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Abstract. This paper presents the application of a general shape sensitivity equation
method to the solution of unsteady laminar flows. The formulation accounts for complex
parameter dependence and is suitable for a wide range of problems. The continuous sen-
sitivity equation method (SEM) is first verified on a steady state problem. The computed
sensitivity is compared to the actual change in the solution when a small perturbation
is imposed to the shape parameter. The methodology is then applied to the flow past a
cylinder in ground prozimity. The study investigates the ability of the sensitivity equation
method fo anticipate the unsteady flow response: damping of the vortex shedding when
closing the gap to the ground and/or amplification of unsteadiness when the distance to
the ground increases.

1 Introduction

Sensitivity analysis is a relatively new and powerful tool in computational fluid dynam-
ics. A sensitivity (the derivative of the solution with respect to a parameter) indicates
how a dependent variable reacts to variations of a design parameter. Sensitivity informa-
tion finds many uses ranging from driving optimization algorithms, to fast evaluation of
nearby flows or to produce uncertainty estimates of the solution. Sensitivities also find
applications in flow control due to their ability to indicate the flow response to design
parameter changes. In all cases cost-effectiveness is achieved because sensitivities are
obtained at a fraction of the cost of computing the flow.

There are several means of computing flow sensitivities: finite differences of flow solu-
tions, the complex step method [1}, automatic differentiation [2], and sensitivity equation
methods [3, 4, 5]. The first option is costly because the problem must be solved for two
or more values of each parameter of interest. Furthermore, technical problems arise be-
cause non matching meshes are obtained for different values of a shape parameter. The
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complex-step method is code invasive: it requires a complete rewrite of the software in
complex variables. While this can be automated, it has a significant impact on perfor-
mance. Automatic differentiation is equivalent to differentiating the discrete equations to
generate a system of equations for the discrete sensitivities. It is powerful because it auto-
matically generates the code for calculating sensitivities. In many cases, implementation
requires human intervention to ensure efficiency of the code. Approaches to calculating
sensitivities also differ depending on the order of the operations of approximation and dif-
ferentiation. In the discrete sensitivity equation approach, the total derivative of the flow
approximation with respect to the parameter is calculated [6], whereas in the continuous
sensitivity equation method (SEM) one differentiates the continuum equations to yield
differential equations for the continuous sensitivities[3]. See Hien et al.[7] for a discussion
of the two approaches. We have adopted the latter approach.

Sensitivity analysis is a more advanced field in solid mechanics than in fluid dynam-
ics. Indeed, textbooks have been written on sensitivity analysis of structures [6, 7]. To
our knowledge there is only one book on sensitivity analysis of flow problems [4]. It is
recent and more specialized than structural mechanics books. Gunzburger 8] discusses
sensitivity analysis in the context of flow control and optimization.

Automatic differentiation for first-order flow sensitivities is discussed by Sherman et
al. [9] and Putko et ol [2]. Continuous SEMs may be found in Godfrey and Cliff [10, 11],
Borggaard and Burns (3], Limache [12] and Turgeon et al. [13] for aerodynamics appli-
cations. Application to heat conduction is reported by Blackwell ef al. [14]. Sensitivities
for incompressible flows with heat transfer may be found in several references [5, 15, 16].
Sensitivity analysis for turbulence models is detailed in the works by Godfrey and Cliff
[11] and Turgeon et el. [17]. Solution of the sensitivity equations for the transient in-
compressible flow of non-Newtonian fluids is presented by Ilinca and Hétu [18]. A wide
variety of flow regimes were treated by the authors {5, 15, 16, 17]. This body of work
has shown that sensitivities provide an enriched basis of information on which to develop
an understanding of complex flow problems. The work presented here is an extension to
unsteady flows of the shape sensitivity methodology presented by Duvigneau and Pelletier
[19]. It is also an extension to shape parameters of the unsteady SEM by Hristova et al.
[20], and Ilinca et al. [21] for laminar flows.

The paper is organized as follows. First, we present the equations describing time-
dependent laminar flow along with their boundary and initial conditions. The shape
sensitivity equations and their boundary/initial conditions are then described in detail.
The approach is applied to the low around a circular cylinder in ground proximity. The
methodology and its finite element solver are first verified on a steady state problem. The
paper then focuses on unsteady flows and the ability of sensitivities to anticipate important
changes in the flow response due to shape changes. We use the example of vortex shedding
behind a cylinder in ground proximity. We study to what extent sensitivities can predict
amplification/damping of vortex shedding when the ground to cylinder gap varies. The
paper ends with conclusions.
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2 Flow equations
The flow regime of interest is modeled by the momentum and continuity equations:

p%l +pu-Vu=-Vp+f+V-[u (Vu+(Vu)T)] (1)

V-u=90 (2)
where p is the density, u is the velocity, p is the pressure, p is the viscosity, ¢ represents

time and f is a body force. The above system is closed with a proper set of initial
conditions

u(x,t = 0) = Up(x) in Q (3)

and Dirichlet and Neumann boundary conditions
u(x,t) = Up(x,t) on I'p {4)
t = (—pl+2uy(u)]-A=FNon I'y {3)

where Up is the value of the velocity imposed on the boundary T'p, T is the identity
tensor, v(u) = (Vu + VuT)/2 is the shear rate tensor and FV is the imposed boundary
value of the surface traction force t.

3 Sensitivity Equations

The continuous sensitivity equations (CSE) are derived formally by implicit differenti-
ation of the flow equations (1) and (2) with respect to parameter a. We treat the variable
u as a function of space, time and of the parameter a. This dependence is denoted by
u(x, t;a). Defining the flow sensitivities as the partial derivatives sy = 33—2‘- and s, = gﬁ,
and denoting the derivatives of the fluid properties and other flow parameters by a ('),

differentiation of equations (1) and (2) yields

8 17,
p (Eu-i-u-Vu) +p(%+u-Vsu+su-Vu) = —Vs, +f
+V - [¢ (Va+ (Vo)) + 4 (Vsu + (Vsu)T)]  (6)

V- Su = 0 (7)
3.1 Initial and Boundary Conditions

Initial conditions for the sensitivity equations are obtained by implicit differentiation
of equation (3)
Uy,
Ba
Dirichlet and Neumann boundary condition are obtained in a similar manner. However,
if @ is a shape parameter, the position of the boundary is also parameter dependent.

su(x,t =0) = (x) inQ, (8)
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Therefore, the differentiation must account for the dependence on a of both the boundary
data and the boundary location. The boundary conditions for the CSE are written as:

BUD 6x
Sy = aa —Vu- a on FD (g)
, ) ox| .
[=spL+ 2 (v(su) + piy(u))] - = —— — {V - [=pL+ 2py(u)] - 5;} -h

—[—pI+2m(U)]-g—2 on Iy (10)

As can be seen from equation (9, the flow gradient at the wall are needed to evaluate
Dirichlet boundary conditions for the flow sensitivities. Second derivatives of velocity
are needed in the case of Neumann boundary conditions. This introduces numerical
difficulties when solving CSE, since approximate boundary conditions are used. In this
work only the Dirichlet boundary conditions are dependent on the shape parameter.
Sensitivity boundary conditions are evaluated by extracting the normal derivatives from
the auxiliary fluxes computed on the boundary (see Section 3.3).

3.2 Normal Velocity Boundary Condition

For incompressible flows, the boundary conditions for the velocity sensitivities satisfy
strict relationships where Dirichlet boundary conditions are imposed on the flow. Without
loss of generality we restrict ourselves to the case of homogeneous Dirichlet conditions.
In this specific case, and for shape parameters, the sensitivity of the velocity is always
tangent to the surface. This may be a very useful tool for assessing the accuracy of the
computed boundary conditions for the sensitivities. To prove that, lets start with the
equation (%) for Up = 0:

ax

Sy = —Vu- % (11)

which has the scalar components:

_ Oudr Oudy Oudz
Sy = — [%a—a-l-a—yéz-i‘gg%} (12)
ovdxr Ovdy oz
Sy = — [%%4_%%—'-5%] (13)
. Jwdr OJwdy OJwdz
Su= - [ax53+?5y"55+5}'55] (14)
The component of the velocity sensitivity normal to the boundary is given by:
Wo T o™ "oz Y Bz B |8y c By Y By °|da
[P 2 0 N0
92" 92" 392 | Ba
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where 1 = (n,,n,,n,) is the direction normal to the boundary and the derivatives of the
velocity satisfy the incompressible condition (2):

du v Ow

e — 4+ — =0 1

ox + dy + 0z (16)
Consider now the first term on the right hand-side of (15) on which we replace % by

—(g—: + 22), to obtain:

@n +@ +3_wn__ @n—@n + -aﬂn—a—w-n (17)
axzaz"" o © \dz ¥ 9y ° dr * Bz

Because u vanishes on the boundary, the derivative of the velocity along any tangent
direction t to the boundary is zero: Vu-t = 0. Thus, the two terms on the right hand-side
of equation (17) vanish, because (n,, —n;,0) and (n,,0, —n,) are two tangent directions
and the derivatives of v and w along these directions are zero. A similar treatment applies
to the other two terms of equation (15) to obtain:

In the case of a non-homogeneous Dirichlet boundary condition the normal component
of the velocity sensitivity is non-zero but it can be determined in terms of the velocity
boundary condition. In any case, the normal component is known and can be used as an
error estimate to test the accuracy of the computed sensitivity boundary conditions.

3.3 Evaluation of velocity gradient at Dirichlet boundary nodes

For simplicity we restrict ourselves to the case where Dirichiet conditions are specified
on the parameter dependent boundary segment. For this case flow gradients at the wall
are needed to evaluate boundary conditions via equation (9). To improve accuracy we
express the derivatives in the normal and tangential directions as follows

du odu du du

an = anx + a—yny + 51’&; (19}
du Ju du du
at—1 = a_mtlz -+ a—ytly + g;‘:tl: (20)
du Ju du du
-ét_g = -é;tgz + a—ytzy -+ Etgz (21)

where 1 is a unit vector normal to the boundary and t, = (t1z, tiy: tiz)s to = (tor, Loy, Loz)
are two orthogonal unit vectors tangent to the boundary. On boundaries with homoge-

neous Dirichlet condition the tangential derivatives are zero, g—%:— = 0, gt% = 0, and we
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need only determine the velocity derivative in normal direction. We do this by using the
auziliary traction force t, [22] on the boundary

L(p%—?—i-pu-Vu) wdQ—/ﬂpV-w+/Qp(Vu+(Vu)T) . Vwd(?

_ fn fwdQp = fr tywdl. (22)

where
ty = [—pL+ 27(w)] - & (23)
For incompressible flows and homogeneous Dirichlet conditions equation (23) reduces to
du
tp=—pn+pu— 24
b pn- an (24)
which we use to extract the normal derivative of the velocity at the boundary as
du 1
— = —(t 5 25
o = 7 (b +p0) (25)

Finally, cartesian derivatives of the velocity are obtained by solving equations (19),
(20) and (21) given the normal and tangential derivatives. Improved accuracy is achieved
by projecting the velocity gradient into a divergence free space. This is done by using the
incompressibility condition as a constraint when solving equations (19), (20) and (21).

4 Implementation

The flow and sensitivity equations are solved on three-dimensional meshes by a Streamline-
Upwind Petrov Galerkin (SUPG) finite element method [23]. Time is discretized by an
implicit Euler scheme. The equations are linearized with Newton’s method and discretized
with the 4-node tetrahedral element using linear interpolants for both velocity and pres-
sure. The same element is used to solve the sensitivity equations. Element matrices are
constructed using a numerical Jacobian technique and assembled in a compressed sparse
row format. Flow and sensitivity global systems are solved by stabilized BiCG iterative
methods.

5 Numerical Results
5.1 Problem statement

We consider the flow around a circular cylinder in ground proximity. The computa-
tional domain and boundary conditions are shown on Figure 1. Because the problem is
two-dimensional a slab was meshed with one layer of tetrahedral elements. The mesh,
shown on Figure 2, was designed to provide adequate flow and sensitivity resolution. The
inflow velocity Uy is uniform. The initial conditions are obtained from a steady state solu-
tion of the flow and its sensitivities with respect to s. The Reynolds number Re = pUp d/pu
is set to 100.
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Figure 1: Flow around a circular cylinder in ground proximity: Domain and boundary conditions.

Figure 2: Mesh for the flow around a circular cylinder in ground proximity

5.2 Verification

As shown in section 3, the boundary conditions for the flow sensitivity must be tangent
to the cylinder surface. The values of the normal components of the sensitivities are then
an indicator of the accuracy of sensitivity boundary conditions. In Figure 3 we show the
normal and tangential components of the sensitivity boundary condition. The variable
on the x axis represents the angle # measured counter clockwise from the rear stagnation
point on the horizontal axis (ranges from 0 for the point z = D/2,y = 0, to w/2 for
r =0,y = D/2, and so on until 27 for x = D/2,y = 0). As can be seen, the normal
component is very small and it is practically negligible when compared to the tangential
component. This indicates that the method used to recover the flow gradients at the wall
for evaluating boundary conditions for the sensitivity performs well.

Further verification is done by computing the flow sensitivities with respect to s by
finite differences. For this, the distance to the ground s is changed by a small amount ds
and the solution is recomputed. In order to minimize the influence of the mesh changes
on the solution, the topology of the mesh is kept the same and the only nodes allowed
to move are those near the cylinder. The accuracy of the sensitivity is then verified at
locations where the mesh does not change with s. The reference finite difference flow
sensitivity is determined from

(d_u) u(s + ds) — u(s — 0s)
FD

_ 2
Js 245 126)

~I
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Figure 3: Components of the velocity sensitivity boundary condition on the cylinder surface.

in which és is taken very small compared to s. In this work we consider ds = 0.001D.
The accuracy of the solution gradient from equation (26) is of the order O(ds?).

In Figure 4 the sensitivity computed by the proposed CSE method is compared to finite
difference approximations (FD) for the steady state solution and s = 0.75D. Solutions
are compared for the velocity components u and v and for the pressure p at ¢ = D,
one diameter downstream from the center of the cylinder. As can be seen, the two sets
of results agree extremely well indicating that the sensitivity equation method performs
well. It also indicates that the flow gradients are computed accurately at the Dirichlet
boundary points.

5.3 Sensitivity of the unsteady flow

The flow past the cylinder induces steady-state recirculating vortices for small distances
to the wall. When the distance to the wall increases above a critical value, vortex shedding
is triggered behind the cylinder resulting in the well known Karman vortex street. We
first look at results for the case s = D). Figure 5 shows vorticity contours for times
t = 104,106,108, and 110. For this distance to the wall the vortex street develops
quite rapidly. To quantify the effect of the wall distance on the vortex street formation,
simulations were also carried out for a distance to the wall s = 0.75D. Vorticity contours
are illustrated in Figure 6 for t = 118 to t = 124, that is at latter times than for the
case s = D (Figure 5). As can be seen, the vortex street develops more slowly and with
smaller amplitudes than for the case s = D. This is also seen in Figure 7 which compares
the time signal of the vertical velocity v at the point (r = 4D,y = D) for the two cases.

Shape sensitivities with respect to the wall distance s were computed for s = 0.75D.
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Figure 4: Steady state flow: Verification of the computed sensitivity at = = D.
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t = 104s
t = 106s
t = 108s
t =110s

Figure 5: Flow around a circular cylinder at s = D from the wall: Von Karman vortex street.

The time signals at (z = 4D,y = D) for the flow and its sensitivity are shown in Figure
8. The flow solution is shown in the left column of the figure. The SEM sensitivities are
compared with a central finite difference approximation with és = 0.001D (FD in Figure
8). The following observations can be made:

e The periods of the sensitivity signals are the same as those of the flow;

e The amplitudes of the oscillation in sensitivities (s, s, s,) are larger and increase
at a faster rate than those of the flow;

e In all cases the SEM sensitivities agree very well with the finite difference derivatives.

Figure 9 presents the time variations of the oscillation amplitude of the v component
of velocity and that of its sensitivity. Both sets of data are plotted on a logarithmic scale
because the scale of the velocity oscillations is much smaller that that of its sensitivity.
Note that the amplitude of the sensitivity signal is much larger and increases faster than
that of the flow solution. This is an important observation because it indicates that the
sensitivities appear to be reacting faster than the flow to changes in the parameter values.
In other words sensitivities appear able to foretell the transition from the steady-state
solution to the vortex shedding before it becomes visible in the flow signal.

10
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Figure 6: Flow around a circular cylinder at s = 0.75D from the wall: Initiation of unstable flow.

5.4 Fast evaluation of nearby flows

We now show how sensitivities can be used for fast evaluation of nearby flows. Consider
for example what happens to the u-velocity, when a generic parameter s is subject to a
variation ds from the reference value so. The Taylor series expansion give:

[

ou
u(z,y, z,t; 50 + 8s) = u(z,y, 2,t; 50) + 5

s + O(ds?). (27)

Using the baseline solution obtained at s = 0.75D, we compare the flow estimates from the
Taylor series for u and v to a full flow analysis at the perturbed values of the parameter.
Results for two values of s, one lower (s = 0.74D) and the other larger (s = 0.76D)
than the baseline value are shown in Figures 10 and 11. The reconstructed solutions are
very close to those obtained by reanalysis at the perturbed value of s. The Taylor series
approximations of the flow response are in very good agreement with the CFD reanalysis at
early times. Agreement deteriorates very slightly at later times, probably because higher
order derivatives in the Taylor series expansion become important. Observe also that
sensitivities provide useful information above trends of the flow response. They predict
the damping of the vortex shedding when s decreases and amplification of unsteadiness
when the distance to the ground increases.

11
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Figure 7: Time signal of the vertical velocity at (r = 4D,y = D).

6 Conclusion

A general shape sensitivity equation formulation was developed for time-dependent in-
compressible laminar flows. The method is applied to the flow around a circular cylinder
in proximity of a solid wall. The study analyzes the influence of the distance to the wall
on the transition from the steady-state low to vortex shedding behind the cylinder. The
sensitivity of the flow is computed and correlated with the flow response when the wall
distance changes. For s = 0.75D, the amplitudes of the sensitivity oscillations increase
much faster with time than those of the low. Hence sensitivities provide useful infor-
mation to anticipate the flow response. The damping of vortex shedding with decreasing
s/ D is well predicted. Amplification of shedding with increased s/D is also well predicted.
This property of sensitivities will likely prove useful in developing flow control algorithms
to maintain certain characteristics of the flow (for example minimize the vortex street or
added mass effects).
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