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ABSTRACT

As designs have become more complex, the
need for tools to support reuse in the early stages of
the design process has become increasingly
important. Such tools have the potential to facilitate
the simulation and evaluation of designs far before
actual implementation. To support these
applications, simulation environments must be able
to support the reuse of models in many ways. This
paper complements work regarding structural reuse
and presents some insight in designing models that
are amiable for component based simulation.

INTRODUCTION

In the design of computer-based systems,
simulation tools employed during various stages of
the design cycle can provide significant insight and
knowledge into the behavior of the proposed
design. Unfortunately, the knowledge gained
through the course of a simulation exercise is
typically lost and inaccessible to other designs. One
promising solution to this problem is the utilization
of development environments that can support
libraries of models at high levels of abstraction —
more suitable for reuse. Languages such as the
Design Specification Language (DSL) (Tanir 1997)
allow designers to model, experiment with, and reuse
model components very early on in the design life
cycle. There exists two explicit forms of reuse:
structural and component based.

In structural reuse (Shaw and Garlan 1992),

(Monroe and Garlan 1996) (sometimes called

context reuse (Biddle and Tempero 1996)) the
objects of reuse are not the individual artifacts that
make up a system description, but rather the
“contexts” in which these artifacts are embedded.

Thus structural reuse is based on the identification,
isolation and exploitation of organizational patterns
recurring across system descriptions. An
organizational pattern is expressed in terms of
configurations of abstract  components that serve as
placeholders for real, or concrete, components. Such
patterns are often parameterized, making them
generic — and hence more amenable to reuse.

A framework for reuse supporting three

levels of abstraction is proposed in (Tanir and

Erdogmus.1997a). These levels are defined as the
topological, architectural, and system layers.
Structural reuse commences at the topological level
with a clear separation of structure from
functionality (behavior). At this high level of
abstraction, the gross structure of a system is
modeled. The next level of abstraction is the
architectural level, where more detail can be added,
yet components are still not bound to any particular
functionality. Component interfaces and
connectivity relations may be refined when moving
from a topological specification to an architectural
one.

Representation of systems at the topological
and architectural levels can be accomplished using
the Extended Style Notation. ESN is a strongly
typed, interpreted functional language based on the
graph algebra defined in (Tanir Erdogmus 1997b)

and the architectural model of  (Erdogmus.1995). It
has special constructs for expressing topologies and
classes of topologies (the style sublanguage),
refinement rules (the map sublanguage), and
architectures (the template sublanguage).

The third and the lowest level of abstraction
in the framework is the system level, where each
concrete component is assigned a functionality. At
this level component reuse can be exploited through
languages such as the Design Specification
Language (DSL). Figure 1 depicts the overall
framework. An overview of the two languages is
given below.



ESN

ESN is used for topological and
architectural representation. An overview of some
key features of ESN is presented below. Once the
structural form is obtained, binding of components
to behavioral entities (which can be described by
DSL modules) is required before simulation of the
complete system.

Expressions of type style in ESN specify
topologies. Formally, a topology is a finite graph
consisting of typed (and named) nodes and named
binary edges. A parameterized style definition (a
generic style) is often thought of as specifying a
topological class, which when instantiated with actual
parameters, is evaluated into an instance, yielding a

particular topology. Expressions of type template

specify architectures, and those of type map specify

refinement rules. Constants of type name (which always
begin by a backslash) stand for themselves, and can

be indexed by an integer vector; e.g., \a, \a<1, 2>. A
definition invocation must be prefixed with the type

of the value returned, e.g., name a, int b[k], style S[~a,

1]. The default type is int (which is ordinarily

omitted) and the symbol ~ is often used as a

shorthand for the type keyword name. Strong typing
allows the inference of the type of any ESN
expression independent of the context.

The language construct template is used to
specify architectures. The architecture definition

consists of an interface , an internal structure, and a
set of external bindings. An interface  consists of a
set of interaction points, called ports. The interface
allows an instance of a system to be connected with
instances of other or similar systems. Internal
structure is defined in terms of a set of components
and a set of internal bindings between these
components. Each such component is an instance of
some system. An interface port of a component is
referred to as an internal port. Hence, a component
and an interface port of the component’s parent
identify each internal port. A binding models a
connection between two components. An internal
binding involves a pair of internal ports. An external
binding involves an internal port and an interface
port. In a composite system, the set of external
bindings relates the internal structure to the
interface.  

DSL

DSL is a specification language that
provides the necessary representation mechanisms at
the system level of design. It is employed within
DASE (Tanir 1997 and described later in the paper),
a rapid protoyping and synthesis tool that was
developed at McGill University and Bell Canada.
DSL is based on Prolog in which DASE is
implemented. This section will summarize some of
the basic concepts of the language.

The basic construct in DSL is the module.
Modules are the primitive building blocks of a
system. A module has a name, a set of possible
behaviors, and a set of resources. A module is
defined as follows:

module(module_name, [

behavior1,

...

behaviorn,

]).

Each behavior consists of a guard and a
sequence of actions. If the guard is satisfied, the
associated actions are executed in the given order.
The guard is a predicate that holds true upon the
reception of a message from another module. An
action can

•  initiate communication with other modules,

•  modify or query the local resources of the
module, or

•  suspend the execution of the module for a
specified time period.

Modules can possess their own unique
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Figure 1: A methodology for structural reuse.



behavior or inherit the behavior of other modules.
They can also store local data through a resource
construct.

Inter-module communication is realized

using the send construct (action) whose general form
is:

send(destination, port, message)

where message is the message to be sent; port
specifies an output port from which the message is

to be sent; and destination  is  the destination module.
When this field is blank, the message is sent to the

first module connected to port and that is capable of
interpreting the message. Unspecified parameters
are synthesized during simulation – a powerful
feature of DSL. A DSL simulator creates the data
structures necessary for communication, and takes
care of internal queuing of incoming and the
scheduling of outgoing messages.

DSL permits hierarchical specifications
through composition of modules into higher order
(ho-) modules. Connections between modules within

a ho-module are specified through path statements.

A path statement binds a port of one module to a
port of another module. For example,

path(modX, modY, [portX, portY])

connects portX of modX to portY of module

modY.

Note that since ports are not typed, any
message can be sent from or received at any port. A
module’s behavior only refers to output ports. Thus,
there is no knowledge within a module as to which
port incoming messages will be received. Path
statements are optional - bindings between ports are
synthesized by a simulator at  run-time.  

DSL also has a special library mechanism to
support component reuse and design space
exploration. But the discussion of this topic is
beyond the scope of this paper.

EXAMPLE OF AN ATM FABRIC

This section illustrates the way components
can be defined for reuse through a small example of
a Asynchronous Transfer Mode (ATM) Knockout

switch fabric (Awdeh and Mohftah 1995). The
switch fabric constitutes the most complex layer of
an ATM switch, however the behavioral details of
the fabrics are omitted.

The example takes advantage of the ESN
package facility. Packages are like containers used

to group related definitions together within a
common name space. In this example, two ESN

packages are assumed: (1) package BASE which
contains definitions that can be reused across many

application domains and (2) package ATMS which
contains definitions particular to the ATM
application domain.

Reuse of generic styles defined in the

package BASE is possible in many ways to generate
different topologies. Two key styles in this package

have signatures style Parallel[style, style, name 1, int 1,

int 1] and style NStar[name, name 1, int 1, name, name 1,

name 1]. The first accepts two styles as arguments. It
displaces external names of the second style
(specified by the third and fourth arguments) by a
corresponding value (specified by the fifth
argument). This intermediate result is then
concatenated with the first style argument to
produce a new “parallel” style.

The second generic style defines a class of
“star” topologies. It returns an instance with a

central node of type ~C and K types of satellite

nodes. There are m[k] satellite nodes for each node

type ~A[k], k ranging from 1 to K. The central node

is named ~c, and the satellite nodes of type ~A[k] are

named from ~a[k]<0> to ~a[k]<m[k]-1>.  The edge

named ~AC[k]<j> connects the satellite node ~A[k]

having name ~a[k]<j> to the central node.

def style NStar[~C, ~c, m(K), ~A(L), ~a(M),

~AC(N)]

is

~c node ~C

rep k from 1 .. K in

rep j from 0 .. m[k]-1 in

~a[k]<j> node ~A[j]

edge ~AC[k]<j><~a[k]<j>, ~c>

end rep

end rep

pre

distinct <~C, ~A[1 .. K]>, distinct <~c, ~a>,

same <K, L, M, N>,

rep k from 1 .. K in

distinct <~a[1 .. m[k]]>, distinct <~AC[1 ..

m[k]]>,

end rep

post

…

end def;

The pre- and post-conditions specify the
properties that must hold for the arguments and the
instance returned.



Topological description

An M x M Knockout network consists of M

parallel streams, where the kth stream consists of a

central node of type \K representing a concentrator

component. M nodes of type \I<k> represent the

address filter components (entry nodes), and an \O-
node represents a shared buffer component (exit

node). Each of the \I<k>-nodes and the \O-node are

connected to the central \K-node through the edges

named IK<j> (where j ranges from 0 to M-1) and

\KO, respectively. The \I<k>- and \O-nodes are

external, named from \I<0> to \I<M-1> and \O<0>  to

\O<M-1>, respectively. It is not possible to generate

the M parallel streams using the generic “parallel”

style defined in the BASE package since the index k

in the \I<k>-nodes is different for each stream. An

instance of the Knockout style is shown in Figure 2.

private def style Knockout[M]

is

let

style KStream[M] be 

style NStar[\K, \k, <M, 1>, <\I<M-1>,

\O>, <\i, \o>, <\KI, \OK>]

hide \k

ren \OK<0> as \OK

in

branch

case M = 1 then style KStream[1]

otherwise

style Knockout[M-1]

(style KStream[M] ren ~o<0> as

~o<M-1>)

end branch

pre

M > 0

post

...

end def;

Architectural representation

The next step in the modeling process is to
create a composite template that represents the
architecture of the associated switch fabric. The

application of refinement rules that are defined by
the corresponding map (to a proper topology
specified by an instance of the underlying style)
accomplishes this task. The instantiation of a private
style of the package ATMS into a fixed topology to
produce an architectural template for the
corresponding subsystem is an example structural
reuse.

As with styles, where applicable,
parameterization of each template is by integer
values that specify the size of the desired instance.
Other parameters may also be added if required.
The switch fabric also requires primitive templates to
represent internal components. These are the

address filter (temp A[int]), concentrator ( temp K[int,

int]), and shift buffer (temp SB[int]) components. The
concentrator component specification includes the

integer parameters M and N for a Knockout concentrator

with M input ports and N output ports. Finally, the shift

buffer component is specified with an integer parameter N

which represents the number of input ports.

The architectural model of the switch fabric
is more detailed than its topological model. The
concentrator node of the Knockout switch is refined

into a corresponding component with M input ports

and N output ports (where M > N). Similarly, the

shift buffer node is refined into a component with N

input ports and a single output port. (Note that a
template does not actually distinguish between input
and output ports; here the distinction is made to
facilitate understanding.) The detailed map of a

knockout fabric was presented in (Tanir and

Erdogmus, 1997b) and will not be repeated here.

The architecture of a generic switch fabric
can now be defined as a variable synthesized
template which makes it possible to choose between
a Knockout and any other fabric on the fly.

def temp SF[M]

is

extend

choose

choice …

choice KNOCKOUT[N] is

apply map

Knockout_to_KNOCKOUT[M, N] to style Knockout[M]

end choose

with

interface \r

end extend

pre

\o<0>

\i<0> \i<1> \i<2>

\o<1>

\i<0> \i<1> \i<2>

\o<2>

\i<0> \i<1> \i<2>
\I<k>

\K

\O

\IK<i>

\KO

k

0 0 0 1 1 1 2 2 2

Figure 2: Graph of style Knockout[3].



M > 0

post

interface temp this seteq {\i<0 .. M-1>, \o<0

.. M-1>, \r}

translations

...

end def;

Variability is expressed by the choice

construct, which can be used in any type of
expression. Whether to express component
variability at the architectural or topological level is
a design decision. In this example, the variability of
the switch fabric architecture could have been
expressed at the topological level in terms of a
variable “fabric” style.

The architecture of the fabric of a Knockout
switch can be generated with a defined internal
concentration factor. For example, a 4 x 4
Knockout switch fabric with internal concentration
factor of 3 is illustrated in Figure 3.

Components of a Knockout Fabric

The Knockout fabric requires some
synchronous control. Consequently, a clock
message is necessary to harmonize the transfer of
data internally within a fabric.

Address filters, shift buffers, and (Knockout)
concentrators are the components used in a fabric of
a Knockout switch. The implementation given here
is a simplification over the original. The difference
is in the way the interaction between the shift buffer
and the concentrator is achieved. Typically the shift
buffer would be realized through a more
complicated shift-and-store scheme than the one
presented here. The rational for such a scheme is to
provide some degree of fairness when processing
the incoming messages.

Address Filters

Each address filter component is connected
to a specific input port of the fabric. An address
filter only accepts messages (cells) destined to it, and
ignores the others. A component of this kind is

represented in the ATMS package by the primitive

template temp A[int] with an integer parameter. The
translation rules for this template are as follows:

def temp A[k]

is

...

translations

with DSL use  "address_filter(%(k))" where

\i is "cell_in",

\o is "cell_out"

end with

end def;

To implement an instance temp A[k] of this

template, the DSL module address_filter is instantiated

with the value of parameter k.  As in a Banyan
fabric, a new cell arrives at an input port of a

Knockout fabric in the form of an atm_cell message

with an address parameter. An address_filter module

accepts an atm_cell message only if the address
parameter of the message matches the module’s

own Address parameter.  Upon accepting this
message, the module forwards it to a concentrator
component.

module(address_filter(Address), [

(atm_cell(VPI, VCI, Data, Address) :-

delay(Latch_delay),

send(_, cell_out, atm_cell(VPI, VCI, Data))),

(atm_cell(NVPI, NVCI, DX, Any_other_address))

]).

Knockout Concentrators

A Knockout concentrator is represented by

the primitive template temp K[ int, int]. This template is

to be implemented by a DSL module concentrator with a

single parameter which is bound to the second parameter of

temp K[int, int]:

def temp K[M, N]

is

...

translations

with DSL use  "concentrator(%(N))" where

rep k from 0 .. M-1 in

\i<k> is "cell_in(%(k))"

end rep,

\o<0> 

\i<0> \i<1> 

\o<1> 

\i<2> 

\o<2> 

\i<1> \i<0> \i<2> 

\o<1> \o<0> 

K[3, 2]  

\i<1> \i<0> 

\o 

SB[2] 

\i 

\o 

A[k] 

\r 

0 0 0 1 1 1 2 2 2 
k 

 Figure 3: The template temp SF[4]@KNOCKOUT[3].



rep k from 0 .. N-1 in

\o<k> is "cell_out(%(k))"

end rep

end with

end def;

The concentrator module has a resource

called register with a list parameter V1 which can store
up to a fixed number of cells.  

resource(concentrator(X), register(V1), []).

The resource stores up to L cells — which
represents the capacity of the concentrator, and also
the internal concentration factor. This is the only

parameter of the module concentrator. When the
resource is full, new cells received from an address

filter component via an atm_cell message are

discarded. When a clock message arrives, the contents

of the resource are transmitted as soon as possible to a
shift buffer component. This is accomplished

through the internal message empty_out which the
module sends to itself.

module(concentrator(L), [

 (atm_cell(VP, VC, D) :-

check_res(register, Q),

list_length(Q, Len),

Len < L,

set_res(register, [D | Q])),

(atm_cell(VP, VC, D) :-

print(“Cell”, VP, VC, “ dropped from

concentrator.”)),

(clock :-

check_res(register, Q),

delay(Latch_delay),

send(empty_out(L, Q))),

(empty_out(0, X) :-

print(“Concentrator latched outputs.”)),

(empty_out(N, [Top | Rest]) :-

N is N-1,

send(_, cell_out(N), Top),

send(empty_out(N, Rest)))

]).

Shift Buffers

A shift buffer accepts messages from a
concentrator component and forwards them off to
an output interface unit of the switch. The primitive
template representing a component of this type is

$temp SB[int]$. An instance of this template is

implemented by the DSL module shift_buffer.

def temp SB[N]

is

 ...

translations

with DSL use  "shift_buffer" where

rep k from 0 .. N-1 in

\i<k> is "cell_in(%(k))"

end rep,

\o is "cell_out"

end with

end def;

The behavior of the module shift_buffer is
simple. If there are no incoming cells, it receives an

empty message [] which is immediately discarded.
Otherwise, an incoming cell is delayed for a fixed
period of time, and then forwarded to the output
port of the module.

module(shift_buffer, [

([] :-

print(ëignored empty message at latchí)),

(atm_cell(VP, VC, D) :-

delay(Shifter_delay),

send(_, cell_out, atm_cell(VP, VC, D)))

]).

The Fabric

Finally, we give the translation rules for the
switch fabric component itself which is represented

by the synthesized template temp SF[int].

def temp SF[M]

is

...

translations

with DSL use "generic_fabric(%(M))" where

rep k from 0 .. M-1 in

\i<k> is "cell_in%(k))",

\o<k> is "cell_out%(k))"

end rep,

\r is "synch_in"

end with

end def;

Thus generic_fabric is also a ho-module
which is automatically generated by the DSL
translator. Recall that $temp SF[int]$ is a variable
template, and therefore, when it is evaluated, a
variant must be specified. For example, when the
DSL translator evaluates an exported expression
such as `temp SWITCH[4]' or `temp TOP[4]', it will
also recursively attempt to evaluate the expression
t̀emp SF[4]' since this is a component of temp

SWITCH[4]. Interaction with the user can be
avoided by specifying the variant a priori; for
example., by exporting instead the expression  

`temp SWITCH[4]@KNOCKOUT[3]',

However, for a nested variable template, such
a-priori specification requires the user to know the
exact order of the recursive evaluation, which can be



discovered easily through an on-the-fly  trial
evaluation.   

DASE

To facilitate design exploration and all the
other capabilities possible with DSL descriptions, a
simulation environment called Design Analysis and
Synthesis Environment (DASE) has been developed.
The various components of DASE are shown in
figure 4. A DSL interpreter processes ESN
descriptions and translates them into a DSL model.

Object-oriented library support features allow for
the creation, storage and retrieval of module
libraries in an organized manner. Libraries maintain
all the information related to a module as well as
added information regarding any constraints to be
imposed on the modules, any configuration rules to
be applied to the components of the library, and the
interface specification of the library module. The
interface specification is created by the library
system to define exactly what ports are available for
communication with the library module. The
language also allows system and module level
constraints to be defined.

 

Figure 4. The DASE framework
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Constraints define limits upon the structure
and behavior of modules. They can be classified as
local (dependent upon parameters from one
module) and system (dependent upon more than
one module) constraints. The former parameters are
known beforehand whilst the latter are configuration
dependent. For example, the maximum size of a
memory module, the minimum delay period for

message reception, or the maximum number of calls
possible on a switch are represented as local
constraints. The size of a cache module, determined
through a calculation of the number of processor
modules in a multi-processor model is an example
of a system constraint and is calculated upon
invocation of the whole DSL model.

The simulator uses a DSL model to
configure and setup the relevant constraints and
resources to support DSL simulation. During
simulation, the simulator interacts with the user upon
detecting a constraint or simulation violation. The
simulator searches for alternate design modules
from an existing model base which belong to the
same module class and rerun the simulation. The
user can also relax the problematic constraint and
proceed with the simulation.

When the designer is satisfied with the
simulation results, the synthesis stage may be
initiated. An analysis methodology also exists
whereby the DSL modules can be translated into
predicate/transition petri-nets. A synthesis tool
within the DASE environment translates the DSL
constructs into concurrent entities in VHDL.

CONCLUSION

This paper presented examples of
component design for an ATM knockout switch
fabric using a reuse approach. The approach gives
rise to a framework where structural reuse is
employed in conjunction with component reuse.
Such a framework permits simulation and modeling
of complex systems at a high level of abstraction.
An ESN interpreter has recently been implemented
at NRC. Currently, work is underway at Bell Canada
to interface the ESN interpreter with DSL using an
ESN-to-DSL translator.  Work is also underway at
NRC to integrate the ESN interpreter with a
visualization tool.
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