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Influence of Diffusivity on the Transmission Loss of a 
Single-Leaf Wall 

A. DE BKUIJN 

D i v i s i o ~ ~  of Br~ i ld i r~g  I;ese~~rclr, Natiorial Researclr Cor~r~ci l ,  Oltau~a, Orllnrin, Carrada 

Crerner's theory of sountl Lransmission for a single-leaf wall is transformed into a more general formulation in 
which the exciting pressure is e~pressed in terms of the spatial cross-correlation. The  correlation coefficient 
was nlcasured in a reverberation room just in front of the nrall untler test. The  souncl-transmission loss of a 
single gypsum-board wall was calculated employing these diffusivity n1e;lsurements and compared wit11 
crperimental data. Agreement b e h e e n  theory ant1 experiment is good, especially in the frequency range 
below the coincidence frequency. I ' ina l ly ,~  few fictitious quasidiffuse sound fields are investigated in further 
study of the influence of the degrec of diffusivily upon transmission loss. 

INTRODUCTION 

Sound-transmission loss through a single panel is not 
yet coinplete1~- understood. Cremer's theory' regarding 
the influence of the various parameters on transmission 
loss has been the most informative to date. I t  assumes 
that a panel estends to infinity and that sound waves 
induce silnplc fleuural w:~vcs in the panel. 'I'he lirst 
essential step in thv anal! sis is the dvtennination of the 
transmission loss for a wall escited by a plane wave 
incident under a certain angle 0. I t  may be seen that the 
transmission-loss factor is a rather complicated function 
of the angle of incidence. The transmission loss for a 
diffusively incident sound field is obtained by averaging 
transmission loss with respect to the angle of incidence 
with the appropriate weighting function. 

The  resulting expression is a complicated function 
and an exact integration has not been performed. 
Northwood%used a numerical integration method and 
obtained figures for a number of examples. The numer- 
ical data agreed reasonably well with experimental data 
if some correction was included. 

Assun~ption of internal friction in the material is 
quite natural froin a physical point of view. Assumption 
of a coinples Young's modulus provides the easiest 
method of including the damping of the material, the 
imaginary part representing the damping factor. The 
influence of darnping is very iinportant above the coinci- 
dence frequency range. I t  is essential in this range to 
make a proper choice of values in order to match theo- 
retical with experimental data. In  practice, however, 
the panel is finite, and it might be expected that the 

treatment of the edges would have sonle bearing up011 
transn~ission loss. The model might therefore be too 
simple to predict the finer points. 

Another important feature for better agreement 
between e~periment and practice below coincidence is 
the introduction of additional suppositions concerning 
the incident sound field. As has been explained, the most 
appropriate inoclel for a diffuse sound field is the super- 
position of plane waves travelling in all directions. In  
the middle of the reverberation chamber this mathe- 
matical model is correct, but  near the walls one could 
expect divergences from the ideal case. One way out of 
this difficulty is the supposition of a lack of grazing 
incident waves, i.e., plane waves with angles of incidence 
more than, say, 85'. In  other words, an integration with 
respect to the angle of incidence from 0=O0 to 0 = 8 j 0  
in Cremer's formulation yields much better results in 
matching theory and practice. Again, there is a weak- 

ness in Cremer's analysis: the lack of a good representa- 

tion of the sound field exciting the panel. 

Gershmann3 and Cook4 have indicated that the cor- 
relation function in space n ight  be a powerful quantity 
for characterizing the measure of diffusivity. Cook 
obtained a simple formula for the cross-correlation 
coefficient by averaging the cross-correlation coefficient 
for a plane wave over all angles of incidence. In  the 
middle of a reverberation room, the experimental data 
fit the theoretical curve4r5 reasonably well. In field 
measurements, there may be deviations from ideal 
diffusivity. The correlation coefficient might be the most 
useful parameter to describe the sound field. Hence, 
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Cook's formula will be replaced by one that takes such I. RANDOM VIBRATION THEORY OF 

deviations into account. TRANSMISSION LOSS 

It is essential to change to randoin vibration inethods A. Basic Theory of Random Vibrations - 
to acquire a better comprehension of the important 
features governing transnlission loss. If energy froin 
the incident sound field has been accepted b ~ -  the plate, 
part  of it will be radiated into the media around the 
plate and the remainder will be dissipated into the 
plate. Internal friction of the inaterial and damping a t  
the edges of the panel are responsible for the energy 
dissipation in the panel. The  treatinent of the edges 
(supported or clamped) and the connection of studs and 
joists are uncertain factors in the analysis. The influence 
of damping is in general small, but for prediction of the 
finer details of transmission loss it is the inost difficult 
problem to handle. Radiation eificiencj- is rather a\vb- 
ward to predict, but it is iinportant for successful 
application of the rand oil^ vibration method. From a 

reciprocity argument, the radiation eflicicncy is asso- 
ciated with the response of the structure to the incident 
sound field. Hence, the transn~ission of noise through 
a plate is a problem combining response to a sound field 
and radiation of sound. 

An important phenomenon, "coincidence," provides 
inajor complications foi a better understanding of trans- 
inission loss. The wavenumber of the flexural vibration 
in the plate is about eclual to the wavenumber of the 
fluid medium of the environment. I11 this frequency 
legion, the difference between data obtained froin 
C~einer's theory and e~perimental  data is still quite 
large. The  difficulty ensues froin the improper definition 
of the radiation efficiency in this region, because the 
boundary condition a t  the edges seems to be important. 
Cremer's theor)., which ignores the elTect of edges and 
the size of the panel, yields inaccurate results in this 
case. 

The  purposeof this paper is twofold. The  first part 
will be devoted to a randoin vibration approach to 
Cremer's problem, and an attempt will be inade to 
prove that the randoin vibri~tion method, applied to a 
finite plate, gives approximately the salne iesults as 
Cremer's anal) sis. This indicates that  even a finite 
plate can in sonle circunistances act like an infinite 
plate; this is confirnled by experiment. The  secoild part  
presents an analysis of the influence oi the degree of 
dilf~isivity upon transnlission loss. Cremer's ior~n~ilat ion 
will be transformed into a inore general formulation 
which employs the cross-correlatioil coefficient in the 
representation of the exciting pressure. The  correlation 
coefficient was measured in a reverberation room close 
to the wall under test in a number of positions in order 
to obtain an average coefficient. The  average coefficient 
was then employed to calculate the transmission loss 

of a gypsum-board wall. Finally, to extend the analysis 

to a greater range of room conditions, quasidiffuse 

sound fields were investigated with respect to their 

influence upon transnlission loss. 

Assuine a rectangular elastic plate with dimensions 
a and b,  area A ,  and thickness 11. Sound is incident from 
one side and trailsinitted through the plate to the other 
side. The  differential equation governing the vibration 
of the panel is given by 

where w(x,y) represents deflection, B the bending 
stiffness, p, the mass per unit area of the plate, and P 
the coefficient of damping, representing acoustic radin- 
tion load and a structural damping part, and p(x,y,t) is 
the incident sound pressure or external force a t  time t 
and position r(x,y). 

The norinal inode appro:~ch of generalized harinonic 
analysis will be used to determine the response of the 
plate to the randomly varying loading. Small dan~ping 
is assumed, so that  cross-coupling of the modes froin 
this effect can be ignored. 

Consider an entirely ranclonl pressure held acting on 
a panel with a general mode shape +,,,,,(r). The  general- 
ized force is 

the integration being talien over the entire surface A 
of the panel. The  Fourier spectrum of 1,,,,(1) becomes 

The power density spectrum ol the total displacelncnt 
a t  a point r, including all modes, becomesG 

a,, being the damping factor in the -m, nth  mode and 
wmn the circular frequency of the m,.t~th mode. Substitut- 
ing from Eq. 3, we can write Eq. 4 in the form 

668 Volume 47 Number 3 (Port 1) 1970 



I N F L U E N C E  01; L ) I I ~ I ; U S I V I r ~ Y  O N  ' T R A N S M I S S I O N  L O S S  

where, if we let 1-t'= T, ination over all nornlal modes. I t  is inlplied that the 
cross-terms involving different nlodes do not contribute 
to the radiated sound power because of the orthogonality 

P I r r  =[ I J I r r  (6) property of the normal modes. 

The radiated sound power is forlllally given: 

is the cross-power density spectrum ancl 

is the cross-correlation function of the pressure a t  rl 
and r2. The integrals, with respect to the surface '4 in 
Eq. 3, represent the cross-spectral density of the 
generalized forces in the modes IIZ, n and 7, s and will 
be abbreviated to I,,,,,,,(w). Equation 5 is essentially 
Powell's central result.' but Powell wrote the forenanled 
integrals in a difierent way, nornlalizing thein to non- 
di~llensional factors. The function I,,,,,,,,,,(w) gives the 
effectiveness of a randoill forcing field in exciting the 
rtz, 12th mode, and the function I,,,,,,,(o) represents tlie 
contribution froill the coiipling effect between the two 
different inodes ?I$. t~ and 7. s. 

Equation 5 can be split into two series if the response 
spectral densit). is averaged over the surface of the 
plate. I t  is assumed that the cross-tei-ins ?IZ#T, izfs 

contribute nothing to this average because of the 
orthogonality condition, but that the second series 
with ternls involving each inode represents esactly the 
average spectral density over the surface. I n  order to 
obtain the average mean-square velocity, the series 
inay bc multiplied by Aw.w? 'Thus, if all the results 
are talcell together, 

I t  is possible to rewrite Eq. 8 as 

where (.i,,,,,2(w)) reprcsei~ts the average mean-square 
velocity of the panel vibrating in them, 12th mode. Thus, 

B. Transmission Loss of the Plate 

Ecli~ation 8 provides a general fornlula for the average 
mean-square velocity of the plate when escited by a 
randoin incident sound field characterized by a correla- 
tion function pp1,(rl,r2;w). In  order to predict the 
transmission loss, it is essential to determine the sound 
power reradiated from the panel into the medi~inl 
beyond. Every normal lnode produces its own radiated 
sound power, and the total radiation is given by a sum- 

when S,,,(k,) represents the Fourier transfornl of the 
112, 12th lllode $ ,,,,,, which has a velocity amplitude v ,,,,,. 
The definition of the radiation resistance is now given 

by 
2R,,,,,=l',,,,,(w)/(v,,,,?). (10) 

The transmission loss can be considered to be the 
quotient of the illcident power, given by 

[p,,o(w) is the spectral density of the forcing field at 
a reference point 0 1  and the power radiated from the 
panel, viz., 

1 "  
2 w - I m n  (w)Rrnn (w) 

TL= C (11) 
771s 7L I z,,, (w) I 3t11 ppO(W)/Pa~a' 

where, for convenience, I ,,,,,,,,,, (w) is abbreviated to 

I ", 7, (w ) . 
Ecluation 11 seeins to be relatively simple, but the 

quantities I,,,,,(w) and R,,,,,(w) are intricate formulae. 
One siiuplification can be made by observing that 
I,,,,,(w) and R,,,,,(w) have similar fonns, apart froin some 
constants, if I,,,,,(w) is the quantity found for a coin- 
pletely diffuse sound Coinplete diffusion is 
characterized bj- the correlation function, 

I , 1 , ( r , , r2 ;w)=s i ( I a  r - r )  I -  P O  (12) 

With the aid of the Fourier transforin of pp,(rl,rz;w) : 
+l,l,(k,;w) and of the norillal illode $ ,,,,, (r) : S ,,,, (k,), 
the espression for I,,,,,(w) is converted into its wave- 
nunlber representation9 : 

The pe~-formance of the Fourier transfornl of 
ppP(rI,r2;w) turns out to be elementary; p,, is cj71in- 
drically symmetric-i.e., the function depends only 
upon the distance of two points under consideration. 
I n  this case, the Fourier transform reduces to a HanBel 
transf orinlo : 

CO 

@pI,(k.;u) = ~ T L  ppp(r;w)Jd 1 krl 7)7(i7 

= 2apPo(w)ka-' Re(ka2- / k,l"-?. (14) 
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A .  D E  B K U I J N  

The final rcsult for I,,,,,(w) is: The freqileilcy influence function ZnLn(w) needs more 
attention because it contains a convenient property 

P P O ( ~ )  I S,n,,(kr ;w) I 'dkr for simplifying results. The damping factor 6,,, con- 
Is,,, (w) = k------ (I5) tains the radiation load and might contain the internal 

12 a (ha2- I krI ')* damping of the plate. The latter cluantity will be 
removed to a complex Young's modulus, which implics 

Coinparison of Eqs. 9, 10, and 15 exhibits the close 
a natural frequency w,,,,, with an imaginary part. I t  

relation between R,,,(o) and I,,,,(o). From a reciprocity 
develops that 6,,,,, and R,,,, are related by thc following 

principle, one may expect such results. The quantity 
equation : 

I,,,,,(o) indicates how well the incident sound field 
coiiples to a particular normal mode. The  reciprocity 6,,,,= R,,,,,/w,,,,,p,il. 
principle requires that sound radiation must be governed 

(19) 

in the same way by the variables iilvolved in I,,,,,(w).ll This illakes 

I Z,,,,,(w) / 2 =  (App) ' (w~-~, , ,n2)2+4R, , , ,?w' .  (20) 
C. Transmission Loss (TL) of a Large Panel 

1i:rom physical considerations, one can expect that 

transmission loss for a very large panel will approach 

the T L  of an infinite panel. This expectation is now 

prolyed. 

Assume a rectangular panel, supported a t  thc edges. 

The normal inodes are represented by'" 

?'he scluarc 1:ouricr transforill is given bj- 

1 s,,,,, (lz*,lzu) 1 ' 
(2snta)?(2xtzb)%in2(k,a - 111~/2) sin2(lr,b - t~s /2 )  

On substituting this in Eq. 15, an integration \vith 

respect to k, and k,, is carried out. I t  may be observed 

that, for large numbers of ms/a and tis/b, / S ,,,,, (k,,k,,) 1 
peaks sharply around k,=nzs/a and k,=tzs/b. If this 

is the case, then an application of the delta-function 

approximation is valid because only contributions 

around the critical points are significant. In  this way, 

For a very large plate, i.e., when n and b arc large, oilc 
may presume that the normal modes are so close to 
each other that an integration instead of a sunlnlation 
with respect to the inode numbers is permitted. The  
fact that both /Z,,,,(w) i 2  and R,,,,, contain the wave- 
nilmbcr of the plate in quadratic form, viz., 

w,,, ,,= (B/pP) i[m?s2/a2+ t ~ ? s ? / L ~ ] ,  

immediately suggests an application of polar coordi- 
nates. The following step is the determination of the 
number of inodes having resonance frequencies lying in 
the sillall frequency band between w, ,  and w,,,,,+Aw. 
The result is 

AN= ( A  Aw/4x) (pP/B)$, (21) 

which is independent of frequency.13 
The double suin~nation reduces itself to an integration 

with respect to a coordinate lz,, which is defined by 

\\'ith the aid of this coordinatc transformation, wc find 

R ,,,,, =p,,ca,4 Re(l-K,2jk;"-~, (23a) 

~ , , , ~ , ~ = B k , 4 / p ~ ,  (23b) 

I:or the sake of convenience, 
R,,, (a) = Ap,cak, Re (I22 - m2.rr2/a2- n2s2/t2)-4. (18b) 

kn4= ppo2/U. 
Equation 18b is exactly the representation for the 

(24) 

radiation resistance of an infinite panel in which a The quantity Ize represents the wavcnuinbcr of a free- 

flexural wave is travelling with wavenumber [ (?ns /a)Vravel ing wave in an infinite plate a t  frequency w.I4 

+ ( n ~ / b ) ~ ] ? . ~  The wavenumber [ ( m ~ / a ) ~ +  (tzs/b)?]: Combining these results, one obtains an intcgral 

= k a  marks the coincidence phenomenon. formulation, 
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Removing all conunon factors in the numerator and The relation between R,,, and I,,,(w) is broken up, but 
denominator and rearranging the equation, one obtains this is not serious, because it destroys only Cremer's 

simple representation of the TL. I n  the field, ideal 

l 
k;?lz,dk, 

T L  = 2 diffusivity is rarely met. I n  the middle of the reverbera- 

B (kk-kB4)' 
(26) 

tion room, the ideal situation is usually approximated, 

(L) 7 2 x [ 1 - f 3 1 + 1  but diffusivity. in the vicinity I n  field of measurements, the walls one evpects deviations a lack from of 

which is the same equation as has been found by ideal diffusivitj- are alillost certain and must be taken 

crenler1s for free waves in an infinite panel.  hi^ indi- into account. One of the possibilities is to convert Eq. 12 

cates that Cremer7s is not very of an to a more general function that includes parameters for 

oversimplification, since the random vibration Illelhod obtaining a wide variety of correlation functions. The  

is well based on physical principles. Below-coincidence 
sound transnlission is completely governed by the non- 
resonant modes. This proves that airborne sound insula- 

I I I '  
- 

Lion according to the "mass-law" is in fact nonresonant 
transmission. 

Powelll6 has shown that, with certain restrictions, the 
- 

results on infinite-structure and normal-mode methods 
must be equivalent. H e  pointed out the inlportance of - 

damping: even a mediunl-sized panel can act as an 
infinite panel if the damping factor is large enough. A 
difficulty with finite panels arises from the definition of 

- 

radiation resistance. The  delta-function approximation, 
which was used to obtain the simple form for R,,,,, holds 
only for a very large plate. Finite plates show radiation 
resistances that have a slightly different form from those 
represented in Eq. 23. For values of frequency where 
lz,<k,, or below coincidence, radiation can be sinall 
and often negligible, as has been assumed so far. Useful - 0 . 2  - 
investigations concerning the sound radiation below 
coincidence have been carried out by various authors, 

- 0 . 4  I I 1 ,  
including Gijsele,17 Maidanik,* and Nikiforov.lB o 3 6 9 

Sound radiation in the vicinity of k,-k,  provides k a r  

illajor diflici~lties. Further investigatioil concerning the (a) 

iillpact of the finiteness of the panel upon transmission 
loss woi~ld be interesting. The approach employing 70  

statistical nlethods and nonnal-mode techniques is 

extremely useful because it begins with a finite panel. rn 6 0  
a 

Cremer's method does not fit into this context; it : 5 0  
assumes an infinite panel. I n  the present study, the 2 

influence of the condition a t  the edges is negligible. Z 

0 40  

Although it was assumed initially that the edges were VI 

VI - 
supported, the present analysis holds also for clamped s cn 3 0  

Z 

edges, since the delta-function approsilllation for the a = 
C 

Fourier transfornl of the nornlal mode is valid in this = 20 
Z 

case. = 
0 

1 0  

I l ~ l l j l l ~ l l ~ l l ~ l l ~ l l  

- 518 -  I N . G Y P S U M  B O A R D  - 

- - 

- - 
. . . . . .. 

- 

- 

- - 

l l l l l l l l l l l l l  l l l l l l l  
11. INFLUENCE OF DIFFUSIVITY ON 

TRANSMISSION LOSS o 
125 250  5 0 0  1 0 0 0  2000  4000  

The foregoing analysis can be generalized by con- M I D B A N D  F R E Q U E N C Y  I N  H Z  

sidering different field representations for the incident (I>) 

sound pressure. I n  the previous sections, ideal dif- FIG. 1. (a) Correlation coefficient for semidiffuse sound fields 

fusivity represented by the correlation fllnction (Eq. 12) in which the grazing incident waves have been neglected; ~ e r f e c t l y  
cliffuseBo=90°: --; Bo=8j0: - - - - -  e 0 = 7 j 0 :  . . . . . ;(b) sound 

Uras presumed. This equation can be re~laced by a 
transmission loss for a ;-in+ gypsum-boar~ la)-er for c l i~eren t  

different formula afiecting only the quantity I,,,,,(w). incident sound fields of (a). 
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proposed formula is given by Eq. 27 is given by 

s~n(Dk,Irl-r .~I)  @,lp(kr,u) =- 3. 
pp,,(rl,r~;w) = P, .o (~ )  cos (RK, I rl- rz / ) 2DK, 

Dlz, I rl- rz I 
xp,,o(w)(Im{ I k,l2+1z,TCFi- j(D+ B)"l)-t 

~e~p(-CFlz,l r l - r ? / )  . (27) 
XIm{ I k,l ?+ka2[P+j(D-e)?])-!). (28) 

Equation 27 reduces to Eq. 12  if D =  1 alld E= P= 0. F~~ a very large again using delta-fLlllction 
A further advantage of this proposal is its sinlple approsilllations, one obtains an allalogy of E ~ .  18: 

Hankel transform, which is essential in malcing up a 
simple equation for I,,,,(w). The  Hankel transfornl of Inrrc(w)= $ T A @ ~ ~ ( ~ Z ~ O ; ~ ) ,  (29) 
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tions have been carried out in various laboratories and 

I N F L U E N C E  O F  D I F F U S I V I T Y  O N  T R A N S M I S S I O N  L O S S  

plasterboard constructions represent a common com- 
ponent of nlodern buildings. 

where 70 

lzTo= [ ( m ~ / a ) ~ +  (n~ /b )~] f .  
60 

n 
Employing the method used previously to switch froin , 
a sumnlation to an integration, one obtains an equation 2 50 

0 

analogous to Eq. 26 -I 

z 
0 40 - 

" k~~[@,,(kT;w)/cpPo(w)](l -k,?/ka2)~kTrlk, 
m 

m 

I -- - 
T L  = 2 - 

30 
(B/w)?[(Be4 - k,4)'/ (2PY~,)?] (1 - k://~(la) + 1 

Zz u w 

(30) C 20 
Z 

111. DISCUSSION OF RESULTS a o 
'c I 0  

In order to study the effect of degree of diffusivity on 
transnlission loss, a wall material clearly defined in its o 

Physical properties such as elasticity and internal 
damping were measured with the aid of small strips set 
up to vibrate in flexure as cantilever bars. The resonance 

I I I I I I I I I  I I ~ I I I I I ~ I I  

- 518-IN. G Y P S U M  B O A R D  - 
- - 

- 

#.I!... - dI a *  

- - 

- - 

I I I I I I I I I I I I I I I I I ~ I I  

frequency provided the elasticity, and the vibrational 
amplitude a t  resonance provided the damping factor. 
The easiest way to include damping in Eq. 30 is to join 
the elasticity and the damping factors together to form 
a complex Young's nlodulus B1=B(l+ jq). A value for 
I3 of 3.109 N/m2 was found, and for the damping factor 
q a value of 0.012 of critical damping was used for all 
frequencies. A wall 10 by S ft, placed between two 
reverberation rooms, was enlployed to determine trans- 
mission loss. Use of a reasonably large wall for expel-i- 

physical properties was considered. Plasterboard meets 125 250  500 1000 2000 4000 

this requirement. I n  addition, experimental investiga- M I D B A N D  F R E Q U E N C Y  I N  H Z  

merit guaranteed that the nonresonance transmission 
of sound was predominant. The diffusivity of the sound 
field in the source rooin was investigated a t  a number of 
locations close to the wall to discover how diffusivity 

1 2 5  250  500 1000 2000 4000 

M I D B A N D  F R E Q U E N C Y  I N  H z  

m 
6 0  

CI 

2 5 0 -  
0 -I 

Z 

0 40  
m 
m - 
5 3 0 -  
Z 

u c= 

,r 2 0 -  
Z 
z, 
0 ", 10 

0 

FIG. 4. Transmission loss of a ;-in. gypsum-boarcl layer; 
calculatecl with the aid of the measurecl correlation coefficients: 
...... , transnlission loss for a perfectly diffuse souncl field : -. 
Points indicate measurecl values. 

- - ~/~-IN.GYPsUM B O A R D  

- - 

- - 

l I I l l l J l l l l l ~ l l l l l l l  

varies with location and eventually to obtain an average 
value of the cross-correlation coefficient. 

The source room was excited by an octave of pink 
noise, and the sound field was picked up by two $-in. 
nlicrophones and filtered by two i-oct  filters; the two 
signals fro111 the filters were correlated by a PAR 
correlator. From these experimental data the param- 
eters D, E, and F in Eq. 27 were determined and used in 
Eq. 30 to carry out numerical integration. Fiumerical 
evaluation of Eq. 30 was carried out by an adaptive 
integration method employing Simpson's rule. The 
transmission loss was averaged with respect to 10 
frequencies in the 3-oct frequency band under 
consideration. 

It has been recognized that prediction of transnlission 
loss with Cremer's original formula, averaged with 
respect to all angles of incidence from 0" to  90°, yields 
quite disappointing results in con~parison with those of 
experiment. The device usually adopted to fit theory 
and experiment takes an average with respect to angles 
of incidence from O0 to, say, SjO, thus neglecting grazing 
incident waves. To  illustrate this, three transmission- 
loss curves are shown in Fig. 1 (b), in which the limiting 
upper angle of incidence is chosen to be 90°, 8j0,  and 
7j0,  respectively. The shift of the curve to higher T L  
data for frequencies below coincidence is much more 
than would be expected from the three corresponding 
correlation coeflicients [Fig. 1 (a)]. These coefficients 
have been obtained by averaging the correlation coeffi- 
cient for aplane wave with respect to angles of incidence 
from O 0  to  90°, 0' to 8.5' and O 0  to 7j0,  respectively. 
The evaluation of the integral 

FIG. 3. Transmission loss of a ;-in. gypsum-board layer; J o  J o  
calculated with the aid of the measured correlation coefficient: ,..... , transn~ission loss for a perfectly diffuse sound field: -. 
Points indicate measured values. 

The Journal o f  the Acoustical Society of  America 673 



674 Volume 47 Number 3 (Port 1) 1970 

A. D E  B R U I J N  

I I in front of the wall and three different bands of noise, 
- with lllidbancl frequencies of 500, 1000, and 2000 Hz, 

respectively. Thc deviations from complete diffusivity 
are small but  obvious, as one might expect, in the - 
vicinity of the walls of a rcverbcration room. The shifts 
of the intercepts around k,r=?r and k,r=27r are 

- especially striking. The minimum around k,r= 1 . 5 ~  is 
deeper, and the lnasimum around k,r= 2 . 5 ~  is somewhat 
lower than it should be. This gcncral trend holds for all - 
curves. 

I t  is possiblc to match these curves with the trial 
function of Ecl. 27 if D=0.475, E=0.51, and F=0.01 

= 
= 

arc chosen. The solid line in Fig. 2(d) depicts this 
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(b) 
, 60  
D 

EIG.  5 (a) Correlation cocflicients for t\vo fict~iious sound ficlds 5 0  
I)=O.S; 11=03; F=0.1:-. L)=O35; E=0.45; Ic=0.1: - - - - - o 

(b) Sound transmission loss of a :-in gypsum-hoard layer, corre- 
2 

spontling to the t n o  sound fields, depicted in (a). Perfectly diffuse ,' S O  - 
souncl field : - . D=0.35, k'=0.45; I;=O.l: D=O.S; 

v, v, 

/j=0.3. F=0,1: . . . . .. - 
30 

Z 
4 

is thcn rccluiled, Bo being 90°, SjO,  and 7j0,  respectively. = + 

, 20 The thrce curves exhibit few departures from each 
Z 3 

other; in particular, differences bctwecn Bo=900 a rn 10 

and 00=85' are hardly disccrniblc. This confilms 

Diimmig's obscrvat ion '~1~at  for high diff~isivity si t~la- o 

- 

- 
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lions thc sensitivity of thc correlation nlethod in finding 125  zso 5 0 0  1000  2000  4000  

dcficicncics in cliflusivity is restricted. Only thc inter- M I  D B A N D  F R E Q U E N C Y  I N  H Z  

ccpts along the h,r axis provide a fairly good indication (b) 

ill this 'rl1is indicates that tllc c,pcrimcntal PIG 6 (a) Correlatio~l coellicients for three fictitious sound 
fields I)= 1 0; IT=0.0; F=O.O (perfectly diffuse) : . . .. I)= 1.0; 

investigation must bc carricd out vcry carefully bccausc 1 ~ ~ 0  0, I( =0 1: - - -. ., ~ = 1 . 0 ;  E=O.O; ~ = 0 . 2 :  -. (b) 
of the sinall dcpal lures onc can cxpcct. Sound transmission loss of a :-in. gypsum-board layer corresponcl- 

i \ i ~ ~ ~ ~ ~ ~ ~ d  correlatioll cocficients are dcpictcd ill ing to the three sourld fields, depicted in (a). Perfectly diffuse 
sound field: ---. D= 1.0; E=0.0; F=0.1: . . .. D= 1.0; E=O.O; 

Figs. 2(a)-2(c),\vhich show the resultsfor three locations F=O 2: - - - - -. 
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function. The calculated transmission-loss curves Canada, and is publishecl wit11 thc approval of the 
cinploying this correlation function confirm very well Director of the Division. 

the experimental data. This may be seen in Figs. 3 and 4 
for plasterboard walls in. and f in. thick. Below 

coincidence, the results agrce exactly. The slight spread 1 I,. Crenler, "Thcoric (1er S c l i a l l d i i t ~ ~ n g  dunncr \\ ancle bei 

of the esperilnelltal data aroLllld the tllcoretical line is Schr.~gen Einfall," i \ l<~s t .  Zeit., 7, 81-87 (1942). 
T. D. Nortl i~~~ootl ,  "Transmission Loss of Plasterboald Walls," 

believed to be due to factors such as material impurities. 
J, hcoust, Sot. Anler. 40, 1246(-.l) (1966), 

The correlation nlethod thus onens a new wav of 3 S. G. Gershmann. "The Correlation Coefficient as  a Criterion 

dealing with the influence of non-ideal soillld fields - 
occurring in field measurements upon the transmission 
loss of actual walls in buildings. 1;or this reason, a few 
fictitious sound fields. which illustrate deviation that 
might occur in practice, were iilvcstigated (Figs. 5 and 
6). Diffusivity is quite important below coincidence, 
and shifts of about 5 dB can be expected in the curve. 
The d e ~ t h  of the coincidence remains about 10 dB. and 
its location in the frequency scale is :~pprosimately the 
same for the range of ditfusivities consiclcrcd. Above 
coincidence, the situation appears to be more compli- 
cated as damping is also important. Semidiffuse sound 
fields [Figs. j(a)  and 6(a)] have sonle cfiect upon the 
trans~nission loss [Figs. 5(b) and ~(I I ) ] ;  it is difficult, 
however, to indicate any trend in this case. If dif- 
fusivity is fairly high, the transmission-loss data are 
very much the same as those found for ideal diffusivity. 

I n  conclusion. for ~ redon~ina l l t  nonresonant trans- 
mission, diffusivitg is an important factor to be con- 
sidered, as is the case with large plates below coinci- 
dence. For resonant transmission, difiusivity is not 
critical. 
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