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A Probabilistic Model for Fast and Confident

Categorisation of Textual Documents

Cyril Goutte
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283 Boulevard Alexandre Tach, Gatineau, QC J8X 3X7, Canada
Cyril.Goutte@nrc-cnrc.gc.ca

Summary. We describe the National Research Council’s entry in the Anomaly
Detection/Text Mining competition organised at the Text Mining Workshop 2007.
This entry relies on a straightforward implementation of a probabilistic categoriser
described earlier [4]. This categoriser is adapted to handle multiple labelling and a
piecewise-linear confidence estimation layer is added to provide an estimate of the
labelling confidence. This technique achieves a score of 1.689 on the test data. This
model has potentially useful features and extensions such as the use of a category-
specific decision layer or the extraction of descriptive category keywords from the
probabilistic profile.

1 Overview

This paper describes NRC’s entry to the Anomaly Detection/Text Mining
competition organised at the Text Mining Workshop 2007.1 We relied on an
implementation of a previously described probabilistic categoriser [4]. One of
its desirable features is that the training phase is extremely fast, requiring
only a single pass over the data to compute the summary statistics used
to estimate the parameters of the model. Prediction requires the use of an
iterative maximum likelihood technique (Expectation Maximisation, or EM,
[1]) to compute the posterior probability that each document belongs to each
category.

Another attractive feature of the model is that the probabilistic profiles as-
sociated with each class may be used to describe the content of the categories.
Indeed, even though, by definition, class labels are known in a categorisation
task, those labels may not be descriptive. This was the case for the contest
data, for which only category number were given. It is also the case for exam-
ple with some patent classification systems (eg a patent on text categorization

1 http://www.cs.utk.edu/tmw07/
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may end up classified as “G06F 15/30” in the international patent classifica-
tion, or “707/4” in the U.S.).

In the following section, we describe the probabilistic model, the training
phase and the prediction phase. We also address the problem of providing
multiple labels per documents, as opposed to assigning each document to a
single category. We also discuss the issue of providing a confidence measure
for the predictions and describe the additional layer we used to do that. Sec-
tion 3 describes the experimental results obtained on the competition data.
We provide a brief overview of the data and we present results obtained both
on the training data (estimating the generalisation error) and on the test data
(the actual prediction error). We also explore the use of category-specific de-
cisions, as opposed to on global decision layer, as used for the competition.
We also show the keywords extracted for each category and compare those to
the official class description provided after the contest.

2 The probabilistic model

Let us first formalise the text categorisation problem, such as proposed in the
Anomaly Detection/Text Mining competition. We are provided with a set of
M documents {di}i=1...M and associated labels ℓ ∈ {1, . . . C} where C is the
number of categories. These form the training set D = {(di, ℓi)}i=1...M . Note
that, for now, we will assume that there is only one label per document. We will
address the multi-label situation later in section 2.3. The text categorisation
task is the following: given a new document d̃ 6∈ D, find the most appropriate
label ℓ̃. There are mainly two flavours of inference for solving this problem
[15]. Inductive inference will estimate a model f̂ using the training data D,

then assign d̃ to category f̂(d̃). Transductive inference will estimate the label

ℓ̃ directly without estimating a general model.
We will see that our probabilistic model shares similarities with both. We

estimate some model parameters, as described in section 2.1, but we do not use
the model directly to provide the label of new documents. Rather, prediction
is done by estimating the labelling probabilities by maximising the likelihood
on the new document using an EM-type algorithm, cf. section 2.2.

Let us now assume that each document d is composed of a number of words
w from a vocabulary V. We use the bag-of-word assumption. This means that
the actual order of words is discarded and we only use the frequency n(w, d)
of each word w in each document d. The categoriser presented in [4] is a model
of the co-occurrences (w, d). The probability of a co-occurrence, P (w, d) is a
mixture of C multinomial components, assuming one component per category:

P (w, d) =

C∑

c=1

P (c)P (d|c)P (w|c) (1)
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= P (d)

C∑

c=1

P (c|d)P (w|c)

This is in fact the model used in Probabilistic Latent Semantic Analysis

(PLSA, cf. [8]), but used in a supervised learning setting. The key modelling
aspect is that documents and words are conditionally independent, which
means that within each component, all documents use the same vocabulary
in the same way. Parameters P (w|c) are the profiles of each category (over the
vocabulary), and parameters P (c|d) are the profiles of each document (over
the categories). We will now show how these parameters are estimated from
the training data.

2.1 Training

The (log-)likelihood of the model with parameters θ = {P (d);P (c|d);P (w|c)}
is:

L(θ) = log P (D|θ)

=
∑

d

∑

w∈V

n(w, d) log P (w, d), (2)

assuming independently identically distributed (iid) data.
Parameter estimation is carried out by maximising the likelihood. Assum-

ing that there is a one-to-one mapping between categories and components
in the model, we have, for each training document, P (c = ℓi|di) = 1 and
P (c 6= ℓi|di) = 0, for all i. This greatly simplifies the likelihood, which may
now be maximised analytically. Let us introduce |d| =

∑
w n(w, d) the length

of document d, |c| =
∑

d∈c |d| the total size of category c (using the shorthand
notation d ∈ c to mean all documents di such that ℓi = c), and N =

∑
d |d| the

number of words in the collection. The Maximum Likelihood (ML) estimates
are:

P̂ (w|c) =
1

|c|

∑

d∈c

n(w, d) and P̂ (d) =
|d|

N
(3)

Note that in fact only the category profiles P̂ (w|c) matter. As shown below,

the document probability P̂ (d) is not used for categorising new documents (as
it is irrelevant, for a given d).

The ML estimates in eq. 3 are essentially identical to those of the Näıve
Bayes categoriser [12]. The underlying probabilistic models, however, are def-
initely different, as illustrated on figure 1 and shown in the next section. One
key consequence is that the probabilistic model in eq. 1 is much less sensitive
to smoothing than Näıve Bayes.

It should be noted that the ML estimates rely on simple corpus statistics
and can be computed in a single pass over the training data. This contrasts
with many training algorithm that rely on iterative optimisation methods. It
means that training our model is extremely computationally efficient.
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Fig. 1. Graphical models for Näıve Bayes(left) and for the probabilistic model used
here (right).

2.2 Prediction

Note that eq. 1 is a generative model of co-occurrences of words and docu-
ments within a given collection {d1 . . . dn} with a set vocabulary V. It is not

a generative model of new documents, contrary to, for example, Näıve Bayes.
This means that we can not directly calculate the posterior probability P (d̃|c)
for a new document.

We obtain predictions by folding in the new document in the collection.
As document d̃ is folded in, the following parameters are added to the model:
P (d̃) and P (c|d̃),∀c. The latter are precisely the probabilities we are interested
in for predicting the category labels. As before, we use a Maximum Likelihood
approach, maximising the likelihood for the new document:

L̃ =
∑

w

n(w, d̃) log P (d̃)
∑

c

P (c|d̃)P (w|c) (4)

with respect to the unknown parameters P (c|d̃).
The likelihood may be maximised using a variant of the Expectation Max-

imisation (EM, cf. [1]) algorithm. It is similar to the EM used for estimating
the PLSA model (see [8, 4]), with the constraint that the category profiles
P (w|c) are kept fixed. The iterative update is given by:

P (c|d̃)← P (c|d̃)
∑

w

n(w, d̃)

|d̃|

P (w|c)
∑

c P (c|d̃)P (w|c)
(5)

The likelihood (4) is guaranteed to be strictly increasing with every EM
step, therefore equation 5 converges to a (local) minimum. In the general case
of unsupervised learning, the use of deterministic annealing [14] during pa-
rameter estimation helps reduce sensitivity to initial conditions and improves
convergence (cf. [8, 4]). Note however that as we only need to optimise over
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a small set of parameters, such annealing schemes are typically not necessary
at the prediction stage. Upon convergence, the posterior probability estimate
for P (c|d̃) may be used as a basis for assigning the final category label(s) to

document d̃.
Readers familiar with Non-negative Matrix Factorization (NMF, cf. [10])

will have noticed that eq. 5 is very similar to one of the update rules used for
estimating the NMF that minimises a KL-type divergence between the data
and the model. Indeed, the unsupervised counterpart to our model, PLSA,
is essentially equivalent to NMF in this context [3]. Therefore, another way
of looking at the categorisation model described in this paper is in fact to
view it as a constrained NMF problem, with the category labels providing the
constraint on one of the factors (the loading).

The way the prediction is obtained also sheds some light on the difference
between our method and a Näıve Bayes categoriser. In Näıve Bayes, a cate-
gory is associated with a whole document, and all words from this document
must then be generated from this category. The occurrence of a word with
a low probability in the category profile will therefore impose an overwhelm-
ing penalty to the category posterior P (c|d). By contrast, the model we use
here assigns a category c to each co-occurrence (w, d), which means that each
word may be sampled from a different category profile. This difference mani-
fests itself in the re-estimation formula for P (c|d̃), eq. 5, which combines the
various word probabilities as a sum. As a consequence, a very low probabil-
ity word will have little influence on the posterior category probability and,
more importantly, will not impose an overwhelming penalty. This key differ-
ence also makes our model much less sensitive to probability smoothing than
Näıve Bayes. This means that we do not need to set extra parameters for the
smoothing process. In fact, up to that point, we do not need to set any extra
hyper-parameter in either the training or the prediction phases.

As an aside, it is interesting to relate our method to the two paradigms of
inductive and transductive learning [15]. The training phase seems typically
inductive: we optimise a cost function (the likelihood) to obtain one optimal
model. Note however that this is mostly a model of the training data, and it
does not provide direct labelling for any document outside the training set.
At the prediction stage, we perform another optimisation, this time over the
labelling of the test document. This is in fact quite similar to transductive

learning. As such, it appears that our probabilistic model shares similarities
with both learning paradigms.

We will now address two important issues of the Anomaly Detection/Text
Mining competition that require some extensions to the basic model that we
have presented. Multi-label categorisation is addressed in section 2.3 and the
estimation of a prediction confidence is covered in section 2.4.
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2.3 Multi-class,

So far, the model we have presented is strictly a multi-class, single-label cate-
gorisation model. It can handle more than 2 classes (C > 2) but the random
variable c indexing the categories takes a single value in a discrete set of C
possible categories.

The Anomaly Detection/Text Mining competition is a multi-class, multi-

label categorisation problem: each document may belong to multiple cate-
gories. In fact, although most documents have only one or two labels, one
document, number 4898, has 10 labels (out of 22), and 5 documents have
exactly 9 labels.

One principled way to extend our model to handle multiple labels per
document is to consider all observed combinations of categories and use these
combinations as single “labels”, as described eg in [11]. On the competition
data, however, there are 1151 different label combinations with at least one as-
sociated document. This makes this approach hardly practical. An additional
issue is that considering label combinations independently, one may miss some
dependencies between single categories. That is, one can expect that combina-
tions (C4, C5, C10) and (C4, C5, C11) may be somewhat dependent as they
share two out of three category labels. This is not modelled by the basic “all
model combinations” approach. Although dependencies may be introduced
as described for example in [7], this adds another layer of complexity to the
system. In our case, the number of dependencies to consider between the 1151
observed label combinations is overwhelming.

Another approach is to reduce the multiple labelling problem to a number
of binary categorisation problems. With 22 possible labels, we would therefore
train 22 binary categorisers and use them to take 22 independent labelling
decisions. This is an appealing and usually successful approach, especially with
powerful binary categorisers such as Support Vector Machines [9]. However, it
still mostly ignores dependencies between the individual labels (for example
the fact that labels C4 and C5 are often observed together) and it multiplies
the training effort by the number of labels (22 in our case).

Our approach is actually somewhat less principled than the alternatives
mentioned above, but a lot more straightforward. We rely on a simple thresh-
old a ∈ [0; 1] and assign any new document d̃ to all categories c such that

P (c|d̃) ≥ a. In addition, as all documents in the training set have at least

one label, we make sure that d̃ always gets assigned the label with the high-
est P (c|d̃), even if this maximum is below the threshold. This threshold is
combined with the calculation of the confidence level as explained in the next
section.

2.4 Confidence estimation

A second important issue in the Anomaly Detection/Text Mining competition
is that labelling has to be provided with an associated confidence level.
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The task of estimating the proper probability of correctness for the output
of a categoriser is sometimes called calibration [16]. The confidence level is then
the probability that a given labelling will indeed be correct, ie labels with a
confidence of 0.8 will be correct 80% of the time. Unfortunately, there does not
seem to be any guarantee that the cost function used for the competition will
be optimised by a “well calibrated” confidence (cf. section 3.2 below). In fact
there is always a natural tension between calibration and performance. Some
perfectly calibrated categorisers can show poor performance; Conversely, some
excellent categorisers (for example Support Vector Machines) may be poorly
or not calibrated.

Accordingly, instead of seeking to calibrate the categoriser, we use the
provided score function, Checker.jar, to optimise a function that outputs the
confidence level, given the probability output by the categoriser. In fields
like speech recognition, and more generally in Natural Language Processing,
confidence estimation is often done by adding an additional Machine Learning
layer to the model [5, 2], using the output of the model and possibly additional,
external features measuring the level of difficulty of the task. We adopt a
similar approach, but using a much simpler model.

The confidence layer transforms the conditional probability output by the
model, P (c|d̃), into a proper confidence measure by using a piecewise linear
function with two parameters (figure 2). One parameter is the probability
threshold a, which determines whether a label is assigned or not; the second
is a baseline confidence level b, which determines what confidence we give
a document that is around the threshold. The motivation for the piecewise-
linear shape is that it seems reasonable that the confidence is a monotonic
function of the probability, ie if two documents d̃1 and d̃2 are such that a <
P (c|d̃1) < P (c|d̃2), then it makes sense to give d̃2 a higher confidence to have

label c than d̃1. Using linear segments is a parsimonious way to implement
this assumption.

Let us note that the entire model, including the confidence layer, relies on
only two learning parameters, a and b. These parameters may be optimised
by maximising the score obtained on a prediction set or a cross-validation
estimator, as explained below.

2.5 Category description

The model relies on probabilistic profiles P (w|c) which represent the proba-
bility of each word of the vocabulary to be observed in documents of category
c. These profiles allow us to identify which words are more typical of each
category, and therefore may provide a way to interpret the data by providing
descriptive keywords for each category.

Notice that the simplest way of doing this, by focusing on words w with the
highest probabilities P (w|c), is not very efficient. First of all, the probability
profile is linked to the frequency of words in the training corpus (eq. 3),
and high frequency words tend to be grammatical (“empty”) words with no
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Confidence vs. posterior probability

P(c|d)

C
on

fid
en

ce
0 a 1

0
b

1

label=1label=−1

Fig. 2. The piecewise linear function used to transform the posterior probability
into a confidence level.

descriptive content. Even when grammatical words have been filtered out,
words typical of the general topic of the collection (eg related to planes and
aviation in the contest corpus, see below) will tend to have high frequency in
many categories.

In order to identify words that are typical of a class c, we need to identify
words that are relatively more frequent in c than in the rest of the categories.
One way of doing that is to contrast the profile of the category P (w|c) and the
“profile” for the rest of the data, i.e. P (w|¬c) ∝

∑
γ 6=c P (w|γ). We express the

difference between the two distributions by the symmetrised Kullback-Leibler
divergence:

KL(c,¬c) =
∑

w

(P (w|c)− P (w|¬c)) log
P (w|c)

P (w|¬c)︸ ︷︷ ︸
kw

(6)

Notice that the divergence is an additive sum of word-specific contributions
kw. Words with a large value of kw contribute the most to the overall diver-
gence, and hence to the difference between category c and the rest. As a con-
sequence, we propose as keywords the words w for which P (w|c) > P (w|¬c)
and kw is the largest.2 In the following section, we will see how this strategy
allows to extract keywords that are related to the actual description of the
categories.

3 Experimental results

We will now describe some of our experiments in more details and give some
results obtained both for the estimated prediction performance, using only

2 Alternatively, we can rank words according to k̃w = kwsign(P (w|c) − P (w|¬c)).
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the training data provided for the competition, and on the test set using the
labels provided after the competition.

3.1 Data

The available training data consists of 21519 reports categorised in up to 22
categories. Some limited pre-processing was performed by the organisers, eg
tokenisation, stemming, acronym expansion and removal of places and num-
bers. This pre-processing makes it non-trivial for participants to leverage their
own in-house linguistic pre-processing. On the other hand, it places contes-
tants on a level-playing field, which puts the emphasis on differences in the
actual categorisation method, as opposed to differences in pre-processing.3

The only additional pre-processing we performed on the data was stop-
word removal, using a list of 319 common words. Similar lists are available
many places on the Internet. After stop-word removal, documents were in-
dexed in a bag-of-word format by recording the frequency of each word in
each document.

In order to obtain an estimator of the prediction error, we organised the
data in a 10-fold cross-validation manner. We randomly re-ordered the data
and formed 10 splits: 9 containing 2152 documents, and one with 2151 docu-
ment. We then trained a categoriser using each subset of 9 splits as training
material, as described in section 2.1, and produced predictions on the remain-
ing split, as described in 2.2. As a result, we obtain 21519 predictions on which
we optimised parameters a and b.

Note that the 7077 test data on which we obtained the final results reported
below were never used during the estimation of either model parameters or
additional decision parameters (thresholds and confidence levels).

3.2 Results

The competition was judged using a specific cost function combining pre-
diction performance and confidence reliability. For each category c, we com-
pute the area under the ROC curve, Ac, for the categoriser. Ac lies between
0 and 1, and is usually above 0.5. In addition, for each category c, denote
tic ∈ {−1,+1} the target label for document di, yic ∈ {−1,+1} the predicted
label and qic ∈ [0; 1] the associated confidence. The final cost function is:

Q =
1

C

C∑

c=1

(2Ac − 1) +
1

M

M∑

i=1

qicticyic (7)

Given predicted labels and associated confidence, the reference script
Checker.jar provided by the organisers computes this final score. A perfect

3 In our experience, differences in pre-processing typically yield larger performance
gaps than differences in categorisation method.
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prediction with 100% confidence yields a final score of 2, while a random
assignment would give a final score around 0.

Using the script Checker.jar, on the cross-validated predictions, we opti-
mised a and b using alternating optimisations along both parameters. The
optimal values used for our submission to the competition are a = 0.24 and
b = 0.93, indicating that documents are labelled with all categories that have
a posterior probability higher than 0.24, and the minimum confidence is 0.93.
This seems like an unusually high baseline confidence (ie we label with at least

93% confidence). However, this is not surprising if one considers the expression
of the cost function (eq. 7) more closely. The first part is the area under the
curve: this depends only on the ordering. Although the ordering is based on
the confidence levels, it only depends on the relative, not the absolute, values.
For example, with our confidence layer, the ordering is preserved regardless
of the value of b, up to numerical precision.

On the other hand, the second part of the cost function (7) directly in-
volves the confidence estimates qic. The value of this part will increase if we
can reliably assign high confidence (qic ≈ 1) to correctly labelled documents
(tic = yic) and low confidence (qic ≈ 0) to incorrectly labelled documents
(tic 6= yic). However, if we could reliably detect such situations, we would
arguably be better off swapping the label rather than downplay its influence
by assigning it low confidence. So assuming we can not reliably do so, ie qic

and ticyic are independent, the second part of the cost becomes approximately
equal to q(2×MCE−1), with q the average confidence and MCE the misclas-

sification error, MCE = 1/M
∑

i(tic 6= yic). So the optimal strategy under
this assumption is to make q as high as possible by setting qic as close to 1
as possible, while keeping the ordering intact. This explains why a relatively
high value of b turned out to be optimal. In fact, using a higher precision in
our confidence levels, setting b to 0.99 or higher yields even better results.4

Using the setting a = 0.24 and b = 0.93, the cross-validated cost is about
1.691. With the same settings, the final cost on the 7,077 test documents
is 1.689, showing an excellent agreement with the cross-validation estimate.
In order to illustrate the sensitivity of the performance to the setting of the
two hyper-parameters a and b, we plot the final cost obtained for various
combinations of a and b, as shown in figure 3. The optimal setting (cross)
is in fact quite close to the cross-validation estimate (circle). In addition, it
seems that the performance of the system is not very sensitive to the precise
values of a and b. Over the range plotted in figure 3, the maximal score (cross)
is 1.6894, less than 0.05% above the CV-optimised value, and the lowest score
(bottom left) is 1.645, 2.5% below. This means that any setting of a and b in
that range would have been within 2.5% of the optimum.

4 Note however that setting b to higher value only yields marginal benefits in terms
of final cost.
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Fig. 3. Score for various combinations of a and b. The best (maximum) test score
is indicated as a cross, the optimum estimated by cross-validation (CV) is a = 0.24
and b = 0.93, indicated by a circle.

We also measured the performance using some more common and intuitive
metrics. For example, the overall mislabelling error rate is 7.22%, and the
micro-averaged F -score is a relatively modest 50.05%.

Note however that we have used a single confidence layer, and in par-
ticular a single labelling threshold a, for all categories. Closer inspection of
the performance on each category shows quite a disparity in performance,
and in particular in precision and recall, across the categories.5 This suggests
that the common value of the threshold a may be too high for some cate-
gories (hence low recall) and too low for others (hence low precision). Using
the cross-validated prediction, we therefore optimised some category-specific
thresholds using various metrics:

• Maximum F -score
• Break-even point (ie point at which precision equals recall)
• Minimum error rate

For example, for maximum F -score, we optimised 22 thresholds, one per cat-
egory, by maximising the F -score for each category on the cross-validated
predictions.

Table 1 shows the performance obtained on the test data for all 22 cate-
gories, using category-specific, maximum F -score optimised thresholds. Per-
formance is expressed in terms of the standard metrics of precision, recall and
F-score. The performance varies a lot depending on the category. However
there does not seem to be any systematic relation between the performance

5 Precision estimates the probability that a label provided by the model is correct,
while recall estimates the probability that a reference label is indeed returned by
the model [6]. F-score is the harmonic average of precision and recall.
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Category #docs p (%) r (%) F (%)

C1 435 64.99 83.22 72.98
C2 3297 46.72 99.57 63.60
C3 222 74.06 79.73 76.79

C4 182 52.15 59.89 55.75
C5 853 80.07 75.38 77.66

C6 1598 51.33 80.98 62.83
C7 546 36.38 77.29 49.47
C8 631 55.32 67.51 60.81
C9 168 59.30 60.71 60.00
C10 349 37.21 58.74 45.56
C11 161 77.44 63.98 70.06

Category #docs p (%) r (%) F (%)

C12 918 72.02 79.08 75.39

C13 687 51.21 55.46 53.25
C14 393 68.73 70.48 69.60
C15 183 30.61 24.59 27.27
C16 314 32.93 60.83 42.73
C17 162 45.22 43.83 44.51
C18 351 57.30 58.12 57.71
C19 1767 61.54 80.42 69.73
C20 229 72.40 69.87 71.11
C21 137 78.79 56.93 66.10
C22 233 88.66 73.81 80.56

Table 1. Performance of the probabilistic model: precision, recall and F -score for
each of the 22 categories. Low (< 50%) scores are in italics and high (> 75%) scores
are in bold. Column “# docs” contains the number of test documents with the
corresponding label.

and the size of the categories. The worst, but also the best performance are
observed on small categories (less that 250 positive test documents). This
suggests that the variation in performance may be simply due to varying in-
trinsic difficulty of modelling the categories. The best F-scores are observed
on categories C3, C5, C12 and C22, while categories C15, C16, C17, C10 and
C7 get sub-50% performance.

The average performance is presented in table 2 for our submission to the
competition, as well as for three different strategies for optimising a category-
per-category threshold. One weakness of the original submission was the low
recall, due to the fact that a single threshold was used for all 22 categories.
This produces a relatively low average F -score of 50.05%. By optimising the
threshold for each category over various performance measures, we largely
improve over that. Not surprisingly, optimising the thresholds for F -scores
yields the best test score of 63.51%, although both the misclassification error
and the final cost degrade using this strategy. Optimising the threshold for
reducing the misclassification error reduces the test misclassification error6

to 6.80% and improves the final cost slightly, to 1.702. Notice however that,
despite a large impact on F -score and MCE, using category-specific decision
thresholds optimised over various thresholds seems to have little impact on
the final cost, which stays within about 0.8% of the score of our submission.

3.3 Category description

The only information provided by the organisers at the time of the contest
was the labelling for each document, as a number between 1 and 22. This data

6 For 7077 test documents with 22 possible labels, reducing the MCE by 0.1%
corresponds to correcting 156 labelling decisions.
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p (%) r (%) F (%) MCE (%) Final cost

Our submission 64.87 40.74 50.05 7.22 1.689

Maximum F-score 53.30 78.55 63.51 8.01 1.678
Break-even point 58.88 67.35 62.83 7.07 1.697
Minimum error 61.53 62.37 61.95 6.80 1.702

Table 2. Micro-averaged performance for our contest submission, and three thresh-
old optimisation strategy. Highest is best for precision(p), recall (r), F -score (F )
and final cost (eq. 7), and lowest is best for misclassification error (MCE).

therefore seemed like a good test bed for applying the category description
technique described above, and see whether the extracted keywords brought
any information on the content of the categories.

Table 3 shows the results we obtained on about half the categories by
extracting the top 5 keywords. For comparison, we also extracted the 5 words
with highest probability (first column), and we also give the official category
description from the Distributed National Aviation Safety Action Program
Archive (DNAA), which were released after the competition.

Based on only 5 keywords, the relevance of the keywords provided by ei-
ther highest probability or largest divergence and their mapping to the official
category descriptions are certainly open to interpretation. The most obvious
problem with the choice of the highest probability words, however, is that the
same handful of keywords seem to appear in almost all categories. The words
“aircraft” is among the top-5 probability in 19 out of 22 categories! Although
it is obviously a very relevant and common word for describing issues dealing
with aviation, it is clearly not very useful to discriminate the content of one
category versus the others. The other frequent members of the top-5 highest
probability are: runway (14 times), airport (11), approach (11), feet (9) and
land (9). These tend to “pollute” the keyword extraction: for example in cat-
egory C8 (Course deviation), 3 out of the 5 highest probability keywords are
among these frequent keywords and bring no relevant descriptive information.
The remaining 2 keywords, “turn” and “degree”, on the other hand seem like
reasonable keywords to describe course deviation problems. By contrast, the
five words contributing to the largest divergence, “degree”, “turn”, “head”,
“radial” and “course” appear as keywords only for this category, and they
all seem topically related to the corresponding problem. For the largest diver-
gence metric, kw, the word selected most often in the top-5 is “runway”, which
describes 6 categories containing problems related to take-off or landing (eg
C3, C4, C5 and C6). Other top-5 keywords appear in at most 4 categories.
This suggests that using kw instead of P (w|c) yields more diverse and more
descriptive keywords.

This is also supported by the fact that only 32 distinct words are used
in the top-5 highest probability keywords over the 22 categories, while the
top-5 largest kw selects 83 distinct words over the 22 categories. This further
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reinforces the fact that kw will select more specific keywords, and discard the
words that are common to all categories in the corpus.

This is well illustrated on category C13 (Weather Issue). The top-5 prob-
ability words are all among the high probability words mentioned above. By
contrast, the top-5 kw are all clearly related to the content of category C13,
such as “weather”, “cloud”, “ice” or “thunderstorm”.

Overall, we think that this example illustrates the shortcomings of the
choice of the highest probability words to describe a category. It supports our
proposition to use instead words that contribute most to the divergence be-
tween one categroy and the rest. These provide a larger array of keywords and
seem more closely related to the specificities of the categories they describe.

4 Summary

We have presented the probabilistic model that we used in NRC’s submission
to the Anomaly Detection/Text Mining competition at the Text Mining Work-
shop 2007. This probabilistic model may be estimated from pre-processed,
indexed and labelled documents with no additional learning parameters, and
in a single pass over the data. This makes it extremely fast to train. On the
competition data, in particular, the training phase takes only a few seconds
on a current laptop. Obtaining predictions for new test documents requires a
bit more calculations but is still quite fast. One particularly attractive feature
of this model is that the probabilistic category profiles can be used to provide
descriptive keywords for the categories. This is useful in the common situation
where labels are known only as codes and the actual content of the categories
may not be known to the practitioner.

The only training parameters we used are required for tuning the decision
layer, which selects the multiple labels associated to each documents, and
estimates the confidence in the labelling. In the method that we implemented
for the competition, these parameters are the labelling threshold, and the
confidence baseline. They are estimated by maximising the cross-validated
cost function.

Performance on the test set yields a final score of 1.689, which is very
close to the cross-validation estimate. This suggests that despite its apparent
simplicity, the probabilistic model provides a very efficient categorisation. This
is actually corroborated by extensive evidence on multiple real-life use cases.

The simplicity of the implemented method, and in particular the some-
what rudimentary confidence layer, suggests that there may be ample room
for improving the performance. One obvious issue is that the ad-hoc layer
used for labelling and estimating the confidence may be greatly improved by
using a more principled approach. One possibility would be to train multiple
categorisers, both binary and multi-category, and use the output of these cat-
egorisers as input to a more complex model combining this information into a
proper decision associated with a better confidence level. This may be done for
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Categ Highest
probability

Largest
divergence

Official DNAA category description

C1 aircraft
maintain
minimume-
quipmentlist
check flight

minimume-
quipmentlist
maintain
install defer
inspect

Airworthiness/Documentation Event: An
event involving a incorrect or incomplete
airworthiness or documentation require-
ment

C2 aircraft
runway
airport
feet
approach

security
flight
board
agent
airspace

Operation in noncompliance - FARs, pol-
icy/procedures: An event involving a vi-
olation, deviation or non-compliance by
the crew which involved a policy, proce-
dure or FAR.

C3 runway takeoff
aircraft clear
tower

takeoff abort
runway reject
roll

Rejected Takeoff: An event involving a re-
jected takeoff

C4 runway
aircraft land
taxiway left

brake taxiway
runway
damage grass

Excursion: An event involving the loss of
control or inadvertent control of an air-
craft from the designated airport surface

C5 runway
aircraft
taxiway
taxi hold

runway
taxiway
taxi hold
short

Incursion: An event involving a vehicle,
person, object or other aircraft that cre-
ates a collision hazard or results in loss of
separation with an aircraft

C8 runway turn
airport degree
approach

degree turn
head radial
course

Course Deviation: An event involving a
deviation from an assigned or planned
course

C9 feet knot
aircraft
approach
speed

knot speed
slow knotsindi-
catedairspeed
airspeed

Speed Deviation: An event involving a de-
viation from a planned or assigned air
speed

C10 aircraft
runway
approach
land feet

brake knot
wind autopilot
damage

Uncommanded/Unintended State or loss
of control: An event involving an uncom-
manded, unintended state or loss of con-
trol of the aircraft

C11 approach feet
airport runway
descend

approach
groundproxi-
mitywarning-
system terrain
feet glideslope

Terrain Proximity Event: An event in-
volving the aircraft operating in close
proximity to terrain.

C13 airport feet
approach
aircraft
runway

weather
turbulent
cloud
encounter ice
thunderstorm

Weather Issue/ Weather Proximity
Event: An event involving a weather
issue or aircraft operating in proximity
to weather.

Table 3. Keywords extracted for 12 of the contest categories using either the highest
probability words or the largest contributions to the KL divergence. For comparison,
the official description from the DNAA, released after the competition, is provided.
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example using a simple logistic regression. Note that one issue here is that the
final score used for the competition, eq. 7, combines a performance-oriented
measure (area under the ROC curve) and a confidence-oriented measure. As
a consequence, and as discussed above, there is no guarantee that a well-
calibrated classifier will in fact optimise this score. Also, this suggests that
there may be a way to invoke multi-objective optimisation in order to further
improve the performance.

Among other interesting topics, let us mention the sensitivity of the
method to various experimental conditions. In particular, although we have
argued that our probabilistic model is not very sensitive to smoothing, it may
very well be that a properly chosen smoothing, or similarly, a smart feature
selection process, may further improve the performance. In the context of
multi-label categorisation, let us also mention the possibility to exploit de-
pendencies between the classes, for example using an extension of the method
described in [13].
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