
Publisher’s version / Version de l'éditeur:

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez

la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous
n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the
first page of the publication for their contact information.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

The Eighteenth Canadian Conference on Artificial Intelligence (AI'2005)
[Proceedings], 2005

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

NRC Publications Archive Record / Notice des Archives des publications du CNRC :
https://nrc-publications.canada.ca/eng/view/object/?id=10d2325b-b18d-4ece-bbd3-9b1525b0443a

https://publications-cnrc.canada.ca/fra/voir/objet/?id=10d2325b-b18d-4ece-bbd3-9b1525b0443a

NRC Publications Archive
Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version.
/ La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version
acceptée du manuscrit ou la version de l’éditeur.

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

A Supervised Learning Approach to Acronym Identification
Nadeau, D.; Turney, Peter

National Research

Council Canada

Institute for

Information Technology

Conseil national

de recherches Canada

Institut de technologie

de l'information

Supervised Learning Approach to Acronym

Identification *

Nadeau, D., and Turney, P.
May 2005

* published at The Eighteenth Canadian Conference on Artificial Intelligence (AI’2005).

LNAI 3501. 10 Pages. Victoria, British Columbia, Canada. May 9-11, 2005. NRC 48121.

Copyright 2005 by

National Research Council of Canada

Permission is granted to quote short excerpts and to reproduce figures and tables from this report,

provided that the source of such material is fully acknowledged.

A Supervised Learning Approach to Acronym
Identification

David Nadeau and Peter D. Turney

Institute for Information Technology

National Research Council Canada

Ottawa, Ontario, Canada

{david.nadeau, peter.turney}@nrc-cnrc.gc.ca

Abstract. This paper addresses the task of finding acronym-definition pairs in
text. Most of the previous work on the topic is about systems that involve

manually generated rules or regular expressions. In this paper, we present a

supervised learning approach to the acronym identification task. Our approach

reduces the search space of the supervised learning system by putting some

weak constraints on the kinds of acronym-definition pairs that can be identified.

We obtain results comparable to hand-crafted systems that use stronger

constraints. We describe our method for reducing the search space, the features

used by our supervised learning system, and our experiments with various

learning schemes.

1 Introduction

Acronym identification is the task of processing text to extract pairs consisting of a

word (the acronym) and an expansion (the definition), where the word is the short

form of (or stands for) the expansion. For instance, in the sentence, “The two nucleic

acids, deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), are the

informational molecules of all living organisms,” there are two acronyms, “DNA” and
“RNA”, along with their respective definitions, “deoxyribonucleic acid” and

“ribonucleic acid”. In this work, we do not discriminate between acronyms (short

forms of multiword expressions) and abbreviations (contractions of single words). We

use the term acronym to include both cases.

The acronym identification task can be extended in many ways. It is possible to try

to resolve acronyms even when there are no explicit definitions in the text. For

instance, the familiar acronym “HIV” will often appear without being defined.

Another extension to the task is to try to disambiguate polysemous acronyms (e.g.,

“CMU” means “Carnegie Mellon University” but also “Central Michigan

University”). The task requires identifying the intended sense of the acronym even

when its definition is absent. Ambiguous acronyms are particularly problematic for

information retrieval.

In this paper, we tackle the core task only. That is, given an input text, our

algorithm will attempt to extract all explicit acronym-definition pairs. Our goal is to

2 David Nadeau and Peter D. Turney

create a dictionary of acronym-definition pairs specific to a single text. An algorithm

that addresses the core task can be used, for example, to enhance a list of author

keyphrases by resolving acronyms. More importantly, such an algorithm is a key

component in systems that handle the various extended tasks, such as co-reference

resolution for named-entity recognition or automatic query expansion for information

retrieval. The literature on automatic acronym identification presents many attempts

to solve the core task, and our contribution is to present a supervised learning

approach with weak constraints on the forms of acronyms and definitions that can be

identified. Our results are comparable to what is achieved (on the same testing data)

by human-engineered rule systems with stronger constraints.

The next section presents a detailed summary of related work. Section 3 presents
our supervised learning approach to acronym identification and Section 4 discusses

the training and testing corpus we used. At least three other papers use the same

corpus for evaluating their systems (Pustejovsky et al., 2001; Chang et al., 2002;

Schwartz and Hearst, 2003). The remaining sections discuss our experimental results

and conclude the paper.

2 Related Work

In this section, we present previous work on the acronym identification task. We

focus on the constraints that these systems use to extract valid acronym–definition

pairs.

One of the earliest acronym identification systems (Taghva and Gilbreth, 1999) is
AFP (Acronym Finding Program). The AFP system first identifies candidate

acronyms, which the authors define as uppercase words of three to ten letters. It then

tries to find a definition for each acronym by scanning a 2n-word window, where n is

the number of letters in the acronym. The algorithm tries to match acronym letters

against initial letters in the definition words. Some types of words receive special

treatment: stopwords can be skipped, hyphenated words can provide letters from each
of their constituent words and, finally, acronyms themselves can be part of a

definition. Given these special cases, the longest common sequence (LCS) between

acronym letters and initial letters in definitions is computed.

Yeates (1999) proposes the automatic extraction of acronyms-definitions pairs in a

program called TLA (Three Letter Acronyms). Although the name suggests that

acronyms must have three letters, the system can find n-letter acronyms as well. The

algorithm divides text into chunks using commas, periods, and parentheses as

delimiters. It then checks whether adjacent chunks have acronym letters matching one
or more of the initial three letters of the definition words. Further heuristics are then

applied to each candidate, ensuring that the acronym is uppercase, is shorter than the

definition, contains the initial letters of most of the definition words, and has a certain

ratio of words to stopwords.

Larkey et al. (2000) developed Acrophile. They compared various strategies and

found their Canonical/Contextual method to be the most accurate. First they force

A Supervised Learning Approach to Acronym Identification 3

candidate acronyms to be in upper-case, allowing only embedded lower case letters

(internal or final), periods (possibly followed by spaces), hyphens (or diagonal

slashes) and digits (at most one, non-final digit). They allow a maximum of nine

alphanumeric characters in acronyms. They search for expansions in a window of 20

words, adjacent to the given acronym. Stopwords can contribute to an inner letter, but

only once for the entire acronym. Furthermore, an expansion is only valid if it fits a

given pattern, such as being surrounded by parentheses or preceded by a cue phrase

(e.g.,“also known as”).

Recently the fields of Genetics and Medicine have become especially interested in

acronym resolution (Pustejovsky et al., 2001, Yu et al. 2002). Pustejovsky et al.,

present an approach with weak constraints, designed to capture the wide range of
acronyms that are abundant in medical literature. For example, “PMA” stands for

“phorbol ester 12-myristade-13-acetate” and “E2” stands for “estradiol-17 beta”.

Pustejovsky et al.’s acronym resolution technique searches for definitions of

acronyms within noun phrases. Acronym-definition candidate pairs must match a

given set of regular expressions, designed to be very general, and the final decision

about whether a pair is valid relies on counting the number of acronym characters and

definition words that match.

Another strategy, also developed for the medical field, is from Schwartz and
Hearst (2003).1 Their approach is similar to Pustejovsky et al.’s (2001) strategy and

the emphasis is again on complicated acronym-definition patterns for cases in which

only a few letters match (e.g., “Gen-5 Related N-acetyltransferase” [GNAT]). They

first identify candidate acronym-definition pairs by looking for patterns, particularly

“acronym (definition)” and “definition (acronym)”. They require the number of words

in the definition to be at most)25min(×+ A,A , where A is the number of letters

in the acronym.2 They then count the number of overlapping letters in the acronym

and its definition and compare the count to a given threshold. The first letter of the

acronym must match with the first letter of a definition word. They also handle

various cases where an acronym is entirely contained in a single definition word.

Byrd and Park (2001) combine mechanisms such as text-markers and linguistic
cues with pattern-based recognition. The same combination was used by Larkey

(2000). This removes some constraints on the acronyms that can be identified. The

reason for these mechanisms is to cope with the growing popularity of acronyms that

diverge from the tradition of using only the first letter of each word of the definition.

They use cue expressions (e.g., “or”, “short”, “acronym”, “stand”) to reinforce the

confidence in acronym-definition pairs. They also allow acronyms to include a digit at
the beginning or the end; thus, “5GL (Fifth Generation Language)” would be a valid

candidate.

Adar (2002) presents a technique that requires only four scoring rules for acronym-

definition pair evaluation: (1) add one to the score if an acronym letter begins a

1 The Java source code for their system is available at http://biotext.berkeley.edu/software.html.

2 This formula is borrowed from Byrd and Park (2001).

4 David Nadeau and Peter D. Turney

definition word, (2) subtract one for each extra word that does not match acronym

letters, (3) add one if the definition is next to a parenthesis and (4) the number of

definition words should be less than or equal to the number of acronym letters;

therefore, subtract one for each extra word.

Chang et al. (2002) present a supervised learning approach to acronym
identification. In order to circumscribe the learning, they impose a strongly restrictive

condition on candidate acronym-definition pairs, by searching only for “definition

(acronym)” patterns. Interestingly, this pattern accounts for the majority of positive

cases in their evaluation corpus. Chang et al.’s learning algorithm uses eight features

describing the mapping between acronym letters and definition letters (e.g.,

percentage of letters aligned at the beginning of a word, number of definition words
that are not aligned to the acronym, etc.). The learning algorithm they used is logistic

regression.

Zahariev (2004) presents a complete review of the acronym identification literature

in his thesis. He also extends the task to multi-lingual acronym identification and he

offers an in-depth analysis of acronym phenomena. However, the proposed system

uses the same strongly constraining patterns as Larkey et al. (2000).

Table 1 summarizes related work on acronym identification. In this table and in the

forthcoming sections, “participation” means that a letter of the acronym is found in a

word of the definition. Generally, either the constraints on the acronym are strong

(e.g., “all acronym letters must be capitals” or “the number of letters must exceed

some minimum”) or the definition pattern is fixed (e.g., “the definition must be in

parentheses”). Such strong constraints ensure reasonable precision but, in general (for

heterogeneous text from unrestricted domains), they necessarily limit recall. In our

work, we try to use only weak constraints on both the acronym and the definition.

Table 1. Summary of constraints on acronyms and definitions

Author (Year) Strongest constraints on

acronym candidate

Strongest constraints on

definition candidate

Taghva and

Gilbreth (1999)

�

 uppercase word of 3 to 10

characters

�

 must be adjacent
�

 only first letters of definition
words can participate

Yeates (1999)
�

 uppercase word
�

 must be adjacent
�

 first three letters of definition

words can participate

Larkey et al. (2000)
�

 need some uppercase letters
�

 maximal size of 9
characters

�

 pattern “acronym (definition)”

or “definition (acronym)”
�

 cue (e.g., “also known as”)

Pustejovsky et al.
(2001)

�

 a word between parentheses
or adjacent to parentheses

�

 pattern “acronym (definition)”
or “definition (acronym)”

Schwartz and
Hearst (2003)

�

 a word between parentheses
or adjacent to parentheses

�

 pattern “acronym (definition)”
or “definition (acronym)”

A Supervised Learning Approach to Acronym Identification 5

Byrd and Park

(2001)

�

 at least 1 capital
�

 from 2 to 10 characters

�

 parentheses pattern or

linguistic cue (also known as,

short for, etc.)

Adar (2002)
�

 one word between

parentheses

�

 adjacent on the left of

parenthesis

Chang et al. (2002)
�

 one word between

parentheses

�

 adjacent on the left of

parenthesis

Zahariev (2004)
�

 a word between parentheses

or adjacent to parentheses

�

 pattern “acronym (definition)”

or “definition (acronym)”

3 Supervised Learning Approach

The acronym identification task can be framed in terms of supervised learning. The

concept we want to learn is a pair DA, made of an acronym A (a single token) and

a definition D (a sequence of one or more consecutives tokens). Given a sequence

T of n tokens, nttT ,...,1= , from which we wish to extract a pair DA, , there are

n possible choices for itA = . Each possible acronym (itA =) can be defined (D)

by any combination of one or more consecutive tokens taken from the left context

{ }11,..., −itt or from the right context { }ni tt ,...,1+ . The number of possible pairs is

()3nO (n choices for itA = multiplied by n choices for the first token in D

multiplied by n choices for the last token in D). Therefore, before applying

supervised learning, we reduce the space of possible DA, pairs with some

heuristics.

Section 3.1 describes our heuristics for reducing the search space for candidate

acronyms and Section 3.2 discusses the constraints for candidate definitions.

Together, these sections explain how we reduce the space of DA, pairs that must

be considered by the supervised learning algorithm. After the space has been reduced,

the remaining candidate pairs must be represented as feature vectors, in order to apply

standard supervised learning algorithms (Witten and Frank, 2000). Section 3.3

outlines our set of seventeen features.

The constraints that follow (Sections 3.1 and 3.2) are relatively weak, compared to

most past work on acronym identification, but they still exclude some possible

acronym-definition pairs from consideration by the supervised learning algorithm.

The resulting decrease in recall is discussed in Section 5.

6 David Nadeau and Peter D. Turney

3.1 Space-reduction Heuristics for Candidate Acronyms

The acronym space (the set of choices for itA =) is reduced using syntactic

constraints on the tokens, nttT ,...,1= , expressed by the conjunction of the

following statements:

1. itA = , where ni ≤≤1 .

2. 2)Size(≥it , where)Size(it is the number of characters in the token it (including

numbers and internal punctuation).

3. 1)NumLetter(≥it , where)NumLetter(it is the number of alphabetic letters in the

token it (excluding numbers and punctuation).

4.)Cue())(UnknownPOS)((Cap iii ttt ∨∧ , where)(Cap it means that the token starts

with a capital letter,)(UnknownPOS it means that the part-of-speech of the token

is neither conjunction, determiner, particle, preposition, pronoun nor verb, and

)Cue(it means that the token contains a digit, punctuation, or a capital letter.

The rationale behind 2)Size(≥it is that, in most cases, isolated letters such as “H”

will not be acronyms (although “H” can stand for “Hydrogen”). Statement (4) says

that the token it should have some capitalization or special characters, but in the

former case, the token should not have a known part-of-speech. The calculation of

)(UnknownPOS it requires applying a part-of-speech tagger to the text. We used

QTAG (Tufis and Mason, 1998) as our part-of-speech tagger.

The above heuristic constraints are less restrictive than previous approaches

(compare with Table 1).

3.2 Space-reduction Heuristics for Candidate Definitions

Once a candidate acronym itA = is found in the text, we search for its definition D

on both sides of it . First, we require that both acronym and definition must appear in

the same sentence. This considerably reduces the search space for DA, by reducing

the size n of T , although the space is still ()3nO . We then need stronger criteria to

define a reasonable set of candidate definitions. We impose the following additional

constraints:

1. The first word of a definition must use the first letter of the acronym (Pustejovsky

et al., 2001).

2. A definition can skip one letter of the acronym, unless the acronym is only two

letters long.

3. The definition can skip any number of digits and punctuation characters inside the

acronym.

A Supervised Learning Approach to Acronym Identification 7

4. The maximum length for a definition is ()2,5min ×+ acronymlenacronymlen

(Byrd and Park, 2001). (Definition length is measured by number of words and

acronym length is measured by number of characters.)

5. A definition cannot contain a bracket, colon, semi-colon, question mark, nor

exclamation mark. (We found counter-examples for other punctuation. For

instance, the acronym “MAM” expands to “meprin, A5, mu”, where the comma is

used.)

Typically, these constraints will dramatically reduce the number of candidate

definitions (increasing precision) while including the vast majority of true positive

cases (preserving recall).

To illustrate the remaining search space, consider the following sentence:

Microbial control of mosquitoes with special emphasis
on bacterial control (Citation).

The word “Citation” is not an acronym, but it fits our constraints, since it is a
capitalized noun. Even with the above constraints, there are 92 candidate definitions

in this example. Note that, according to the second rule above, the definition can skip

one letter (except the leading ‘C’) of the acronym. Here is one of the candidate

definitions (acronym letters are marked with square brackets):

[c]ontrol of mosqu[i]toes wi[t]h speci[a]l emphas[i]s
[o]n bacterial co[n]trol

3.3 Acronym-Definition Features for Supervised Learning

The above heuristics reduce the search space significantly, so that the number of ways

to extract a pair DA, from a token sequence nttT ,...,1= is now much less than

()3nO . The next step is to apply supervised learning, to select the best DA, pairs

from the remaining candidates. Standard supervised learning algorithms assume input

in the form of feature vectors. We defined seventeen features to describe a candidate

acronym-definition instance. The hand-crafted rules that are described in previous

work inspired the design of many of the following features. Our features mainly
describe the mapping of acronym letters to definition letters and syntactic properties

of the definition.

1. the number of participating letters matching the first letter of a definition word;

2. (1) normalized by the acronym length;

3. the number of participating definition letters that are capitalized;

4. (3) normalized by the acronym length;

5. the length (in words) of the definition;

6. the distance (in words) between the acronym and the definition;

8 David Nadeau and Peter D. Turney

7. the number of definition words that do not participate;

8. (7) normalized by the definition length;

9. the mean size of words in the definition that do not participate;

10. whether the first definition word is a preposition, a conjunction or a determiner

(inspired by Byrd and Park, 2001);

11. whether the last definition word is a preposition, a conjunction or a determiner

(inspired by Byrd and Park, 2001);

12. number of prepositions, conjunctions and determiners in the definition;

13. maximum number of letters that participate in a single definition word;

14. number of acronym letters that do not participate;

15. number of acronym digits and punctuations that do not participate;

16. whether the acronym or the definition is between parentheses;

17. the number of verbs in the definition.

If the heuristics in Sections 3.1 and 3.2 propose a candidate acronym-definition

pair 11, DA then there are three possibilities:

1. In the manual annotation of the corpus, there is an officially correct acronym-

definition pair 22 , DA such that 21 AA = and 21 DD = . In this case, 11, DA is

labeled as positive for both training and testing the algorithm.

2. In the manual annotation of the corpus, there is an officially correct acronym-

definition pair 22 , DA such that 21 AA = but 21 DD ≠ . In this case, 11, DA is

ignored during training but it is labeled as negative during testing (see Section 6.3

for details).

3. In the manual annotation of the corpus, there is no officially correct acronym-

definition pair 22 , DA such that 21 AA = . In this case, 11, DA is labeled as

negative for both training and testing.

4 Evaluation Corpus

We use the Medstract Gold Standard Evaluation Corpus (Pustejovsky et al., 2001) to

train and test our algorithm.3 The corpus is made of Medline abstracts in which each

acronym-definition pair is annotated. The training set is composed of 126 pairs and

the testing set is composed of 168 pairs. The main interest of this corpus is that it was
annotated by a biologist using an informal definition of a valid pair. Therefore the

3 http://medstract.org/gold-standards.html

A Supervised Learning Approach to Acronym Identification 9

corpus reflects human interpretation of acronym-definition pairs and acronym

identification is challenging for an automated process.

Past results with this corpus are reported in Table 2. All of the results are based on

modified versions of the Medstract Gold Standard Evaluation Corpus, and

(unfortunately) they all use different modifications. Here are some remarks on each of

the modifications:

1. Chang et al. (2002) do not describe their modifications.

2. Pustejovsky et al. (2001) note that they removed eleven elements that they judged

were not acronyms.

3. Schwartz and Hearst (2003) mention that they made modifications, but do not

describe what modifications they made.

4. We attempted to replicate the results of Schwartz and Hearst (2003), while making

only minimal modifications to the original corpus. Our modifications were aimed
at creating a valid XML file and a consistent set of tags. We had to remove

embedded acronyms and remove or correct obvious errors.

Since Schwartz and Hearst’s (2001) system is available online4, we were able to

repeat their experiment on our modified version of the corpus. This is the version of

the corpus that we use in the following experiments, in Section 5.

Table 2. Performance reported by teams using their own version of the Medstract corpus

Team Precision Recall F1 Corpus

Modification

Chang et al., 2002 80% 83% 81.5% See (1)

Pustejovsky et al., 2001 98% 72% 83.0% See (2)

Schwartz and Hearst, 2003 96% 82% 88.4% See (3)
Schwartz and Hearst

(our replication)

89% 88% 88.4% See (4)

5 Experimental Results

We use the Weka Machine Learning Toolkit to test various supervised learning

algorithms (Witten and Frank, 2000). The results are reported in Table 3. We found
that the performance varies greatly depending on the chosen algorithm. A good

classifier was PART rules (rules obtained from a partially pruned decision tree) with

somewhat low recall but high precision. The Support Vector Machine (Weka’s SMO)

reaches F1 = 88.3%, a performance that rivals hand-craft systems. The Bayesian net

also performs well. The OneR classifier (one rule) is shown as a baseline. Table 3

4 http://biotext.berkeley.edu/software.html

10 David Nadeau and Peter D. Turney

includes our replication of Schwartz and Hearst (2003) for comparison. Note that all

results in this table are based on the same corpus.

Table 3. Performance of various classifiers on the Medstract corpus

Learning Algorithm Precision Recall F1

OneR5 69.0% 33.1% 44.7%
Bayesian Net 89.6% 81.7% 85.5%

PART rules 95.3% 79.6% 86.7%

SVM (SMO kernel degree = 2) 92.5% 84.4% 88.3%

Schwartz and Hearst (our replication) 88.7% 88.1% 88.4%

We claim that our system has weaker hand-coded constraints than competing
approaches. In support of this claim, it is worth mentioning that 1,134 candidate

acronym-definition pairs satisfied the constraints in Sections 3.1 and 3.2, but only 141

candidates (12%) were classified as positive by the supervised learning algorithms.

Therefore the hand-coded part of our system allowed more candidates than, for

example, Schwartz and Hearst’s system allows. In comparison, their system

considered 220 patterns that involve parentheses and 148 (67%) are accepted by the

rule-based system. In our system, the reduction from 1,134 candidates to 141

candidates is done by the supervised learning component, rather than by hand-coded

constraints. The advantage of this approach is that the supervised learning component

can easily be retrained for a new corpus. The hand-coded constraints are designed to

be weak enough that they should not require modification for a new corpus.

6 Discussion

In this section, we discuss the interpretation of our experimental results.

6.1 The Parenthesis Feature

In our examination of previous work (Section 2), we criticized many authors for

making use of overly constraining patterns. One of the problems is the use of

parentheses. Many authors only accept acronym-definition pairs when one of the

expressions is between parentheses. To avoid this kind of limitation, we did not

impose this constraint in our model. However, the only way we were able to perform
as well as hand-built systems was to use the feature “whether the acronym or the

definition is between parentheses” (feature 16 in Section 3.3). The learner uses this

feature, since it works well on the Medstract corpus. Our relatively weak constraints

(Sections 3.1 and 3.2) allow 889 candidate acronym-definition pairs for which the

5 The rule for OneR says that the pair is valid if 70.8% of acronym letters match the first letter
of a definition word.

A Supervised Learning Approach to Acronym Identification 11

parenthesis feature is false (neither the candidate acronym nor the candidate definition

is between parentheses). In the Medstract corpus, all of these 889 candidates are

negative instances (none are true acronym-definition pairs). Thus this feature

dramatically increases precision with no loss of recall. It is a very informative feature,

but we do not wish to hard-code it into our constraints, since we believe it may not

generalize well to other corpora. With a new corpus, our system can learn to use the

feature if it is helpful or ignore it if it does not apply. This robustness is an advantage

of using weak constraints combined with supervised learning.

6.2 The Best Features

When evaluating the contribution of the individual features (using the Chi Square

Test), we found that three features significantly outperform others. Those features are,

in order of predictive power, (1) the distance between the definition and the acronym

(feature 6), (2) the number of acronym letters that match the first letters of definition

words (feature 1), and (3) the parentheses feature (feature 16).

6.3 Effects of the Space-reduction Heuristics

In Section 3, we presented heuristics for reducing the space of possible acronym-

definition candidates. A particular case can be misleading for the supervised learning

algorithm.

Consider a case in which our heuristics identify <PKA, protein kinase A> but the

corpus annotation is <PKA, cAMP-dependent protein kinase A>. It is tempting to say

that <PKA, protein kinase A> must count as a negative example for the supervised

learner, but this could confuse the learner, since the match between PKA and protein

kinase A is actually very credible and reasonable. Instead of counting <PKA, protein
kinase A> as a negative example, we found that it is better to ignore this case during

training. It would be incorrect to count this case as a positive example, but it would be

misleading to count it as a negative example, so it is best to ignore it. During testing,

however, such instances are added to the false negatives (thus reducing recall),

because this is an error and the system must be penalized for it. (See Section 3.3.)

7 Conclusion

In this paper, we described a supervised learning approach to the acronym

identification task. The approach consists in using weak hand-coded constraints to

reduce the search space, and then using supervised learning to impose stronger

constraints. The advantage of this approach is that the system can easily be retrained

for a new corpus, when the previously learned constraints no longer apply. The hand-

coded constraints reduce the set of candidate acronym-definition pairs that must be

12 David Nadeau and Peter D. Turney

classified by the supervised learning system, yet they are weak enough that they

should be portable to a new corpus with little or no change.

In our experiments, we tested various learning algorithms and found that a Support

Vector Machine is comparable in performance to rigorously designed hand-crafted

systems presented in the literature. We reproduced experiments by Schwartz and

Hearst (2003) and showed that our test framework was comparable to their work.

Our future work will consist in applying the supervised learning approach to
different corpora, especially corpora in which acronyms or definitions are not always

indicated by parentheses.

References

Adar, E. (2002) S-RAD A Simple and Robust Abbreviation Dictionary, HP Laboratories

Technical Report, September.

Chang, J.T., Schütze, H. and Altman R.B., (2002), Creating an Online Dictionary of

Abbreviations from MEDLINE, Journal of American Medical Informatics Association

(JAMIA), 9(6), p.612-620.

Larkey, L., Ogilvie, P., Price, A. and Tamilio, B. (2000) Acrophile: An Automated Acronym

Extractor and Server, In Proceedings of the ACM Digital Libraries conference, pp. 205-214.

Park, Y., and Byrd, R.J., (2001), Hybrid Text Mining for Finding Abbreviations and Their

Definitions, Proceedings of the 2001 Conference on Empirical Methods in Natural

Language Processing, Pittsburgh, PA.

Pustejovsky, J., Castao, J., Cochran, B., Kotecki, M., Morrell, M. and Rumshisky, A. (2001)

"Extraction and Disambiguation of Acronym-Meaning Pairs in Medline", unpublished

manuscript.

Schwartz, A. and Hearst, M. (2003), A simple algorithm for identifying abbreviation definitions

in biomedical texts, In Proceedings of the Pacific Symposium on Biocomputing (PSB).

Taghva, K. and Gilbreth, J. (1999), Recognizing acronyms and their definitions, International

journal on Document Analysis and Recognition, pages 191-198.

Tufis, D. and Mason, O. (1998). Tagging Romanian Texts: a Case Study for QTAG, a

Language Independent Probabilistic Tagger, Proceedings of the First International

Conference on Language Resources and Evaluation (LREC), Spain, p.589-596.

Yeates, S. (1999), Automatic extraction of acronyms from text. In Third New Zealand

Computer Science Research Students' Conference, pages 117-124.

Yu H, Hripcsak G, Friedman C. (2002) Mapping abbreviations to full forms in biomedical

articles, Journal of the American Medical Informatics Association (9) 262-272.

Witten I, H, and Frank, E. (2000) Data Mining: Practical machine learning tools with Java

implementations, Morgan Kaufmann, San Francisco.

Zahariev, M. (2004). A (Acronyms), Ph.D. thesis, School of Computing Science, Simon Fraser

University.

