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Abstract  

Expression analysis of genes associated with development at different growth stages such as 

shoot apical meristem (SAM), root apical meristem (RAM), shoot and root tissues 10 DAG, 

flowers and grains of two high expression transgenic lines of rice ectopically expressing AtTOR 

revealed the involvement of AtTOR in transcriptional regulation of these genes. We have 

observed that in the SAM of these two selected lines, TR-2.24 and TR-15.1, OsFON1 and 

OsFON4 (orthologs of AtCLV1 and AtCLV3, respectively), OsKNOX2, OsKNOX3 and OsWOX3 

became up-regulated. The up-regulation of OsFON1 and OsFON4 is likely to be involved in the 

maintenance of effective meristem size of the inflorescence and phyllotaxis. The grains and 

spikes of transgenic plants exhibited enhanced transcript levels of OsMADS1, OsMADS6, and 

OsMADS29 further implicating the role of TOR in modulating the expression of the genes in rice 

grain formation and development. Moreover, the up-regulation of auxin transporter, PIN1c in 

RAM and roots derived from seedlings 10 DAG showed the involvement of TOR in root 

development. The seeds of two high expression lines also showed increased expression of OSE2 

and GAMYB transcription factors involved in seed development. In summary, the present study, 

by heterologous expression of AtTOR in rice, demonstrated the involvement of TOR in 

regulating genes involved in various growth and developmental stages of rice plant and also in 

photosynthesis, productivity related functions and water-use efficiency.  
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TEXT 

The conserved Ser/Thr protein kinase, Target of Rapamycin (TOR) regulates growth and 

development in all eukaryotes. The pivotal role of TOR in embryonic development has been 

demonstrated in Arabidopsis in various studies.
1
 TOR expression had been predominantly 

reported in root and shoot meristems.
2
 The tor knockout mutants or treatment of plants with TOR 

inhibitors exhibited reduced root meristem and leaves.
1,3

 Transgenic Arabidopsis plants 

overexpressing TOR exhibited increased root and shoot growth with enhanced seed yield.
4
 Also, 

the up-regulation of the rRNA transcripts was reported in AtTOR overexpression transgenic 

Arabidopsis.
1
 In our previous report, the overexpression of AtTOR in indica rice plants lead to 

increased plant height, tillering, panicle length and seed yield.
5
 The high yielding phenotypes in 

transgenic Arabidopsis and rice that exhibited overexpression of AtTOR highlighted the 

functions of activated TOR signaling in transgenic plants.
1,5

 Additionally, the photosynthesis 

derived glucose and light mediated TOR signaling also activated cell proliferation in root and 

shoot meristems.
2,6

 The AtTOR overexpressing transgenic rice plants in T2 generation were 

separated into high, medium and low lines based on transcript levels of AtTOR. The high 

expression lines, TR-2.24 and TR15.1 had enhanced photosynthetic and water-use efficiency 

compared with the low expression line, TR5.1 and WT.
5
 Based on the observed yield attributes, 

we had selected these two lines (TR2.24 and TR15.1) for exploring the expression of genes 

involved in rice development. Quantitative expression analysis of these developmental genes 

showed that TOR is also involved in the modulation of the expression of development related 

genes in rice.  
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In this study, we have selected eleven important genes involved in rice development such as 

OsFON1 (an ortholog of AtCLV1), OsWOX3, OsKNOX2, OsKNOX3, OsFON4 (an ortholog of 

AtCLV3), OsMADS1, OsMADS6, OsMADS29, OsGAMYB, OsOSE2 and OsPIN4 (presently 

named as OsPIN1c) in various developmental stages of rice. The OsFON1, OsWOX3, OsKNOX2 

and OsKNOX3 are involved in proliferation of SAM. CLV3 functions as a peptide ligand for a 

receptor like kinase consisting of leucine rich repeats (LRR-RLK), CLV1. In Arabidopsis and 

also in grass species, CLV3 negatively regulates the expression of WUS to reduce the 

proliferation of stem cells in SAM.
7
 The CLV3 overexpression completely eliminates stem cells 

resulting in meristem termination, whereas its loss of function causes over-proliferation of 

meristem.
8,9,10

 The CLV3/CLV1 complex regulates the WUS activity in the organizing center of 

the apical meristem.
11 

The FLORAL ORGAN NUMBER (FON) genes in rice are CLV orthologs 

and are involved in the meristem maintenance.
12,13

 Rice FON4 (FLORAL ORGAN NUMBER 4)  

encodes an Arabidopsis CLV3 ortholog, containing similar functional CLE motif.
14

 FON4 also 

regulates SAM development in rice and fon4 mutants in rice exhibited increased floral organ 

number and more than one primary rachis.
14,15

 Similarly, FON1 in rice is expressed in all 

meristems regulating development of vegetative tissues and functions as AtCLV1.
12

 The KNOX 

(KNOTTED1-like homeobox) transcription factors have a key role in SAM and leaf 

development.
16,17,18

 The OsWOX3 (WUSCHEL-like homeobox 3) regulates leaf and flower 

development and is specifically expressed in leaf primordial and floral meristems. It also induces 

the expression of KNOX genes.
19

 The other transcription factors like MADS-box and GAMYB 

are primarily associated with flower development.
20

 GAMYB is highly expressed in aleurone 

tissue of germinating cereal seeds and also involved in seed development.
21

 OsMADS6 regulates 
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the development of floral meristems and its loss of function mutants have been shown to exhibit 

altered floral organ identities.
22

 The combination of OsMADS6 and OsMADS1 controls flower 

patterning in rice.
23

 The OsMADS29 regulates early stages of seed developmental by regulating 

grain filling, grain weight and grain size.
24

 A bZip transcription factor, OsOSE2 (organ-specific 

elements-2) has also been reported to regulate embryogenesis and other stages of development.
25

 

The PIN (PIN- FORMED) proteins are auxin efflux carriers, which facilitate auxin flow and its 

distribution toward root tips and growing meristems.
26

 The Arabidopsis thaliana PIN1 mutants 

were first characterized for their pin-like inflorescence. The OsPIN1c is expressed in early stages 

of lateral root primordial development.
5
 

 

Previously we have reported that two high AtTOR expression transgenic lines of rice, TR-2.24 

and TR-15.1 displayed increased plant height, panicle length, increased number of tillers and 

increase in overall seed yield of the plant compared to WT rice along with enhanced water use 

efficiency.
5
 This study suggested the involvement of AtTOR in the observed development 

associated phenotypes of these rice transgenic lines.  

To get further insights into the underlying genetic factors, we have performed expression 

analysis of several development associated genes in high AtTOR expression lines, TR-2.24 and 

TR-15.1 in T3 generation in the present study. We have used three biological replicates to isolate 

total RNA from different tissues of two lines (TR-2.24 and TR-15.1) along with WT controls. 

The RNAs used in the study include shoot and root tissues from 10 DAG seedlings, SAM, RAM 

(3-4 cm growing tips of seedlings), embryo, flowers, grains, seeds and spikes of panicles.  
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The seeds and embryonic tissues were collected after maturity and overnight incubation of 

sterilized transgenic and WT seeds in water, respectively. The 10 DAG transgenic and WT 

seedlings were transferred to pots in greenhouse for further growth and collection of the other 

tissues, such as flowers, which were collected 50 d after transfer of seedlings, whereas the grains 

and the spikes were collected after 65 d.  

The total RNA was isolated from 100 mg tissues of transgenic and WT plants using Trizol 

(Sigma Aldrich, St. Louis, Missouri, US) method. The first strand cDNA was synthesized using 

2 µg of total RNA and SMART
TM

 MMLV Reverse Transcriptase (Takara Bio, Clonetech, USA). 

The seven times diluted cDNA was used for qRT-PCR analysis of different developmental genes 

using SYBR Green ® Premix (Takara Bio, Clonetech, USA). The primers used in qRT-PCR 

have been listed in Table 1. The qRT PCR reaction conditions included an initial denaturation at 

94°C for 2 min, followed by 40 cycles of 94°C for 15 sec, with annealing temperature ranging 

from 50-55°C for 25 sec and an extension at 72° C for 30 sec. The qRT PCR data of three 

biological and three technical replicates was analyzed according to the ΔΔCT method.
27

 The 

expression of rice Actin1 was used as an endogenous positive control. The two selected high 

expression rice transgenic lines, TR-2.24 and TR-15.1 exhibited increased panicle length with 

the concurrent enhanced expression of OsMADS1, OsMADS6 and OsMADS29 in grains 

compared with WT (Fig. 1a, 1c & 1e). The enhanced expression of OsMADS1 and OsMADS6 

was also observed in spikes of transgenic lines indicating the regulation of spike and seed 

development by TOR (Fig. 1b & 1d). The up-regulation of OsFON1, OsKNOX2, OsWOX3, 

OsKNOX3 and OsFON4 genes in SAM tissues of the two selected lines indicated the role of 

TOR and its associated signaling pathways in shoot development (Fig. 1g, 1h, 1i, 1j & 1k). 
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The OsFON4 was expressed up to 1.5 fold higher in transgenic lines compared with WT. The 

simultaneous up-regulation of both FON1 and FON4 genes in the SAM of high expression lines 

had no other detectable developmental defects on shoot meristem. These results suggest that 

although the FON4 is an ortholog of CLV3 of Arabidopsis,  It has also been reported previously 

that the fon1 mutants in rice showed enlarged floral meristem whereas, the vegetative meristem 

had normal development.
12,28

 The exogenous application of FON4 peptide on rice RAM had not 

resulted in any perturbed phenotype suggesting the presence of other unknown receptors like 

FON1 receptor for FON4 in rice.
15

 Also, the increased and similar expression of both OsFON1 

and OsFON4 in transgenic lines might possibly be a reason for executing continuous activation 

of rice WUS-like genes and balancing the meristematic activity in shoot apex. The continuous 

but balanced WUS activity in SAM of AtTOR transgenic plants led to increased shoot growth. 

The bzip TF, OsOSE2 expression was also enhanced in embryos of AtTOR transgenic seeds 

suggesting the TOR mediated activation of genes involved in embryonic and seed/grain 

development (Fig. 1l).  

The TOR activates nutrient and energy signaling at growing root apices and the ROS-TOR 

signaling mediates negative tropism in roots in order to avoid the light and salt stress.
2,29

 The 

auxin efflux carrier, OsPIN1c was up-regulated in both RAM and roots of 10 DAG transgenic 

seedlings suggesting the involvement of TOR in root development (Fig. 1m&1n). In our 

previous report, we have shown that germination and growth of the high expression rice 

transgenic lines on MS medium with glucose as a supplement resulted in significant up-

regulation of TOR transcripts with enhanced lateral root formation. This is possibly due to the 

TOR mediated activation of PIN1c to improve the auxin transport in root meristems.
5
 The Myb 
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TFs such as OsGAMYB involved in gibberellic acid signaling regulates  anther and pollen 

development, which is ultimately related to grain maturity and seed development.
30

 The 

interaction of GAMYB TFs with other TFs has been reported in the activation of endosperm 

specific genes during seed development in Barley.
31

 The OsGAMYB was up-regulated 3-fold in 

seeds of transgenic lines, whereas no significant expression of OsGAMYB was noticed in 

flowers (Fig. 1o & 1p). Although transgenic seeds exhibited increased transcript levels of 

OsGAMYB, there was no phenotypic distinction suggesting the post-transcriptional regulation of 

the OsGAMYB in the normal seed development.  

Our present study explored the novel functions of AtTOR in regulating genes involved in 

meristem growth and overall development of rice. The key findings of this study suggest that 

targeting TOR signaling could potentially generate a novel tool for developing performance 

conferring phenotypes in rice. The recent research on plant TOR signaling has mainly focused on 

model plant Arabidopsis. Only limited reports are available on crop plants and much needs to be 

elucidated. The available literature on TOR suggests that it is a very effective gene for genetic 

manipulation in crop plants for enhanced productivity and abiotic stress tolerance. 
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Figure Legend 

Figure 1 

Quantitative expression analysis of genes involved in development in rice 

a, b) Expression of OsMADS1 in grains and spikes, c, d) Expression of OsMADS6 in grains and 

spikes, e, f) Expression of OsMADS29 in grains and spikes in high AtTOR expression transgenic 

lines, TR-2.24 and TR-15.1. Similarly g) OsFON1, h) OsKNOX2, i) OsWox3, j) OsKNOX3, and 

k) OsFON4, had increased transcript level in SAM of high AtTOR expression transgenic lines. 

The expression level of l) OsOSE2 in embryo, m, n) OsPIN1c in 10 day old root and root apical 

meristem, o, p) OsGAMYB in flower and seeds of high AtTOR expression transgenic lines. The 

expression data was analysed by ΔΔCT method using mean of three biological and three 

technical replicates. The relative expression was considered statistically significant at P value 

<0.05 (represented with asterisks) based on one-way ANOVA in all the analyzed genes. 
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Table 1 

List of qRT-PCR Primers used for expression analysis 

S. No.    Primer name        Sequence 5'- 3'                                Bases              Product size 

1 OsOSE2 FP CTAGTTGCGGTGAATACATGAG                   22              281 

2 OsOSE2 RP CATATCAGCATACCTAGAGTCACC     24  

3 OsWox3FP AGCTTACACCACCAGCTACTACT                   23              101 

4 OsWox3RP CCTGGTTGTAGTGGAAGAGG                   20  

7 Osknox2FP TCTAGGACAGAGGGAGTGGTAT                   22              294 

8 Osknox2RP GCACATCAGTAGCTGGAATAAG                   22  

9 Osknox3FP AAATCTCTCGTCTTCTCGTCTC                   22              246 

10 Osknox3RP TAGCAGCTAGGCTCTCTCTCTT                   22  

13 OsMADS1FP GAGAGAGAGAGAGAGGAGAGGA              22              274 

14 OsMADS1RP CTGCATCCTGTGAGTTGTAGTT                   22  

15 OsMADS6FP ACTGATGATGGAACAAGTGGA                   21              117 

16 OsMADS6RP ATGGCTCTGTAGTTGCTGGT                   20  

17 OsMADS29FP GGAGCTAGGAGTAACTTGGAGA                   22              260 

18 OsMADS29RP CCAGTTCAGTAGTTCACACACC                   22  

19 OsGAMYBFP GTAAACCAGACAGGGATGCTAA                   22               144 

20 OsGAMYBRP ATGGAGATAGTCAAAACCCACA                   22  

25 OsPIN1cFP CTTACAAGAAGTTGCAGGATG                   21                208 

26 OsPIN1cRP GACTTAAATGGTGCGCTAGTA                   21  

27 OsFON1FP CCAATAGTGGTGACCTCCTC                   20               159 
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28 OsFON1RP GCAGTAGTAATCCGCCTGTT                   21  

29 OsFON4FP GCTTCAGTTCTGAGCCTTTC                   20               253 

30 OsFON4RP ACTCGATCCGGTAAACAGAG                   20  

31          OsActinFP           CTCCCCCATGCTATCCTTCG                             20                    129 

32          OsActinRP           CTTCATGTCCCTCACAATTT                             20 
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