Decision
trees with Laplace correction and, to lesser extent, the Multilayer Perceptron
faired reasonably and both showed potential for improvement. Although balanc-
ing is useful, calibration offers the most potential benefit and is notably inherent
in the Support Vector Machine sigmoid fitting procedure.

In this paper, a curve made up of 16 discriminative classifiers has been used
as a “gold standard”. A good generative classifier is assumed to be one whose
performance is close to this “gold standard”. But to get good cost sensitive per-
formance, one could simply use the 16 classifiers. The main advantage of the
generative classifier is that it is a single classifier, reducing learning time and
storage considerably. Another advantage is that a single classifier may be more
understandable. Yet neither the Support Vector Machine nor the Multilayer Per-
ceptron is easily understandable without extra processing. Even for the decision
tree algorithm, as the generative version is unpruned, the classifier is more com-
plex than any single discriminative classifier. It may be possible that a few, a
lot less than the 16, judiciously chosen, discriminative classifiers would be very
competitive. A tree with a stable splitting criterion but variable cost sensitive
pruning [16] would have identical lower branches for all PC(+) values, making
a collection of trees more easily understandable.

6 Conclusions

This paper experimentally compared the performance of discriminative and gen-
erative classifiers for cost sensitive leaning. It showed that variants of commonly
used algorithms produced reasonably effective generative classifiers. Where the
classifiers were less effective, simple techniques like choosing the right training
set distribution and calibration would improve their performance considerably.
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