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INFLUENCE DE" LA DIFFUSIVITE SUR L'AFFAIBLISSEMENT DU
SON:A-TRAVERS UN MUR A PANNEAUX SIMPLES

SOMMAIRE

Lia théorie de Cremer sur la transmission du son 3 travers un mur a
panneaux simples est généralisée par une expression dans' laquelle
la'pression acoustique est exprimée en fonction de la corrélation spa-
tiale. Lie coefficient de corrélation a été mesuré dans’'une chambre
de réverbération immédiatement en face du mur sous essai, L'affaib-
lissement du son a travers un panneau simple de placoplitre a été
calculé en employant les - mesures de diffusivité et'a été comparéavec
les données expérimentales, Il .semble y avoir un'bon accord entre
les valeurs théoriques et expérimentales en particulier dans' cette
régionde la fréquence quiest inférieure % la fréquencede coincidence.
Enfin, quelques champs de sons quasi-diffus et fictifs ont été examinés
aux fins d'étudier d'une fagon plus approfondie 1'influence du degré de
diffusivité sur l'affaiblissement.du son.
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Influence of Diffusivity on the Transmission Loss of a
Single-Leaf Wall

A. pE BrujN

Division of Building Research, National Research Council, Ottawa, Ontario, Canada

Cremer’s theory of sound transmission for a single-leaf wall is transformed into a more general formulation in
which the exciting pressure is expressed in terms of the spatial cross-correlation. The correlation coefficient
was measured in a reverberation room just in front of the wall under test. The sound-transmission loss of a
single gypsum-board wall was calculated employing these diffusivity measurements and compared with
experimental data. Agreement between theory and experiment is good, especially in the frequency range
below the coincidence frequency. Finally,a few fictitious quasidiffuse sound fields are investigated in further
study of the influence of the degree of diffusivity upon transmission loss.

INTRODUCTION

Sound-transmission loss through a single panel is not
vet completely understood. Cremer’s theory! regarding
the influence of the various parameters on transmission
loss has been the most informative to date. It assumes
that a panel extends to infinity and that sound waves
induce simple flexural waves in the panel. The first
essential step in the analysis is the determination of the
transmission Joss for a wall excited by a plane wave
incident under a certain angle 6. It may be seen that the
transmission-loss factor is a rather complicated function
of the angle of incidence. The transmission loss for a
diffusively incident sound field is obtained by averaging
transmission loss with respect to the angle of incidence
with the appropriate weighting function.

The resulting expression is a complicated function
and an exact integration has not been performed.
Northwood? used a numerical integration method and
obtained figures for & number of examples. The numer-
ical data agreed reasonably well with experimental data
if some correction was included.

Assumption of internal friction in the material is
quite natural from a physical point of view. Assumption
of a complex Young’s modulus provides the easiest
method of including the damping of the material, the
imaginary part representing the damping factor. The
influence of damping is very important above the coinci-
dence frequency range. It is essential in this range to
make a proper choice of values in order to match theo-
retical with experimental data. In practice, however,
the panel is finite, and it might be expected that the

treatment of the edges would have some bearing upon
transmission loss. The model might therefore be too
simple to predict the finer points.

Another important feature for better agreement
between experiment and practice below coincidence is
the introduction of additional suppositions concerning .
the incident sound field. As has been explained, the most
appropriate model for a diffuse sound feld is the super-
position of plane waves travelling in all directions. In
the middle of the reverberation chamber this mathe-
matical model is correct, but near the walls one could
expect divergences from the ideal case. One way out of
this difficulty is the supposition of a lack of grazing
incident waves, i.¢e., plane waves with angles of incidence
more than, say, 85°. In other words, an integration with
respect to the angle of incidence from §=0° to §=_83°
in Cremer’s formulation yields much better results in
matching theory and practice. Again, there is a weak-
ness in Cremer’s analysis: the lack of a good representa-
tion of the sound field exciting the panel.

Gershmann® and Cook! have indicated that the cor-
relation function in space might be a powerful quantity
for characterizing the measure of diffusivity. Cook
obtained a simple formula for the cross-correlation
coefficient by averaging the cross-correlation coefficient
for a plane wave over all angles of incidence. In the
middle of a reverberation room, the experimental data
fit the theoretical curve!?® reasonably well. In field
measurements, there may be deviations from ideal
diffusivity. The correlation coefficient might be the most
useful parameter to describe the sound field. Hence,
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Cook’s formula will be replaced by one that takes such
deviations into account.

It is essential to change to random vibration methods
to acquire a better comprehension of the important
features governing transmission loss. If energy from
the incident sound field has been accepted by the plate,
part of it will be radiated into the media around the
plate and the remainder will be dissipated into the
plate. Internal friction of the material and damping at
the edges of the panel are responsible for the energy
dissipation in the panel. The treatment of the edges
(supported or clamped) and the connection of studs and
joists are uncertain factors in the analysis. The influence
of damping is in general small, but for prediction of the
finer details of transmission loss it is the most difficult
problem to handle. Radiation efliciency is rather awk-
ward to predict, but it is important for successful
application of the random vibration method. From a
reciprocity argument, the radiation efficiency is asso-
ciated with the response of the structure to the incident
sound field. Hence, the transmission of noise through
a plate is a problem combining response to a sound field
and radiation of sound.

An important phenomenon, “coincidence,” provides
major complications for a better understanding of trans-
mission loss. The wavenumber of the flexural vibration
in the plate is about equal to the wavenumber of the
fluid medium of the environment. In this frequency
region, the difference between data obtained from
Cremer’s theory and experimental data is still quite
large. The difficulty ensues from the improper definition
of the radiation efficiency in this region, because the
boundary condition at the edges seems to be important.
Cremer’s theory, which ignores the effect of edges and
the size of the panel, yields inaccurate results in this
case.

The purpose of this paper is twofold. The first part
will be devoted to a random vibration approach to
Cremer’s problem, and an attempt will be made to
prove that the random vibration method, applied to a
finite plate, gives approximately the same results as
Cremer’s analysis. This indicates that even a finite
plate can in some circumstances act like an infinite
plate; this is confirmed by experiment. The second part
presents an analysis of the influence of the degree of
diffusivity upon transmission loss. Cremer’s formulation
will be transformed into a more general formulation
which employs the cross-correlation coefficient in the
representation of the exciting pressure. The correlation
coefficient was measured in a reverberation room close
to the wall under test in a number of positions in order
to obtain an average coefficient. The average coefficient
was then employed to calculate the transmission loss
of a gypsum-board wall. Finally, to extend the analysis
to a greater range of room conditions, quasidiffuse
sound fields were investigated with respect to their
influence upon transmission loss.
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I. RANDOM VIBRATION THEORY OF
TRANSMISSION LOSS

A. Basic Theory of Random Vibrations

Assume a rectangular elastic plate with dimensions
a and b, area 4, and thickness /. Sound is incident from
one side and transmitted through the plate to the other
side. The differential equation governing the vibration
of the panel is given by

0w
o2

dx?

20% Q'w Pw  dw
R e O
3xdly Iyt o ot

where w(x,y) represents deflection, B the bending
stiffness, p, the mass per unit area of the plate, and 8
the coefficient of damping, representing acoustic radia-
tion load and a structural damping part, and p(x,y,1) is
the incident sound pressure or external force at time ¢
and position 7 (x,y).

The normal mode approach of generalized harmonic
analysis will be used to determine the response of the
plate to the randomly varying loading. Small damping
is assumed, so that cross-coupling of the modes from
this effect can be ignored.

Consider an entirely random pressure field acting on
a panel with a general mode shape ¥,.,(r). The general-
ized force is

()= / Y (P (5,1, @

the integration being taken over the entire surface 4
of the panel. The Fourier spectrum of ., (/) becomes

o
L (w)= / / Youn (1) p(1,0) exp (Gwl)drdl.  (3)

The power density spectrum of the total displacement
at a point r, including all modes, becomes®

1
¢uw(riw) =lm Py 2 2 Yma(DPre (1)
Lmn. (w)Lrs* (w)

y (@)
Zon(0)Z 6™ ()

where
an (CO) =4 P;ul: (w2 _wgm n)+ 2]'677;710)(‘0 m n];

dms being the damping factor in the m, nth mode and
wmn the circular frequency of the m, nth mode. Substitut-
ing from Eq. 3, we can write Eq. 4 in the form

Yonn (D)Yrs (1)
Oww (l‘ :w) = ':L?n § zZ (w)Z,s* (w)

x / f G (EWomn ()b (rFes)dradrs, ()
A A
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where, if we let (—{/=7,

+-o0
Gpp(T1,L250) = ¢ pp(11,T,7) exp(Jur)dr  (6)

—%
Is the cross-power density spectrum and

1 +T
epp{TyIa,l) =lim —-
T—ox 2T

P(rl,l)P (r’-’)[_//)dzl (7)

=T

is the cross-correlation function of the pressure at ry
and r,. The integrals, with respect to the surface A in
Eq. 3, represent the cross-spectral density of the
generalized forces in the modes m, » and 7, s and will
be abbreviated to I,...(w). Equation 3 is essentially
Powell’s central result,” but Powell wrote the forenamed
integrals in a different way, normalizing them to non-
dimensional factors. The function I,..m.(w) gives the
effectiveness of a random forcing field in exciting the
m, nth mode, and the function I ,.n..(w) represents the
contribution from the coupling effect between the two
different modes m, # and 7, s.

Equation 5 can be split into two series if the response
spectral density is averaged over the surface of the
plate. It is assumed that the cross-terms m>=<r, ns%s
contribute nothing to this average because of the
orthogonality condition, but that the second series
with terms involving each mode represents exactly the
average spectral density over the surface. In order to
obtain the average mean-square velocity, the series
may be multiplied by Aw-w? Thus, if all the results
are taken together,

1/ 4 g (W
(F(w)=2 L_'—(—ZAw. (8)

9
m,n mnl|”

It is possible to rewrite Eq. 8 as

<7J2 (UJ)> = Z.: <7)77|712<w)>7

m,n

(8a)

where (Un.2(w)) represents the average mean-square
velacity of the panel vibrating in the 2, nth mode. Thus,

w?
<7)mn2<w)> =ij.n.mn (w)AUJ/ [ Zmu [ 2

B. Transmission Loss of the Plate

Equation 8 provides a general formula for the average
mean-square velocity of the plate when excited by a
random incident sound field characterized by a correla-
tion function ¢,,(ry,r2;w). In order to predict the
transmission loss, it is essential to determine the sound
power reradiated from the panel into the medium
beyond. Every normal mode produces its own radiated
sound power, and the total radiation is given by a sum-

DIFFUSIVITY ON TRANSMISSION LOSS

mation over all normal modes. It is implied that the
cross-terms involving different modes do not contribute
to the radiated sound power because of the orthogonality
property of the normal modes.

The radiated sound power is formally given:

| Smn (k) | 2k,
€ Y
ke (k' — ke |

2pata

(r)?

1)mn (w) =

<7)2mn > R

when S,..(k;) represents the Fourier transform of the
m, nth mode ¥,.., which has a velocity amplitude v,,,.
The definition of the radiation resistance is now given
by

2R7711L=])"L1‘].(w)/ <7)mn2>- (10)

The transmission loss can be considered to be the
quotient of the incident power, given by

14 opo(w)
AW
PaCa

[¢mo{w) is the spectral density of the forcing field at
a reference point 07 and the power radiated from the
panel, viz.,
20 i (WY R ()
TL=73%, ) (11)
m,n [ Zmn ((JJ) I Z%fl Do (w)/pac.,

where, for convenience, Inm.(w) is abbreviated to
I ,,,n(w).

Equation 11 seems to be relatively simple, but the
quantities /,.,(0) and R,.(w) are intricate formulae.
One simplification can be made by observing that
In(w) and R,,, (w) have similar forms, apart from some
constants, if I...(w) is the quantity found for a com-
pletely diffuse sound field.® Complete diffusion is
characterized by the correlation function,

Cpp(Tr, T ) =sin (ks 11— 12]) Mol ti— 1| - @po(w). (12)

With the aid of the Fourier transform of ¢p,(r,r2;w):
$pplkesw) and of the normal mode ¥oun(r):Sua(ks),
the expression for 7,.(w) is converted into its wave-
number representation®:

Ion (@)= / Dpp (ke i) | Somn (ke s0) [2dk,. (13)

The performance of the Fourier transform of
©pp(T1,T2;w) turns out to be elementary; ¢, is cylin-
drically symmetric—i.e., the function depends only
upon the distance of two points under consideration.
In this case, the Fourier transform reduces to a Hankel
transform?:

&, (k) =27r/

0

@pp(T;0) o[ Ke | 7)rdr

0
=2rppo(w)ka Re(ka?— | k| D)7H  (14)
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The final result for [, () is:

(2] (w)
R
ko

Inm (w) =2

Sun (ke jw) | %k,
. / | S (i 50) | 15)

(ka*— | ke |2)?}

Comparison of Egs. 9, 10, and 15 exhibits the close
relation between R,,,(w) and 7,,,(w). From a reciprocity
principle, one may expect such results. The quantity
I, () indicates how well the incident sound field
couples to a particular normal mode. The reciprocity
principle requires that sound radiation must be governed
in the same way by the variables involved in I,,,(w)."*

C. Transmission Loss (TL) of a Large Panel

From physical considerations, one can expect that
transmission loss for a very large panel will approach
the TL of an infinite panel. This expectation is now
proved.

Assume a rectangular panel, supported at the edges.
The normal modes are represented by™

THX TRY
Yrn (20,y) = sin< ) sin<——>.
a b

The square Fourier transform is given by

(16)

I Smn (/ez,ky) I 2
(2ama)*(2and)? sin? (ko —mw/2) sin*(k,b—nm/2)

(kAa?—m )2 (k,20*—nPr?)?

(17

On substituting this in Eq. 15, an integration with
respect to k, and %, is carried out. It may be observed
that, for large numbers of mar/a and na/b, | Smn(fzky)|?
peaks sharply around k,=m=/a and k,=nwr/b. If this
is the case, then an application of the delta-function
approximation is valid because only contributions
around the critical points are significant. In this way,

L) =AL¢30()/ka) (r/2)
X Re(ks*—mPn?/a*— P2 /b?) 74,

(18a)

Ron{w)=Apocoks Re(k2—min?/ a2 —nPn?/B)~%  (18b)

Equation 18b is exactly the representation for the
radiation resistance of an infinite panel in which a
flexural wave is travelling with wavenumber [ (mw/a)?
4 (nw/b)? ]2 The wavenumber [(mm/a)*+ (na/b)*]s

= ko marks the coincidence phenomenon,

TL=

The frequency influence function Z,,,(w) needs more
attention -because it contains a convenient property
for simplifying results. The damping factor 6,. con-
tains the radiation load and might contain the internal
damping of the plate. The latter quantity will be
removed to a complex Young’s modulus, which implies
a natural frequency w,, with an imaginary part. It
develops that §,., and R,,, are related by the following
equation : .

617171: -Rmn/wnmppA . (19)
This makes |

! Z'm n (0)) ' 2= (A pp)2 (wz_wmnz)2+ 4Rm 11.2(’)2- (20)

For a very large plate, i.e., when ¢ and § are large, one

may presume that the normal modes are so close to

each other that an integration instead of a summation
with respect to the mode numbers is permitted. The
fact that both |Z,.(w)|? and R,.. contain the wave-
number of the plate in quadratic form, viz.,

wnn= (B/p ) [m*r/ a2+ n*n*/1%],

immediately suggests an application of polar coordi-
nates. The following step is the determination of the
number of modes having resonance frequencies lying in
the small frequency band between wm, and wm.+ Aw.
The result is

AN = (4Aw/4m)(p5/B)?, (21)

which is independent of frequency.®

The double summation reduces itself to an integration
with respect to a coordinate %,, which is defined by
(22)

e 2= mPm?/ a? 4 ntm? b2

With the aid of this coordinate transformation, we find

Rmn=PuCaA Re(l—lzrz/k,ﬁ)_&, (2321.)
wmn?:Bkr‘i/Pm (23b)
and
AN = (A /2m)k Ak (23¢)
For the sake of convenience,
kst=pi? /B, (24)

The quantity kg represents the wavenumber of a free-
traveling wave in an infinite plate at frequency w."

Combining these results, one obtains an integral
formulation,

A1 —k2 k)3 A/2m) ¢ po(w) ksl
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/ka ka_z%oﬂpu(;a;’[ (1 _krz/kaz)—%
o Hop(@)A/paca) LA B (kA — kst 4% 202 (1 — kA k]

(25)



INFLUENCE OF DIFFUSIVITY ON TRANSMISSION 1.OSS

Removing all common factors in the numerator and
denominator and rearranging the equation, one obtains
kR Ak,

kﬂ.
TL=2 / ,
0 B 2 (/6,-4—]31;4)2 /d,-2
() e L)
I (2pata)? ko2
which is the same equation as has been found by
Cremer?® for free waves in an infinite panel. This indi-
cates that Cremer’s method is not very much of an
oversimplification, since the random vibration method
is well based on physical principles. Below-coincidence
sound transmission is completely governed by the non-
resonant modes. This proves that airborne sound insula-
tion according to the “mass-law’ is in fact nonresonant
transmission.

Powell!® has shown that, with certain restrictions, the
results on infinite-structure and normal-mode methods
must be equivalent. He pointed out the importance of
damping: even a medium-sized panel can act as an
infinite panel if the damping factor is large enough. A
difficulty with finite panels arises from the definition of
radiation resistance. The delta-function approximation,
which was used to obtain the simple form for R,,,, holds
only for a very large plate. Finite plates show radiation
resistances that have a slightly different form from those
represented in Eq. 23. For values of frequency where
ke<k, or below coincidence, radiation can be small
and often negligible, as has been assumed so far. Useful
investigations concerning the sound radiation below
coincidence have been carried out by various authors,
including Gosele,'” Maidanik,® and Nikiforov.!®

Sound radiation in the vicinity of k.=#%, provides
major difiiculties. Further investigation concerning the
impact of the finiteness of the panel upon transmission
loss would be interesting. The approach employing
statistical methods and normal-mode techniques is
extremely useful because it begins with a finite panel.
Cremer’s method does not fit into this context; it
assumes an infinite panel. In the present study, the
influence of the condition at the edges is negligible.
Although it was assumed initially that the edges were
supported, the present analysis holds also for clamped
edges, since the delta-function approximation for the
Fourier transform of the normal mode is valid in this
case.

(26)

II. INFLUENCE OF DIFFUSIVITY ON
TRANSMISSION LOSS
The foregoing analysis can be generalized by con-
sidering different field representations for the incident
sound pressure. In the previous sections, ideal dif-
fusivity represented by the correlation function (Eq. 12)
was presumed. This equation can be replaced by a
difierent formula affecting only the quantity I,..(w).

The relation between R,.» and I,,(w) is broken up, but
this is not serious, because it destroys only Cremer’s
simple representation of the TL. In the field, ideal
diffusivity is rarely met. In the middle of the reverbera-
tion room, the ideal situation is usually approximated,
but in the vicinity of the walls one expects a lack of
diffusivity. In field measurements, deviations from
ideal diffusivity are almost certain and must be taken
into account. One of the possibilities is to convert Eq. 12
to a more general function that includes parameters for
obtaining a wide variety of correlation functions. The

CORRELATION COEFFICIENT
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(b)

Fi16. 1. (a) Correlation coefficient for semidiffuse sound fields
in which the grazing incident waves have been neglected; perfectly
diffuse 8 =90°: ———; §,=85°; - - - -- 8o=75°%: ----- ;(b) sound
transmission loss for a §-in. gypsum-board layer for different
incident sound fields of (a).
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1000 Hz

T'16. 2. (a) Three measured cor-
relation coefficients; (b) three mea-
ar sured correlation coefficients; (c)
(b) three measured correlation coeffi-
cients; (d) correlation coefficient
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assumed to be the best match for
the experimentally found coeffi-
cients, D=0475, E=0.51,. and
F=0.01.
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()
proposed formula is given by
sin(Dky|r,—12])
@pp(T1,F250) = @ po{@)y————————— cos(Fk,| 11 —12})

Dk|ri—r1s]

Xexp(—Flk.|ri—re|). (27)
Equation 27 reduces to Eq. 12if D=1 and E=[F=0.
A further advantage of this proposal is its simple
Hankel transform, which is essential in making up a
simple equation for 7,.»(w). The Hankel transform of
Yolume 47
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kar
(d)

Eq. 27 is given by
i
2Dk,
Xem@)(Im{| k| *+r[F+j(D+E} ]}
X Imf [ ko) =k 2LF+ (D~ EF ).

(I)'pp(kr:‘*’) =

(28)

For a very large plate, again using delta-function
approximations, one obtains an analogy of Eq. 18:

Lun(w)= 3w A® pp(kro;w), (29)
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where

Fro= [ (@)t (e JB) 0.

Employing the method used previously to switch from
a summation to an integration, one obtains an equation
analogous to Eq. 26

ko R [ @pp(kr i)/ opo(w) J(1—k s/ k) hrdler

o (B/wPLlkst—EAY (20aca) T — b2k +1
(30)

I1I. DISCUSSION OF RESULTS

In order to study the effect of degree of diffusivity on
transmission loss, a wall material clearly defined in its
physical properties was considered. Plasterboard meets
this requirement. In addition, experimental investiga-
tions have been carried out in various laboratories and
plasterboard constructions represent a common com-
ponent of modern buildings.

Physical properties such as elasticity and internal
damping were measured with the aid of small strips set
up to vibrate in flexure as cantilever bars. The resonance
frequency provided the elasticity, and the vibrational
amplitude at resonance provided the damping factor.
The easiest way to include damping in Eq. 30 is to join
the elasticity and the damping factors together to form
a complex Young’s modulus B'= B(1+ j3). A value for
B of 3.10° N /m? was found, and for the damping factor
7 a value of 0.012 of critical damping was used for all
frequencies. A wall 10 by 8 ft, placed between two
reverberation rooms, was employed to determine trans-
mission loss. Use of a reasonably large wall for experi-
ment guaranteed that the nonresonance transmission
of sound was predominant. The diffusivity of the sound
field in the source room was investigated at a number of
locations close to the wall to discover how diffusivity

70
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F16. 3. Transmission loss of a #-in. gypsum-hoard layer;
calculated with the aid of the measured correlation coefficient:
----- ; transmission loss for a perfectly diffuse sound field:
Points indicate measured values.

ON TRANSMISSION LOSS

70

S A
60 |~ 5/8~IN. GYPSUM BOARD —
50 f- —]

40 [~ —

30—

20

SOUND TRANSMISSION LOSS ~ DB

0 NEEEE NN REE NN NN
125 250 500 1000 2000 4000

MIDBAND FREQUENCY IN Hz

I'16. 4. Transmission loss of a #-in. gypsum-board layer;
calculated with the aid of the measured correlation coefficients:

Points indicate measured values.

varies with location and eventually to obtain an average
value of the cross-correlation coefficient.

The source room was excited by an octave of pink
noise, and the sound field was picked up by two 3-in.
microphones and filtered by two %-oct filters; the two
signals from the filters were correlated by a PAR
correlator. From these experimental data the param-
eters D, E, and F in Eq. 27 were determined and used in
Eq. 30 to carry out numerical integration. Numerical
evaluation of Eq. 30 was carried out by an adaptive
integration method employing Simpson’s rule. The
transmission loss was averaged with respect to 10
frequencies in the 3%-oct frequency band under
consideration.

It has been recognized that prediction of transmission
loss with Cremer’s original formula, averaged with
respect to all angles of incidence from 0° to 90°, yields
quite disappointing results in comparison with those of
experiment. The device usually adopted to fit theory
and experiment takes an average with respect to angles
of incidence from 0° to, say, 85°, thus neglecting grazing
mcident waves. To illustrate this, three transmission-
loss curves are shown in Fig. 1(b), in which the limiting
upper angle of incidence is chosen to be 90°, 85° and
75°, respectively. The shift of the curve to higher TL
data for frequencies below coincidence is much more
than would be expected from the three corresponding
correlation coefficients [Fig. 1(a)]. These coefficients
have been obtained by averaging the correlation coeffi-
cient for a plane wave with respect to angles of incidence
from 0° to 90°, 0° to 85° and 0° to 75° respectively.
The evaluation of the integral

27 ) 27 )
/ (Z(p/ cos (ky7 sinf cos ) sin8df // d(p[ sinfdé
0 0 4 0 0
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in front of the wall and three different bands of noise,
with midband frequencies of 500, 1000, and 2000 Hz,
respectively. The deviations from complete diffusivity
are small but obvious, as one might expect, in the
vicinity of the walls of a reverberation room. The shifts
of the intercepts around ko=m and ko=2r are
especially striking. The minimum around k.= 1.57 is
deeper, and the maximum around k.= 2.5 1s somewhat
lower than it should be. This general trend holds for all
curves.

It is possible to match these curves with the trial
function of Eq. 27 if D=0.475, E=0.51, and £=0.01
are chosen. The solid line in Fig. 2(d) depicts this
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I'16. 3. (a) Correlation coefficients for two fictitious sound fields
D=038; £=03;F= . D=035; £=0.45; '=0.1:
(b) Sound transmission loss of a §-in. gv psum-board layer, corre-
sponding to the two sound fields, (leplcted in (a). Perfectly 'diffuse
sound field: . D=0.35; E=0. 45; F=0.1: . D=0.38;
£=03; F=0.1:-----

is then required, 8o being 90°, 85°, and 75°, respectively.

The three curves exhibit few departures from each
other; in particular, differences between @o=90°
and 6p=385° are hardly discernible. This confirms
Dammig’s observation' that for high diffusivity situa-
tions the sensitivity of the correlation method in finding
deficiencies in diffusivity is restricted. Only the inter-
cepts along the by axis provide a fairly good indication
in this matter. This indicates that the experimental
investigation must be carried out very carefully because
of the small departures one can expect.

Measured correlation coefficients are depicted in
Figs. 2(a)~2(c), which show the resultsfor three locations
Yolume 47
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I16. 6.(a) Correlation coeflicients for three fictitious sound
fields. 2=1.0; £=0.0; F=0.0 (perfectly diffuse); -« --- . D=1.0;

=0.0; /=0.1: . D=1.0; E=0.0; F=0.2: (b)
Sound transmission loss of a $-in. gypsum-board layer correspond-
ing to the three sound fields, depicted in (a). Perfectly diffuse
iouibd field : . D=10; £=0.0; F=0.1: ---. D=1.0; £E=0.0;
"=0.2:
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function. The calculated transmission-loss = curves
employing this correlation function confirm very well
the experimental data. This may be seen in Figs. 3 and 4

for plasterboard walls § in. and § in. thick. Below

coincidence, the results agree exactly. The slight spread

of the experimental data around the theoretical line is
believed to be due to factors such as material impurities.

The correlation method thus opens a new way of
dealing with the influence of non-ideal sound fields
occurring in field measurements upon the transmission
loss of actual walls in buildings. For this reason, a few
fictitious sound fields, which illustrate deviation that
might occur in practice, were investigated (Figs. 5 and
6). Diffusivity is quite important below coincidence,
and shifts of about 5 dB can be expected in the curve.
The depth of the coincidence remains about 10 dB, and
its location in the frequency scale is approximately the
same for the range of diffusivities considered. Above
coincidence, the situation appears to be more compli-
cated as damping is also important. Semidiffuse sound
fields [Figs. 5(a) and 6(a)] have some eflect upon the
transmission loss [ Figs. 5(b) and 6(b)7]; it is difficult,
however, to indicate any trend in this case. If dif-
fusivity is fairly high, the transmission-loss data are
very much the same as those found for ideal diffusivity.

In conclusion, for predominant nonresonant trans-
mussion, diffusivity is an important factor to be con-
sidered, as is the case with large plates below coinci-
dence. For resonant transmission, diffusivity is not
critical.
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