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Abstract

Registration of range images requires the identification of

common portions of surfaces between which a distance min-

imization is performed. This paper proposes a framework

for the use of dense attributes of range image elements as

a matching constraint in the registration. These attributes

are chosen to be invariant to rigid transformations, so that

their value is similar in different views of the same surface

portion. Attributes can be derived from the geometry infor-

mation in the range image, such as surface curvature, or

be obtained from associated intensity measurements. The

method is based on the Iterative Closest Compatible Point

algorithm augmented with a random sampling scheme that

uses the distribution of attributes as a guide for point se-

lection. Distance minimization is performed only between

pairs of points considered compatible on the basis of their

attributes. The performance of the method is illustrated on

a rotationally symmetric object with color patterns.

1. Introduction

Registration of a set of range images is defined as the

process of recovering, for each image in the set, the 3-D

rigid transformation (rotation and translation) with regards

to the sensor that brings the image points into a common

object-centered Cartesian coordinate system. This task is

usually accomplished by setting the problem as an opti-

mization: the cost function is based on a metric estimat-

ing the distance between the common portions of a surface

measured in different views. This optimization problem is

generally non-convex, and the various methods that have

been proposed in the computer vision literature differ by

the formulation of the inter-surface metric as well as the

minimization techniques employed. Obviously, registration

of images from the measured data can only be achieved if

there is a common surface area visible in the different im-

ages to be registered. If the correspondences between points

in different images were known a priori, the solution to reg-

istration would be direct. Therefore, the essential difficulty

of registration resides in the identification of regions in dif-

ferent images corresponding to the same surface area.

The method described in this paper uses attributes of

individual range image elements to assist in the process

of identification of common portions of surfaces. The at-

tributes form a dense feature field that constrains potential

matches to pairs of similar points. Attributes are defined as

vectors attached to each element of the range image. Since

different images are taken from different and unknown rel-

ative points of view, the type of attributes must be chosen

to be viewpoint-invariant: a given surface point on a sensed

object should in principle possess the same attribute value

in the different images in which it is visible. Such attributes

may be derived from the geometry information or from ad-

ditional measurements, such as reflected intensities.

This paper presents a framework for the use of attributes

in the registration of a pair of range images. It is set up as an

extension of the Iterative Closest Point method [4] that in-

corporates local attributes as a constraint on the matching of

the closest points, coupled with a random sampling scheme

guided by the distribution of attributes for the identification

of common surface areas.

1.1. Related work

Other registration techniques incorporating attributes

have been proposed before. In [17], a curvature sign map

is computed and segmented into regions of similar sign

classes. These regions are organized as an attributed graph;

a subgraph matching algorithm is then applied to recover

the correspondence and the 3-D transformation. Range im-

ages triangulated at multiple resolutions can be registered

using a technique that filters potential matches between

triangles based on their geometric features [2]. A gen-

eral method for integrating information between successive
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frames [8] relies on local feature vectors in order to iden-

tify correspondences. In [23], local estimates of the Dar-

boux frames are used to find consistent motion estimates

between surface patches. A method for rigid and affine reg-

istration [7] uses principal curvature and frames, as seed for

initial estimate as well as in the augmented distance func-

tion to be minimized. A modification to the Iterative Clos-

est Point (ICP) method enforces an attribute-based compat-

ibility constraint (color-based attributes [10] and curvature

classes [11]) in the pairing while keeping an Euclidian dis-

tance metric. In [14], color information is integrated in the

refinement step of an ICP algorithm, by computing a dis-

tance function that adds distance in color space to the Eu-

clidian distance. A similar method is discussed in [22]. A

matching constraint based on color is applied to 3-D points

following an alignment based on 2-D warping of the at-

tached color image, combined with a random sampled 3-D

registration approach [19]. In [21], a sparse set of feature

points is identified in the intensity channel of a range image

and used as the vertices of a Delauney tetrahedrization; the

rigid transformation between images is estimated by match-

ing triangles of similar shapes and compatible vertices. The

intensity image is exploited in [24] to compute gradients

that assist in the range image pairing process. A related

technique for range flow computation is proposed in [25].

The new method proposed in this paper addresses the

problem of registration from arbitrary initial relative poses,

not just of refinement. It is described in terms of generic

attributes, but a particular example is provided which uses

reflectance parameters estimated from range and color im-

ages.

2. Attributed range images

An attributed range image Ri is defined as a two-

dimensional array where each element ri(uj), called a rigel

(for range image element), is composed of the 3-D Carte-

sian coordinate pi(uj) of the measured surface point as

well as a m-dimensional attribute vector ai(uj). It should

be noted that some positions in the array may be empty, cor-

responding to shadow or dropout points, or points removed

by background thresholding, for example. Thus ni, the ac-

tual number of valid elements in Ri, is less than or equal to

the number of elements of the array.

The attribute vector ai(uj) attached to each element

ri(uj) can be: (i) derived from the measured geometric in-

formation pi (e.g. principal curvatures), (ii) computed from

additional information such as the intensity channel(s) of

the range sensors, or (iii) a combination of both. The at-

tribute values may belong to a finite set of discrete labels,

or correspond to samples of a continuous function.

2.1. Intensity-based attributes

Most active optical range sensors provide, in addition to

surface coordinates, a measurement of the amount of light

reflected towards the sensor at each sensed point. This k-

channel information is usually referred to as intensity. For a

monochromatic laser sensor, k is equal to one, while k = 3
for range sensors that integrate trichromatic imaging. Al-

ternately, an auxiliary imaging sensor and light source may

be used. These measurements are a function of the reflec-

tive properties of the surface as well as its relative position

and orientation with regards to the sensor. To be used as

an invariant attribute, they must be transformed into a m-

dimensional quantity that is independent, at least in princi-

ple, of the pose of the object relative to the sensor.

A first possible approach is to extract the intrinsic surface

reflectance parameters by inverting an illumination model.

The geometric measurements of the surface provide infor-

mation on relative distance and orientation of the surface,

and the direction of illumination and observation are known

since they are controlled as part of the range sensing pro-

cess. Such a method is described in [1]. It computes the

parameters of a dichromatic model, composed of the sum

of a body (or diffuse) and a surface (or specular) compo-

nent. The diffuse reflection coefficients are computed for

each point, after removal of the specular part which is hy-

pothesized to have locally uniform parameters. These co-

efficients are more computationally stable than the specular

parameters and are usually more locally discriminating. In

this case, m (the dimensionality of the attributes) is equal

to the number of intensity channels k. Other methods for

reflectance parameter extraction can be found in [13, 16].

Attributes can be computed without the requirement of

sensor and reflectance modelling in cases where k > 1.

The intensity vector can be projected into a lower dimen-

sional space, in an attempt to compensate for viewpoint-

dependent intensity changes. One possibility is to use the

hue-saturation space, which eliminates the surface orien-

tation attenuation on a purely Lambertian surface, or even

only hue. However this approach, which results in m < k,

may create potential ambiguities in the matching.

In a minimal scheme, the intensity can be transformed

into a set of discretized labels, such as edge marks, points

of interest such as corners, or color clusters. In such cases,

m = 1 and ai is discrete.

2.2. Local curvature attributes

Local curvature information has been used in various

ways in range image analysis. The principal frame (sur-

face normal, principal directions and curvatures) provides

in itself enough information to constrain the rigid transfor-

mation between two points to two possibilites (except at
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umbilic points) [23, 7]. In the framework presented here,

the attributes must represent quantities that are independent

of the coordinate system. Clearly, the normal and principal

directions are not. However the magnitudes of the principal

curvatures are, and can be used in two ways: as a continuous

2-dimensional attribute, or as one of the set of eight curva-

ture labels based on the signs of mean and Gaussian curva-

tures [3]. The curvature computation method should itself

be invariant as much as possible to the viewpoint: such a

method is described in [6] and used as part of a registration

method in [11].

3. Iterative closest compatible point

The Iterative Closest Point (ICP) method [4] is designed

for registration of a set of 3-D points Xi to a 3-D reference

surface S. It is assumed that all the points Xi belong to

S. The method is shown to converge monotonically to a lo-

cal minimum. For a pair of range images, the registration

problem differs since one image is in general not a subset

of the other. Hence, modifications are required to prevent

points of one image that have no counterpart in the other

from biasing the solution. For example, an adaptive dis-

tance threshold was proposed in [26]. A method based on

random sampling and LMS estimation [18] addresses this

problem by randomly selecting small subsets of one image

and applying the standard ICP method with regards to the

second image.

The Iterative Closest Compatible Point (ICCP), first pro-

posed in [10, 11], differs from the ICP by searching for the

closest point under a constraint of similarity in attributes

(diffuse reflectance [10] or curvature sign classes [11]).

Other methods (e.g. [7, 14, 22]) use attributes in the match-

ing by incorporating them in a (3+m)-dimensional distance

metric D2
λ in the form:

D2
λ(r1, r2) = ‖p2 − p1‖

2
+

m
∑

i=1

λi(a2i − a1i)
2 (1)

where aj = (aj1, ..., ajm). Instead, the ICCP uses the

attributes as a compatibility measure, acting as an accep-

tance/rejection filter on potential pairings. This approach

avoids the difficulty of choosing the values of λi for bal-

ancing the distance metric between Euclidian and attribute

spaces. Moreover, the pairing process is not skewed by sys-

tematic biases in computed attributes, as long as the bias is

within the defined limits of compatibility. Attributes also

constrain the search space in the closest point determina-

tion to subsets of potentially compatible points, therefore

improving the most computationally expensive operation in

an ICP-type registration algorithm.

In general it cannot be considered that one image is a

subset of the other, contrary to the image-to-model registra-

tion problem originally addressed in [4]. The formulation

of the algorithm should therefore be commutative, that is,

it should in principle yield the same result independent of

the order in which the images in a pair are considered. This

commutativity requirement [26, 10] is satisfied by minimiz-

ing the distance of points r1(ui) ∈ R1 to compatible points

of R2, as well as r2(ui) ∈ R2 to compatible points of R1.

Since the compatibility measure is invariant to rigid

transformations, and therefore does not change through

the iterations, the ICCP can be interpreted as a set of

rigidly coupled ICP subproblems between subsets of mu-

tually compatible points. When all points share equal (or

at least compatible) attributes, the ICCP is equivalent to the

traditional ICP. It can be shown [10] that the basic ICCP has

the same monotonic convergence property as the ICP. But it

also suffers in the same manner from the effects of portions

of surface appearing in only one of the images: in [10], a

distance influence function is applied (at the cost of a loss

of the monotonic convergence property) to partially address

this problem. Any additional technique for acceleration and

pruning of bad matches that have been proposed for ICP-

type registration can be applied under the ICCP formalism.

4. Random sampled ICCP

The new method presented here extends the LMS-type

method of [18] to the case of a pair of attributed range im-

ages, using an ICCP-type method. Attributes play two roles

in the proposed method: first their distribution orients the

selection of random samples; secondly the determination

of the closest point is constrained by attribute compatibil-

ity as with the ICCP. The registration procedure is applied

to a number of subsets and the computed transformation is

evaluated. The transformation with the best Least Median

of Squares score is kept. The best estimate is then refined

using the inlier points in both images.

4.1. Algorithm

Four basic operations are required by the algorithm:

• A random sample selector H(nc, Ri,H(a)) selects

nc rigels from Ri according to their attributes, fol-

lowing a probability distribution specified by the m-

dimensional probability density function H(a)

• A Boolean compatibility test C(ri(um), rj(un)) deter-

mines the compatibility of the attributes of two rigels

ri(um) and rj(un)

• The function D(ri(um), rj(un)) represents the Eu-

clidian distance between the geometric components of

two rigels ‖pi(um) − pj(un)‖

• The closest compatible point selection function

F(ri(um), Rj) finds the rigel rj(ump) ∈ Rj
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such that, for all the rigels rj(uk) ∈ Rj sat-

isfying C(ri(um), rj(uk)), D(ri(um), rj(ump)) ≤
D(ri(um), rj(uk))

In general, F may fail when no elements of Rj are com-

patible with ri(um). However, the biased random sampling

function H will be constructed in a way that ensures the se-

lection of rigels that are compatible with at least one rigel

in the other image. More details on the particular forms of

H, C and F are provided in the following subsections.

For clarity, the algorithm is stated in two parts: proce-

dure αRSICCP performs the registration of random sam-

pled subsets; procedure RSICCP iterates over a number of

subsets, selects the best results, and refines the estimate us-

ing the subsets in both images that are identified as inliers.

Procedure αRSICCP:

- Data: two attributed range images R1 and R2; an

initial estimate of the rigid transformation Tini that

brings R1 onto R2

0. Initialization: k := 0; T0 := Tini

1. Construct the random selection probability density

function H(ai) (see Sect. 4.2)

2. Select NC1 rigels rS1(ui) using H(NC1, R1,H)

3. Select NC2 rigels rS2(ui) using H(NC2, R2,H)

4. Do:

1. k := k + 1

2. For each rigel rS1(ui), find the closest

compatible point rC2(uji
) in R2 using

F(Tk−1rS1(ui), R2)

3. For each rigel rS2(ui), find the closest

compatible point rC1(uji
) in R1 using

F(T−1
k−1rS2(ui), R1)

4. Let the distance measure between the two images

for a given transformation Tk:

ek = 1
NC1+NC2

·
(

NC1
∑

i=1

D2(TkrS1(ui), rC2(uji
))

+

NC2
∑

i=1

D2(rS2(ui),TkrC1(uji)))

)

(2)

5. Compute Tk that minimizes ek

Until: Convergence test succeeds

- Result: Tfinal := Tk is the estimated transformation

bringing R1 towards R2.

Here, the application of a rigid transformation T to a

range image element ri(uj) must be understood to mean

its application to the geometric component pi(uj) only. At

each iteration, Tk represents the total transformation be-

tween R1 and R2, to avoid error cumulation from the in-

cremental transformations. The rigid transformation mini-

mizing ek for a set of paired points is computed using the

method in [12].

In procedure RSICCP, the αRSICCP procedure is re-

peated NT times. Each of the NT estimated transformations

is evaluated by computing the median of the sum of squared

distance to the closest compatible point, if any, for all ele-

ments in R1 and R2. The best transformation is applied,

points on the overlapping area are identified by threshold-

ing, and iterations of the basic ICCP [10] are then run:

Procedure RSICCP:

- Data: two attributed range images R1 and R2; an ini-

tial estimate (or an hypothesis) of the rigid transforma-

tion Tini that brings R1 onto R2

0. Initialization: B := ∞ ; least median of error

1. Do NT times:

1. Invoke procedure αRSICCP; result → Tα

2. b := median of

{D(Tαr1i, R2)} ∪ {D(r2i,TαR1)}

3. if b < B then B := b,TB := Tα

2. Select subsets RS1 and RS2 of R1 and R2 containing

points for which D(·) < h σ, where σ = 1.4826 B

and h is a predefined threshold

3. Refine transformation by performing ICCP between

RS1 and RS2, using TB as initial estimate; result

→ Tf

- Result: Tf

As with all data-driven registration, proper convergence

of the method depends on the initial configuration of the two

images, their geometry, and the distribution of attributes. It

may also be necessary to explore a space of initial transfor-

mations, in which case the procedure RSICCP is invoked

with a number of different Tini, and the best transformation

is selected according to the value of B across the different

runs.
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By far the most computationally expensive part of Step

1 of RSICCP is the computation of the median of residual

distances (Step 1.2). Instead of using a closest point search,

some authors [5, 18, 15, 19, 9] argue for the use of dis-

tance along predetermined projection lines (such as surface

normals or lines of sight) for the evaluation of the quality

of registration. However, this approach only considers the

geometric quality of the registration, since the projection ig-

nores attribute compatibility. One possible solution is pro-

posed in [19]: the difference in attribute ((r, g, b) triplets in

this case) is used to accept the pairs aligned by projection.

But the method is used after an initial alignment through im-

age warping, thus the registration of the color channels can

be considered to be very good, and therefore most pairs are

properly aligned in 2D. However, since the goal of RSICCP

is to estimate registration from an arbitrary initial pose, such

a condition does not exist. Therefore the distance to the

closest compatible point is preferred as the registration met-

ric, even though it is more computationally expensive. The

selection threshold is defined as h times (e.g. h = 2.5) the

estimated variance σ, itself estimated from the median us-

ing the 1.4826 correction factor for large population size,

assuming less that 50% of outliers.

4.2. Random point selection H

The first step in the algorithm is the selection of random

subsets of rigels using H. The underlying assumption in

random sampling methods is that at least one of the selected

subsets will be composed only of inliers. In the context of

registration, inliers are defined as points that belong to por-

tions of surface common to both images. The distribution

of attributes in R1 and R2 is used to guide the random se-

lection towards rigels whose attribute values appear in both

images, as an indication of the possibility that they belong

to an area of the object common to the two images.

The selection process is guided by the m-dimensional

probability density function H defined as:

H(a) = min(H1(a),H2(a)) (3)

where H1(a) and H2(a) are the normalized m-dimensional

p.d.f. for the attributes of elements in R1 and R2, respec-

tively.

One property of random selection under the distribution

H is that rigels with attributes appearing more often in both

images are preferred in the selection. Furthermore, assum-

ing there is no noise in the attributes, all elements selected in

the subset are ensured to have at least one compatible coun-

terpart in the other image, since otherwise the value of H

for that attribute would be zero. The unavoidable presence

of noise in estimated attributes is addressed in the imple-

mentation.

In practice, discrete classes are used when attributes be-

long to a continuous function: the attribute p.d.f. for each

image is approximated by a histogram constructed by ac-

cumulating attribute occurences in classes corresponding to

fixed intervals in each of the m dimensions. This binning

compensates for the presence of noise in attributes, given

that their size exceeds that of the noise. A more accurate

- but much more expensive - method for constructing H

would find, for each rigel in one image, the actual number

of compatible rigels in the other image. For discrete at-

tributes, these classes are readily determined on the basis of

their labels.

The random selection operates as follows: an attribute

value is generated by transforming a uniformly distributed

pseudo-random value in the interval [0, 1] through the quan-

tized cumulative distribution of H: since the bins can be

ordered as a one-dimensional list, a single random number

is required. Among all the elements in that class, one is

selected randomly.

In limit cases where all elements belong to the same at-

tribute class, or attributes are uniformly distributed, or any

other situation where H1 would be identical to H2, the

method reverts to uniform random sampling over the ele-

ments in R1 and R2, as in [18].

4.3. Attribute compatibility C

The Boolean compatibility function C(r(ui), r(uj)) de-

termines, on the basis of the attributes a(ui) and a(uj),
whether the two rigels r(ui) and r(uj) can be paired. The

form of the test is of course a function of the nature of the

attributes. If they belong to a finite set of labels, then a

minimal test requires the attributes to be identical. For a

continuous function, simple thresholding on the difference

can be used. However, if an error model of the attributes is

available, then the decision can be based on the probability

that a(ui) and a(uj) belong to the same distribution.

In any case, the behavior of the algorithm encourages

that, in doubt, the compatibility be overestimated. Indeed,

in the case of a false positive, the iterative matching method

will likely adjust the selection to a geometrically closer

compatible point as it progresses. In the limit case, which

would be to consider all rigels as mutually compatible, the

method would revert to the random sampled ICP of [18].

4.4. Closest compatible point F

The closest point determination operation

F(ra(ui), Rb) identifies the element rb(uji) ∈ Rb

that is the closest to ra(ui) among those that satisfy

C(ra(ui), rb(uj)). The search for nearest neighbor can

gain in efficiency if a proper data structure, which indexes

points as a function of attribute, is used to prune the portion

of the set that cannot satisfy the compatibility test. In

fact, this is a key performance advantage of attribute-based

registration.
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An important aspect of the proposed algorithm is that the

registration distance metric is based on the distance between

pairs of individual points of the two images. In most reg-

istration methods, a surface is interpolated over the range

image data points, and a point is paired with the closest one

belonging to the surface, instead of to the nearest neighbor

in the original image. This interpolation is required by the

viewpoint-dependent nature of the sampling on a surface:

in general, the true corresponding point of a given sample

lies between the samples in the other image.

Three reasons justify the choice of searching for the

nearest neighbor only among the points of the other image:

(i) it is a more efficient operation than performing the search

over the interpolated surface; (ii) the symmetric (or com-

mutative) design of the algorithm attenuates the impact of

the viewpoint-dependent differences in sampling rates [10];

(iii) the goal of the algorithm is to bring the images within

a distance in the order of the average inter-point distance of

the images, since the result can ultimately be refined using

a registration method that interpolates the surface (e.g. [9]).

However, attribute interpolation on the surface is possible

and efficient search algorithms are currently being investi-

gated.

5. Experiments

As an illustration of the capabilities of the method, an

object with symmetry of rotation is chosen for experiments:

a painted wooden toy top (Fig. 1). Images are acquired

with NRCC’s polychromatic range sensor [20]. Here the at-

tributes are the diffuse reflectance coefficients in three chan-

nels (k = 3), estimated from the range and color image

with the method described in [1]. The diffuse reflectance

component is computed as part of an integrated geometric

and color model building process, of which registration is

an element. In this context, these attributes are obtained at

no additional computational cost, as opposed to curvature-

based attributes.

Figure 1 shows the two original images, with the three

computed reflectance coefficients in (a) and (b), and as a

shaded surface in (c) and (d). The object was manually ro-

tated by about 45 degrees. With this object, rotation around

the symmetry axis is constrained only by the color patterns,

thus demonstrating an essential property of the method.

Figure 2 illustrates the distribution of attributes in each of

the three channels. It must be remembered however that the

attributes are used as a single three-dimensional distribu-

tion, and not as three one-dimensional distributions as rep-

resented here.

One notices from Fig. 2 that the peaks corresponding

to each surface tint are wide. This can be explained by

the non-uniformity of the surface finish, the measurement

noise in the color channels, as well as estimation errors in

(a) (b)

(c) (d)

Figure 1. Test object: (a) image toy1 (b) image

toy2 (c)(d) shaded views of toy1 and toy2

the reflectance modelling due in part to the non-Lambertian

behavior of the surface. The width of the peaks provides

a guide for choosing a compatibility metric. As discussed

above, it is preferable to overestimate compatibility than to

underestimate it: during convergence, improved correspon-

dences might be established as iterations progress. How-

ever this situation applies to cases where the object’s ge-

ometry itself is sufficient to constrain the registration. This

condition is not met with this object. Here, the compati-

bility function was defined to be positive when the distance

between attributes is ≤ dc in each of the three channels.

Various values of dc ranging from 8 to 32 were tried, with

limited influence over the results. A value of dc = 12 was

used in the experiments. The attributes belong to a continu-

ous (albeit quantized to 3 × 8 bits) function. The sampling

distribution H is quantized into 16 × 16 × 16 bins over the

range (0, 0, 0) to (255, 255, 255) for the purpose of random

sample selection.

The RSICCP algorithm was run on 50 subsets of 100

rigels in each image, using only the identity matrix as an

initial estimate, that is, using the actual relative positions of

the object displayed in Fig. 1 as a starting point. The best

LMS estimation found by RSICCP is shown in Fig. 3(a).

The images are superimposed. The geometric registration
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Figure 2. Histograms

is off, as can be seen from the conic hat; Fig. 3(b) shows

that the colors are also out of alignment, as can be expected

from a registration performed only on a small subset of the

data.

The ICCP refinement stage significantly improves the

geometric registration (Fig. 3(c)). The colors (Fig. 3(d))

are better aligned than at the output of the first stage of the

method, but there is a residual error in rotation of about 1

degree, even after 60 iterations of the ICCP. This result was

consistent over a number of runs of the algorithm and with

variations on sample size as well as dc. It also seems that

the cost function in the ICCP exhibits several local minima.

6. Discussion

The method described here is a general framework that

is applicable for the registration of images where useful

attributes are computable: colored objects scanned with

color-and-range sensor, objects with affixed intensity tar-

gets that are easily detected, machined objects with seg-

mentable curvature classes, etc. When attributes are inde-

pendent of the geometry, such as color, they may allow reg-

(a) (b)

(c) (d)

Figure 3. Results: (a)(b) RSICCP estimation (c)(d)

ICCP refinement. In (b) and (d), the original color im-

ages are converted in grey levels, and superimposed

in two different color channels (red for toy1, green for

toy2).

istration even under residual geometric degrees of freedom,

as illustrated in the example of Section 5. Obviously, the

benefits of attribute-driven random sampling vary with the

attributes nature as well as their distribution. In the best

case, it allows the early identification of common regions in

both images, thus transforming the problem into a subset-

to-model registration problem well suited for the ICP. In

the worst case, with uniform attributes or periodic patterns,

the method should behave similarly to the simple random-

sampled ICP [18].

Registration methods based on the ICP exhibit slow con-

vergence rate if implemented in a straightforward manner.

However, because of its structure similar to that of the ICP,

the inner loop of the RSICCP is amenable to the accelera-

tion techniques proposed in [4]. The full registration prob-

lem must be solved for a set of range images: the method

is presented here only for a pair of images, but is easily ex-

tended to the case of n images with a framework similar to

the one described in [9].

When possible, the particular form of the compatibility

function C should include models of the attributes uncer-

tainty; the decision can then be based on a proper statistical

test. However the additional cost imposed by such a tech-
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nique may not justify its use in the random sampling stage

of the method, but could prove beneficial in the evaluation

of the quality of the registration and in its refinement. The

biased selection function H could incorporate preferences

that are guided by a priori knowledge of the constraining

capability of particular attribute values, or of their distribu-

tion on the surface, including a measure of saliency.

Alternative refinement techniques that integrate attribute

information are currently being investigated. However, in

many circumstances, refinement using the attributes may

not be required and one could skip directly to a geometry-

only minimization if the object’s geometry provides suffi-

cient constraints.

7. Conclusions

This paper described a method for the registration of

pairs of range images which uses the information provided

by attributes to constrain the pairing of points and select

random subsets in a LMS algorithm. It showed an ability to

register a rotationally symmetric object based only on the

distribution of color patterns. Research is currently under

way to further assess the behavior of the algorithm, to im-

prove its performance especially at the refinement level, and

to develop efficient data structures to accelerate the closest

compatible point determination for more complex forms of

compatibility functions.
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